
A Compact and Efficient
SAT Encoding for Quantum Circuits

Robert Wille∗† Nils Przigoda∗ Rolf Drechsler∗†

∗Institute of Computer Science, University of Bremen, 28359 Bremen, Germany
†Cyber-Physical Systems, DFKI GmbH, 28359 Bremen, Germany

{rwille,przigoda,drechsle}@informatik.uni-bremen.de

Abstract—Promising applications of quantum computation
motivated the consideration of corresponding design methods
for this emerging technology. Here, researchers are faced with
the problem that signals in quantum circuits may (theoretically)
assume an infinite number of states. As a consequence, design
approaches based on Boolean satisfiability (SAT) were subject
to restrictions so far. In this work, we propose a compact and
efficient SAT encoding for quantum circuits that loses these
restrictions. For this purpose, a structural analysis is introduced
which determines an upper bound on possible quantum states.
The applicability of the encoding is exemplarily demonstrated by
a SAT-based equivalence checker.

I. INTRODUCTION

Quantum computation [1] established itself as a promising
emerging technology. Important problems including factoriza-
tion [2], [3] (and its application in cryptography), database
search [4], or graph and algebraic problems [5] can be
addressed significantly faster when exploiting the underlying
quantum mechanical phenomena in comparison to conven-
tional computing paradigms. Consequently, the development
of corresponding design methods received significant attention
in the last years. Besides a quite thorough consideration of
synthesis questions (see e.g. [6], [7] for overviews), recently,
also approaches for verification or test became a focal point
of interest [8], [9], [10], [11], [12], [13], [14].

Here, researchers are particularly struggling with the com-
plexity of quantum circuits. Theoretically, qubits1 may as-
sume an infinite number of values, i.e. not only the Boolean
values 0 and 1 known from conventional computations need
to be considered, but also quantum states representing the
superposition of them. To address this problem, approaches
have been introduced which (1) rely on simulation [15] and
often require an exhaustive consideration of the input vectors
or (2) make use of decision diagram-like data-structures [16],
[9], [10], [12], [14] that suffer from memory explosion.

As an alternative, methods based on Boolean satisfiability
(SAT) are considered in this work. Here, the corresponding
verification or test problem is encoded as a SAT instance
which, afterwards, is addressed by corresponding solving
engines (e.g. [17]). Due to the impressive performance of
today’s SAT solvers, Boolean satisfiability is an established
core technology in the verification and the test of conven-
tional circuits. Applications can be found e.g. in equivalence
checking [18], [19], property checking [20], [21], or automatic
test pattern generation [22], [23].

However, considering SAT for quantum circuits still requires
an efficient handling of the (theoretically) infinite number
of possible quantum values qubits may assume. An existing

1In quantum computation, a qubit is the equivalent to a bit.

solution presented in [12] solved this issue by rigorously
restricting the possible number of quantum states to 4. While
this enabled e.g. SAT-based equivalence checking for selected
quantum circuits, obviously, the assumed restrictions signifi-
cantly reduce the applicability of this encoding.

In this work, we propose a compact and efficient SAT
encoding for quantum circuits that looses these restrictions.
We exploit thereby an observation that quantum circuits are
inherently restricted by themselves in the number of values
their respective qubits may assume. Based on this information,
a corresponding SAT encoding can be derived. To this end, a
two-stage approach is presented: First, a structural analysis
is conducted that precisely derives the number of possible
quantum states to be considered. Afterwards, the extracted
information is utilized to create a proper SAT encoding.

The proposed encoding can be applied to a variety of
applications, e.g. SAT-based equivalence checking, SAT-based
property checking, or SAT-based automatic test pattern gen-
eration of quantum circuits. To demonstrate the applicability
and the efficiency of the proposed encoding, a SAT-based
equivalence checker has been developed which exploits the
contributions of this work. An experimental evaluation con-
firms that the SAT encoding is capable of handling various
quantum circuits with different quantum states.

The remainder of this paper is structured as follows: The
next section provides a brief overview of the background to
this work, i.e. quantum computation and Boolean satisfiability
are reviewed. Section III revisits existing SAT encodings for
both, conventional and quantum circuits, and, by this, builds
the motivation for the work at hand. The proposed SAT
encoding is then described in detail in Section IV. Afterwards,
the applicability of this encoding is discussed in Section V and
experimentally evaluated by means of the equivalence checker
application in Section VI. Finally, the paper is concluded in
Section VII.

