
On Agile Performance Requirements Specification and Testing 
 
 

Chih-Wei Ho1, Michael J. Johnson2, Laurie Williams1, and E. Michael Maximilien2 
1Department of Computer Science, North Carolina State University 

{cho, lawilli3}@ncsu.edu 
2IBM Corporation 

{mjj, maxim}@us.ibm.com 
 

 
Abstract 

 
Underspecified performance requirements can 

cause performance issues in a software system. 
However, a complete, upfront analysis of a software 
system is difficult, and usually not desirable.  We 
propose an evolutionary model for performance 
requirements specifications and corresponding 
validation testing.  The principles of the model can be 
integrated into agile development methods.  Using 
this approach, the performance requirements and test 
cases can be specified incrementally, without big 
upfront analysis. We also provide a post hoc 
examination of a development effort at IBM that had a 
high focus on performance requirements. The 
examination indicates that our evolutionary model can 
be used to specify performance requirements such that 
the level of detail is commensurate with the nature of 
the project.  Additionally, the IBM experience 
indicates that test driven development-type validation 
testing corresponding to the model can be used to 
determine if performance objectives have been met. 
 
1. Introduction 
 

Agile development methods are sometimes 
criticized for not having explicit practices for eliciting 
non-functional requirements (NFRs) [13]. In this 
paper, we discuss an agile approach to address the 
specification and testing of an important NFR: 
performance. Performance is highly visible to the 
software user. A system that runs too slowly is likely 
to be rejected by all users. Failure to achieve some 
expected performance level might make the system 
unusable, and the project might fail or get cancelled if 
the system performance objective is not met [18]. 

Research shows that performance issues should be 
dealt with early, otherwise performance problems are 
more difficult and expensive to fix in later stages of the 
development process [6, 7, 17].  Performance 

engineering activities start with performance 
requirements (PRs) definition [10]. However, some of 
the performance factors are not predictable (e.g., an 
application may be run on an inferior processor with 
slower speed than initially anticipated) or not available 
at the early stages of development (e.g., the number of 
hits of a web server).  To conduct a complete upfront 
analysis for performance issues is usually undesirable, 
especially for agile practitioners. 

Therefore, we propose the software Performance 
Requirements Evolution Model (PREM) as a guideline 
for PRs specification and validation.  Using the 
model, the development can start with quick, simple 
PRs and related performance test cases.  During 
development, more precise and realistic performance 
characteristics are obtained through customer 
communication or performance model solving. The 
performance characteristics can be added to the PRs, 
and the test cases can be more detailed, until the PRs 
are “good enough” for the project and its 
functionalities. 

In this paper, we provide an overview of PREM and 
a post hoc examination of a development effort at IBM  

that had a high focus on performance requirements. 
While software performance concerns include time 
(e.g., throughput, response time) and space (e.g., 
memory usage, storage usage), we limit and only focus 
on the discussion of time-related performance issues. 
However, we believe that our model is applicable to 
space-related performance issues. 

The rest of the paper is organized as follows: 
Section 2 provides the background and related work 
for PRs and testing tools; Section 3 gives description 
of PREM; Section 4 presents an IBM experience with 
PRs specification and testing; and Section 5 concludes 
this paper with summary and future work. 

                                                        
IBM is a trademark of International Business Machines Corporation 
in the United States or other countries or both. Other company, 
product, and service names may be trademarks or service marks of 
others. 



 
2. Background 
 

In this section, we present some background 
information and related work on agile-style software 
performance and performance testing tools. 

 
2.1. Software performance and Agile Methods 

 
At a glance, agile methods do not have explicit 

practices for eliciting overarching non-functional 
system properties.  However, Auer and Beck list a 
family of software efficiency patterns called Lazy 
Optimization [1], which reflects the famous quote from 
Knuth that “Premature optimization is the root of all 
evil in programming,”1 and the “You Aren’t Gonna 
Need It (YAGNI)” philosophy.  These patterns can be 
summarized as follows. Early in development, the 
system performance is estimated with a short 
performance assessment.  Rough performance criteria 
are specified to show performance concerns in the 
system, and are evolved as the system matures.  Tune 
performance only when the functionality works but 
does not pass the performance criteria. 

Another camp claims that performance is mostly 
determined during the architecture stages [8].  Smith 
and Williams criticize that the “fix-it-later” attitude is 
one of the causes of performance failures [17].  Their 
standing ground is that performance models built in 
architecture and early phases can predict the system 
performance. Fixing software problems later is difficult 
and expensive. Therefore, performance decisions 
should be made as early as the architecture phase. 