II. BACKGROUND

In order to keep the paper self-contained, basics on quantum
computation and quantum circuits as well as on Boolean
satisfiability are briefly reviewed in this section.

A. Quantum Logic
Quantum computation is an emerging technology that en-

ables the computation of many relevant problems, e.g. factor-
ization or data-base search, in less complexity than conven-
tional computing paradigms [1]. Every quantum circuit works
on qubits instead of bits. In contrast to Boolean logic, qubits
do not only allow to represent Boolean 0’s and Boolean 1’s,
but also the superposition of both.
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QUANTUM GATES

Hadamard-Gate Pauli-X-Gate

H 1√
2

„
1 1
1 −1

«
X

„
0 1
1 0

«
Pauli-Y-Gate Pauli-Z-Gate

Y

„
0 −i
i 0

«
Z

„
1 0
0 −1

«
V-Gate V†-Gate

V 1+i
2

„
1 −i
−i 1

«
V†

1−i
2

„
1 i
i 1

«

More formally, a qubit is a two level quantum system,
described by a two dimensional complex Hilbert space. The
two orthogonal quantum states |0〉 ≡

(
1
0

)
and |1〉 ≡

(
0
1

)
are

used to represent the Boolean values 0 and 1. Any state of a
qubit may be written as |x〉 = α |0〉 + β |1〉 , where α and β
are complex numbers with |α|2 + |β|2 = 1. The quantum state
of a single qubit is denoted by the vector

(
α
β

)
. The state of

a quantum system with n > 1 qubits is given by an element
of the tensor product of the respective state spaces and can
be represented as a normalized vector of length 2n, called the
state vector.

Operations on n-qubits states are performed through multi-
plication of appropriate 2n × 2n unitary matrices. Thus, each
quantum computation is inherently reversible but manipulates
qubits rather than pure logic values. At the end of the computa-
tion, a qubit can be measured. Then, depending on the current
state of the qubit, either a 0 (with probability of |α|2) or a 1
(with probability of |β|2) returns. After the measurement, the
state of the qubit is destroyed.

Example 1: Given an input state |x〉 =
(
1
0

)
and an op-

eration H defined by the unitary matrix H = 1√
2

(
1 1
1 −1

)
2.

Applying |x〉 to H leads to a new quantum state |x′〉 = 1√
2

(
1
1

)
,

i.e. a state with α = β = 1√
2

. Measuring this qubit would
either lead to a Boolean 0 or a Boolean 1 with a probability
of | 1√

2
|2 = 0.5 each. This computation represents one of the

simplest quantum computers – a random number generator.
Quantum computations are usually represented by quantum

circuits. Here, the respective qubits are denoted by solid circuit
lines. Operations are represented by quantum gates. Table I
lists common quantum gates together with the corresponding
unitary matrices describing their operation. In order to perform
operations on more than one qubit, controlled quantum gates
are applied. These gates are composed of a target line |t〉 and
a control line |c〉 and realize the unitary operation represented
by the matrix

M =

(
1 0 0 0
0 1 0 0
0 0 U0 0

)
,

where U denotes the operation applied to the target line. That
is, if |c〉 = |0〉 all states remain unchanged and if |c〉 = |1〉
the operation U is applied to the target line |t〉. In all
other cases, the vector (α|c〉α|t〉, α|c〉β|t〉, β|c〉α|t〉, β|c〉β|t〉) is
applied to M . This leads to an entangled quantum state [1].

Example 2: Fig. 1 shows a quantum circuit together with a
possible assignment to its signals.

2This operation represents the well known Hadamard operation [1].
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´
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Fig. 1. Quantum circuit

In this work, a quantum circuit is formally denoted by the
tuple C(G,S, I,O) whereby G denotes the gates, S denotes
the signals, I denotes the primary inputs, and O denotes the
primary outputs of the circuit. A gate g ∈ G of a quantum
circuit is formally denoted by the tuple g(Ig, Og, Ug) whereby
Ig denotes the input to that gate, Og denotes the output to that
gate, and Ug denotes the unitary operation invoked at the gate.

B. Boolean Satisfiability
The Boolean Satisfiability (SAT) problem is defined as

follows: Let f be a Boolean function in Conjunctive Normal
Form (CNF), i.e. a product-of-sum representation. Then, the
SAT problem is to determine an assignment for the variables
of f so that f evaluates to 1 or to prove that no such
assignment exists.

The CNF consists of a conjunction of clauses. A clause
is a disjunction of literals and each literal is a propositional
variable or its negation.

Example 3: Let f = (x1 + x2 + x3)(x1 + x2)(x2 + x3).
Then, x1 = 1, x2 = 1 and x3 = 1 is a satisfying assignment
for f . The value of x1 ensure that the first clause becomes
satisfied, the value of x2 ensures this for the second clause
and x3 ensures this for the remaining clause.

SAT is one of the central NP-complete problems. In fact, it
was the first known NP-complete problem that was proven by
Cook in 1971 [24]. But, in the past efficient solving algorithms
(so called SAT solvers) have been proposed (see e.g. [17]).
Instead of simply traversing the complete space of assign-
ments, intelligent decision heuristics, conflict based learning,
and sophisticated engineering of the implication algorithm by
Boolean Constraint Propagation (BCP) lead to an effective
search procedure. Once it is proven that no solution exists, an
instance is called unsatisfiable (UNSAT), otherwise satisfiable
(SAT). Due to these efficient algorithms, problem instances
consisting of hundreds of thousands of variables, millions of
clauses, and tens of millions of literals can be handled.

III. SAT ENCODINGS OF CIRCUITS

Due to the impressive performance of today’s SAT solvers,
Boolean satisfiability is an established core technology in the
verification and the test of conventional circuits. Applications
can be found e.g. in equivalence checking [18], [19], property
checking [20], [21], or test pattern generation [22], [23].

In all these approaches, the considered circuit is encoded
as a SAT instance as follows: For each signal s of the
circuit, a corresponding SAT variable xs representing this
signal is introduced. Then, for each gate g of the circuit, a
corresponding set of functional constraints is introduced. For
this, the SAT variables representing the input-signals and the
output signals of g are applied. Afterwards, this description is
converted into a CNF.

Example 4: Consider the (conventional) circuit as shown
in the top of Fig. 2(a). All signals a, b, c, d, e of this circuit
are represented by SAT variables xa, xb, xc, xd, xe. Then, the
constraints as shown in the bottom of Fig. 2(a) encode the
functionality of each gate to be converted into a CNF.
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(xd = xa ∧ xb)

∧ (xe = xc ⊕ xd)

(a) For conv. circuit
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a
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(xb0 ∧ xb0 ⇒ xc0xc1 = xa0xa1)

∧ (xb0 ∧ xb1 ⇒ xc0xc1 = xa0xa1)

∧ (xb0xb1 = xd0xd1)

∧ (xb1)

∧ . . .
(b) For quantum circuit

Fig. 2. Existing SAT encodings

Passing such an encoding to a SAT solver, only satisfiable
assignments to SAT variables and, hence, only valid assign-
ments to each circuit signal are determined. By adding further
constraints to the SAT instance, certain scenarios of this circuit
can be checked. For example, SAT solvers can be applied
e.g. to generate counterexamples (i.e. assignments to all circuit
signals showing that an unwanted behavior indeed may occur).
If a SAT solver shows the unsatisfiability of an instance, it can
be concluded that the formulated scenario can never occur. By
this, verification and test problems can be efficiently solved.
For more details on that, we refer e.g. to [18], [19], [20], [21],
[22], [23].

In principle, this scheme can also be applied for quantum
circuits. In fact, initial approaches doing equivalence checking
using Boolean satisfiability have been introduced in [12].
However, while each signal s in a conventional circuit may
assume either Boolean 0 or Boolean 1 (which can easily be
represented by a single SAT variable xs), qubits in quantum
circuits may assume any quantum state α |0〉 + β |1〉 with
|α|2 + |β|2 = 1, i.e. an infinite number in the worst case.
In [12], this problem has been addressed by rigorously re-
stricting the possible number of quantum states and the use
of a multiple-valued SAT encoding. More precisely, only a
quantum library composed of Pauli-X gate, controlled Pauli-
X gate, V-gate, and V†-gate was applied. Furthermore, the
input to a quantum circuit as well as to each control line of
a gate has been restricted to 0 and 1. This has the effect that
the value of each qubit is restricted to one value of the set
{0, 1, V0, V1}, i.e. a 4-valued logic with V0 = 1+i

2

(
1
−i
)

and
V1 = 1+i

2

(−i
1

)
was applied. Consequently, each signal s was

no longer represented by a single SAT variable xs, but by two
SAT variables xs0, xs1 that represent the respective values as
follows: xs0 xs1

0 0 0
0 1 V0

1 0 1
1 1 V1

Example 5: Consider the restricted quantum circuit as
shown in the top of Fig. 2(b). For each signal, two SAT
variables are introduced. Then, constraints as partially shown
in the bottom of Fig. 2(b) encode the functionality of each
gate.

Such an encoding, in fact, enables the consideration of veri-
fication and test issues of quantum circuit by means of Boolean
satisfiability (as e.g. done in [12] for equivalence checking).
But obviously, the assumed restrictions significantly reduce
the applicability of this encoding: As soon as another gate
type or further quantum states may occur in the considered
circuit, this 4-valued encoding is not applicable any longer.

At the same time, simply extending the encoding e.g. from
a 4-valued encoding to an 8-valued encoding eventually will
lead to the same restrictions as long as the total number of
possible quantum states in the considered circuit is unknown.

IV. PROPOSED SAT ENCODING

In this work, we propose a SAT encoding that looses the
restrictions from previous approaches. To this end, an obser-
vation is exploited that many quantum circuits are inherently
restricted in the number of states their respective qubits can
assume. A precise structural analysis can further reduce the
number of possible quantum states to be considered. In doing
so, compact and efficient SAT encodings for quantum circuits
can be created. In the following, the observation as well as
the approaches resulting from it are described in detail.

A. Observation

In general, qubits may assume an infinite number of states.
Hence, the consideration of SAT technologies in the verifica-
tion and the test of quantum circuits may seem unfeasible as
an∞-valued encoding is required in the worst case. However,
actual quantum circuits are inherently restricted in the number
of states their respective qubits can assume.

Lemma 1: Let |G| be the total number of gates a quantum
circuit C is composed of. Furthermore, let v be the total
number of quantum values which may be applied to the
primary inputs I of G. Then, the total number of quantum
states which may occur in C is restricted by 2|G| · v.

Proof: Each gate may introduce new quantum states to the
circuit depending on its possible input values. More precisely,
if a gate g performing the operation U is fed by quantum
values from the set Q, a new set Q′ of quantum values
with Q′ = {U · |x〉 : |x〉 ∈ Q} results. Hence, each gate may
only double the number of quantum states occuring in a circuit.
Considering the initial number v of quantum states, this leads
to 2|G| · v.

This observation can be used as an upper bound for a SAT
encoding: Given a circuit to be considered, each signal s is
represented by a (2|G| · v)-valued encoding, i.e. SAT vari-
ables xs0 . . . xs2|G|·v−1 are applied that represent the respec-
tive values.

Example 6: Consider the quantum circuit shown in
Fig. 3(a) composed of |G| = 3 gates. Assuming Boolean
inputs values only, i.e. v = 2, it can be deduced that never
more than 23 · 2 = 16 different quantum states may occur in
this circuit. Hence, a 4-valued encoding for each signal is
sufficient to encode this circuit as a SAT instance. If further
(non-Boolean) inputs values are assumed, the encoding has to
be extended accordingly.

B. Structural Analysis

The observation from above constitutes an upper bound
for quantum states that may occur in a considered circuit.
However, the resulting value can further be refined. In fact,
each gate does not necessarily introduce a new quantum state
to be considered, but may lead to a state that already occured
before.

Example 7: Consider again the quantum circuit shown in
Fig. 3(a). If Boolean inputs are assumed, i.e. v = 2, the first
two gates always produce either 1√

2

(
1
1

)
(if the input is |0〉)

or 1√
2

(
1
−1

)
(if the input is |1〉). That is, in contrast to the
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(c) Mappings (as stored in execute)

Fig. 3. Structural analysis

upper bound not 22 · 2 = 8 different quantum states need to
be considered for the first two gates, but just 4.

The precise value of total quantum states possible in a cir-
cuit C(G,S, I,O) can be determined by a structural analysis
as follows:

1) For each signal s ∈ S of the considered quantum circuit,
a set Qs is introduced. Qs stores all possible quantum
states the signal s may assume. At the beginning,
each Qs is initialized empty.

2) All input signals s ∈ I of the circuits are traversed.
The initial quantum states which may be applied to
these circuit’s inputs are defined by the designer. Ac-
cordingly, the respective sets Qs are initialized with the
corresponding values.

3) The circuit is traversed from the input to the output of
the considered circuit. For each gate g(Ig, Og, Ug) ∈ G,
a local simulation is performed. By this, a precise
mapping from all possible values of the gate inputs Ig
to the corresponding values of the gate outputs Og is
obtained, i.e. for each possible input value q ∈ Qs with
s ∈ Ig , the corresponding value q′ ∈ Qs′ with s′ ∈ Og
is obtained considering the function U represented by
the gate. These input-output mappings are stored in a
function execute : U ×Q→ Q with U denoting the set
of all unitary operations U in the circuit. This function
gets a quantum operation U ∈ U as well as a quantum
state q ∈ Q and maps it to the corresponding quantum
state q′ ∈ Q so that q′ = U · q3.

Example 8: The proposed structural analysis is applied to
the quantum circuit shown in Fig. 3(a). First, for each signal s,
a corresponding set Qs is introduced. The sets Qs representing
the possible values of the primary inputs s ∈ I of the circuit
are initialized with Qs = {|0〉 =

(
1
0

)
, |1〉 =

(
0
1

)
} (assuming

Boolean inputs only); all remaining sets Qs with s ∈ S \ I
are initialized empty. Then, for each gate local simulations
as described above are performed. This leads to the precise
quantum states Qs each signal s ∈ S in the circuit may
assume. This is shown in Fig. 3(b). At the same time, all
possible mappings are stored in the function execute. Fig. 3(c)
shows all these mappings by means of a matrix. Columns and
rows denote thereby the respective inputs (i.e. the considered
operation U and the input quantum state q, respectively),
while the entries denote the output (i.e. the resulting quantum
state q′).

By this, a finite set Q of quantum states is revealed, i.e. the
signals in the considered quantum circuit may assume only
quantum states from Q =

⋃
s∈S Qs. At the same time, all

possible mappings are available through the function execute.

3Note that the description only covers the consideration of unary quantum
gates. However, controlled quantum gates are handled analogously.

The cost of this structural analysis is thereby moderate: Since
all simulations are performed locally, the run-time of structural
analysis basically depends on a (linear) traversal of each
gate and the required simulation time for all possible input
values of each gate. In all our evaluations, this run-time was
negligible. From the results of this structural analysis, the
precise encoding can be derived as described next.

C. Resulting SAT Encoding
To eventually encode a given quantum circuit as a SAT

instance, a Boolean function f is created as follows:
For each signal s ∈ S variables xs0 . . . xsdlog2 |Q|e−1 are

introduced which symbolically represent all possible quantum
states Q = {q0, . . . , q|Q|−1} the signal s may assume. More
precisely, assignments to xs0 . . . xsdlog2 |Q|e−1 are a sym-
bolic representation of the corresponding quantum state, i.e.
[xs0 . . . xsdlog2 |Q|e−1]2 = [i]10 represents that signal s as-
sumes the quantum state qi with 0 ≤ i < |Q|. In order
to avoid illegal assignments, constraints are introduced that
block assignments for which no corresponding quantum state
exists, i.e. constraints [xs0 . . . xsdlog2 |Q|e−1]2 < [|Q|]10 are
added to f .

Afterwards, for each gate of the circuit, a corresponding set
of functional constraints is introduced. For this, the mapping
stored in the function execute is utilized. More precisely, for
each gate g(Ig, Og, Ug), a constraint∧

s∈I

∧
qi∈Qs

[xs0 . . . xsdlog2 |Q|e−1]2 = [i]10

⇔ [xs′0 . . . xs′dlog2 |Q|e−1]2 = [j]10

with qj = execute(qi, Ug) is added, where
• xs0 . . . xsdlog2 |Q|e−1 represents the quantum state of the

gate inputs s ∈ Ig ,
• xs′0 . . . xs′dlog2 |Q|e−1 represents the quantum state of the

gate outputs s′ ∈ Og , and
• qj represents the quantum state obtained from execute4.
Example 9: Fig. 4 shows the resulting SAT encoding for

the quantum circuit from Fig. 3(a). Since the total number |Q|
of possible quantum states is 5, dlog2 5e = 3 variables are
needed to represent the assignment to a signal, i.e. each
signal s is represented by variables xs0xs1xs2 as shown by the
symbolic representation in Fig. 4. Since three variables allow
to represent more quantum states than the signals can actually
assume, constraints blocking illegal assignments are added as
shown on the right-hand side of Fig. 4. Finally, functional
constraints as partially shown in the bottom of Fig. 4 are added
to the instance.

4Note that, also here, the encoding of unary gates only is described, while
controlled gates can be encoded analogously.
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´
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[xs0xs1xs2]2 = [1]10 b= s =
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´
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´
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2

`−1
1

´
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Functional constraints:
([xa0xa1xa2]2 = [0]10 ⇒ [xc0xc1xc2]2 = [2]10)

∧ ([xa0xa1xa2]2 = [1]10 ⇒ [xc0xc1xc2]2 = [3]10)

∧ ([xb0xb1xb2]2 = [0]10 ⇒ [xd0xd1xd2]2 = [2]10)

∧ ([xb0xb1xb2]2 = [1]10 ⇒ [xd0xd1xd2]2 = [3]10)

∧ ([xc0xc1xc2]2 = [2]10 ⇒ [xe0xe1xe2]2 = [2]10)

∧ ([xc0xc1xc2]2 = [3]10 ⇒ [xe0xe1xe2]2 = [4]10)

Fig. 4. Resulting SAT encoding

Having the formulation for f , all these constraints are con-
verted into CNF – the common input format of SAT solvers.
Since only Boolean and relational operations are used, this can
be done quite easily (see e.g. [25]). Afterwards, depending on
the considered design tasks, additional constraints for verifica-
tion or test purposes may be added (e.g. in case of equivalence
checking, a miter structure as described later in Section VI-A).
Then, the SAT solver determines only assignments that solve
the respective design task with respect to the functionality of
the quantum circuit.

V. DISCUSSION

For the first time, the SAT formulation proposed above
enables the encoding of quantum circuits with a non-restricted
gate library. As motivated in Section III, this builds the basis
for many applications e.g. in the SAT-based verification or the
SAT-based automatic test pattern generation of/for quantum
circuits. Nevertheless, the proposed encoding still inherits
some disadvantages.

First of all, the respective operations of the quantum cir-
cuits are not encoded functionally but enumeratively. While
e.g. conventional gates like AND, OR, etc. can easily be
represented through functional constraints like c = a ∧ b, c =
a ∨ b, etc., respectively, the proposed encoding relies on the
complete enumeration of all possible input-output mappings
in the considered gate. This makes the encoding larger but,
still, is more feasible than a functional encoding of generic
unitary operations.

Besides that, entanglement (see [1]) is not supported yet.
Here, relations between more than one qubit have to be
considered simultaneously. This poses a separate research
question on its own. Hence, the support of entanglement is
left for future work.

Finally, the performance of the proposed encoding obvi-
ously degrades with an increasing number of quantum states
to be considered. The more quantum states may occur in the
circuit, the larger gets the corresponding SAT encoding. Note
that equivalent quantum states are thereby already handled by
an equal encoding.

However, despite these drawbacks, the proposed encoding
indeed enables the efficient consideration of design issues for
quantum circuits through SAT-based approaches. This was also
confirmed by an experimental evaluation whose results are
discussed in the next section.
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Fig. 5. Miter structure for equivalent checking

VI. EXPERIMENTAL EVALUATION

In order to demonstrate the applicability and the efficiency
of the proposed encoding, a SAT-based equivalent checker
for quantum circuits has been developed which utilizes the
proposed structural analysis and formulations. This section
briefly reviews this application before results obtained with
it are documented and discussed.

A. SAT-based Equivalence Checker

Equivalence checking addresses the problem of checking
whether two (quantum) circuits are equivalent or not. In
typical design flows, this is crucial e.g. to determine whether
an optimized version of a circuit still realizes the intended
functionality.

To solve this problem with the proposed SAT encoding, a
so-called miter structure as introduced in [18] for conventional
circuits is built. Fig. 5 shows the general structure of the
formulation. By applying the input assignments in turn to both
circuits C1 and C2, differences at the corresponding outputs
are observed by XOR operations. If at least one XOR evaluates
to 1 (determined by an additional OR operation), the two
circuits are not equivalent. Hence, a decision problem results
asking for a satisfying assignment to all circuit signals so that
at least one output pair of C1 and C2 are different.

Using the encoding introduced in the previous section, this
structure is represented as SAT instance and passed to a
corresponding SAT solver. If the SAT solver returns satisfiable,
an assignment has been found which leads to different outputs
for C1 and C2, i.e. a counterexample is returned. Otherwise,
if the solver returns unsatisfiable, it has been proven that no
such assignment exists and, hence, both circuits indeed realize
the same functionality.

B. Obtained Results

The described equivalence checker has been implemented
in C++ on top of RevKit [26] and evaluated on a set of
benchmarks taken from RevLib [27] and [1]. More precisely,
quantum circuits from these sources have been taken and
compared to each other leading to the resulting equivalence
checking instances. In order to observe both, equivalent be-
havior and non-equivalent behavior, errors have been injected
in some circuits by arbitrarily altering, adding, or deleting
gates. Afterwards, all instances have been encoded into SAT
and passed to Boolector [17] as underlying SAT solver. All
experiments have been conducted on an Intel Pentium with
3.6 GHz and 2 GB of memory running Linux.

The results are summarized in Table II. The first columns
denote thereby the name of the considered circuits, their
respective number of circuit lines, as well as their gate count
(for each circuit in the miter-structure). Column EQUIV.?
denotes whether the respective circuits are equivalent (y) or
not (n). Finally, the last three columns provide the number of
variables needed for the encoding, the measured run-time in



TABLE II
RESULTS OBTAINED WITH EQUIVALENCE CHECKER

SAT QUA.
BENCHMARK LINES GATES∗ EQUIV.? VARS. TIME STATES

add64-184-a 193 272/256 y 516,221 13.86 31
add64-184-b 193 272/384 y 767,377 23.72 33
add64-184-c 193 272/256 y 516,221 13.92 31
add64-184-d 193 272/384 y 767,377 23.54 33
add64-184-e 193 272/386 n 769,697 11.27 33
add64-nct-fl 193 256/384 y 251,529 12.64 4
add64-nct-g 193 256/386 n 252,305 10.86 4
add64-ncv-h 193 386/384 n 301,969 16.23 4
add8-nct-a 25 46/32 y 4,569 0.59 48
add8-nct-b 25 46/48 y 4,621 0.76 48
add8-nct-c 25 46/49 n 5,453 0.63 48
c2-182-a 35 305/116 y 9,437 9.99 4
c2-182-b 35 305/116 n 9,435 1.97 4
c2-182-c 35 305/305 y 31,563 18.95 4
c2-182-d 35 305/304 n 31,491 5.42 4
c2-ncv-a 35 304/305 n 45,357 5.42 4
ckt2-cycle-a 8 5030/620 n 81,023 1021.70 2
hwb9-122-a 9 1539/1958 n 45,357 24.11 2
hwb9-123-a 9 1958/1959 n 57,518 261.64 2
hwb9-123-b 9 1984/1959 y 23,5457 483.55 48
hwb9-123-c 9 1984/1958 n 23,5395 264.80 48
toffoli-a 3 4/29 y 789 0.18 48
toffoli-b 3 4/88 y 2,115 0.18 48
∗The two numbers denote the number of gates for each circuit

in the miter-structure.
CPU seconds, as well as the total number of different quantum
states which occurred in the considered circuits.

The results confirm that, indeed, the number of different
quantum states can be kept small. Obviously, this depends on
the considered circuits: For example, ckt2-cycle-a is composed
of Boolean gates only, and, hence requires just a 2-valued
encoding. In contrast, hwb9-123-b incorporates nine different
quantum gates types so that the number of quantum states
to be considered significantly increases (to 48 in this case).
Nevertheless, the proposed SAT encoding remains efficient.
Even if dozens of quantum states need to be considered,
results for circuits composed of thousands of gates still can be
determined in a reasonable time. Compared to previous work,
SAT-based verification of quantum circuits allowing various
quantum states became possible for the first time.

VII. CONCLUSIONS

In this work, we introduced a compact and efficient SAT
encoding for quantum circuits. We particularly addressed
thereby the problem that qubits (theoretically) may assume
an infinite number of quantum states. We showed that, in fact,
quantum circuits are inherently restricted in their number of
possible states. This was exploited by a structural analysis
whose results are utilized to create a proper SAT encoding. The
applicability of the proposed approach has been demonstrated
by means of a SAT-based equivalence checker. Quantum
circuits composed of thousands of gates and qubits assuming
dozens of quantum states can efficiently be handled. By this,
a SAT formulation enabling the encoding of quantum circuits
with a non-restricted gate library has been proposed for the
first time. This builds the basis for many applications in the
domain of verification and test of quantum circuits.
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