We believe the disagreement is rooted in the 
different philosophy of software development.  For 
agile practitioners, software architecture is an instance 
of the big up-front design (BDUF) that is avoided.  
Lazy Optimization aims for agility, but may not be 
sufficient for high-criticality software projects, of 
which predictability is more desirable. 

  
2.2. Performance testing tools  

 
JUnit2 is the most popular unit testing framework in 

the agile community.  Beginning with Version 4 
which was released in 2006, JUnit provides a 
“timeout” parameter to support performance-related 
testing.  A test method with timeout parameter can 
only pass if the test is finished in the specified amount 
of time. Figure 1 shows an example of a test method 
with the timeout parameter. JUnitPerf3 is a library of 
                                                        
1 “Computer Programming as an Art,” 1974 Turing Award lecture. 
2 http://www.junit.org 
3 http://www.clarkware.com/software/JUnitPerf.html 

JUnit decorators that perform both timed and load 
tests.  Figure 2 shows an example of JUnitPerf 
performance testing code. 

  
//JUnit 4 timed test: only passes if it 
//finishes in 200 ms. 
@Test(timeout=200) public void perfTest() { 

//test scenario 
...  

} 

Figure 1: JUnit timeout parameter  
 

//JUnitPerf load test: run 10 instances 
//of test, with 100 ms intervals between 
//them – max elapsed time is 1000 ms. 
Timer timer = new ConstantTimer(100); 
Test test = new MyTest("Perf Test"); 
Test loadTest = 
          new LoadTest(test, 10, timer); 
Test timeLoadTest = 
          new TimedTest(loadTest, 1000); 

Figure 2: JUnitPerf example 
 
These JUnit-based test frameworks provide an easy, 

programmatic way to write performance test cases.  
However, in complex test cases with complicated 
workloads, accurate probability distribution may be 
required [19].  JUnit-based test frameworks may be 
insufficient in such situations.  Additionally, the 
resulting test code would be difficult to understand.  
To design more complicated performance test cases, 
one should consider more advanced performance 
testing tools,  for example, script-based (e.g., The 
Grinder4 [21]), user action recording (e.g., Apache 
JMeter5) or other commercial, high-end tools. 

Agile approaches rely heavily on testing for 
software quality assurance [9].  Although, as stated in 
the previous section, Auer and Beck argue that 
performance concerns should be dealt with after the 
functionality is complete [1], we posit that a 
development team can benefit from early performance 
specification and testing. 

 
3. Performance requirements evolution 
model 
 

In this section, we provide an overview of PREM.  
PREM is an evolutionary model for PRs specification.  
PREM provides guidelines on the level of detail 
needed in a PR for development teams to specify the 
necessary performance characteristics details and the 
form of validation for the PR.  Before explaining the 
model, a short example is provided to show how a 
                                                        
4 http://grinder.sourceforge.net/ 
5 http://jakarta.apache.org/jmeter/ 



performance objective can fail because of 
underspecified PRs.   

A PR might be as simple as “The authentication 
process shall be complete in 0.2 seconds.”  An 
intuitive way to write a test case for this requirement is 
to run the authentication process several times, and 
compute the average.  However, even if the average is 
below 0.2 seconds, when the system is live, and 
concurrent authentication requests come in, the users 
may experience more than 0.2 seconds of waiting time.  
In this example, the performance objective is not 
achieved because the workload characteristic is not 
specified in the requirement and not accounted for in 
the test case.  

As the example illustrates, imprecise PR 
specification can lead to improper interpretation of 
performance objectives.  Improper interpretation of 
PR may be more prevalent when agile methods are 
used because requirements, generally functional in 
nature, are documented informally in the form of 
stories and/or features.  

 
3.1. Model description  

 
PREM classifies PRs in four levels, starting from 

Level 0.  Figure 3 shows the graphical presentation of 
PREM.  To move a PR to a higher level, one needs to 
identify more factors that have impact on the 
performance of the system. However, PR refinement 
should stop at an appropriate level and should not be 
over-specified so that the detail of the PR is 
commensurate with the nature of the project and its 
requirements. 
 
3.1.1. Level 0. Level 0 represents PRs with only 
qualitative, casual descriptions.  Level 0 PRs bring 
out the operations for which performance matters in 
the eyes of the customer.  Because of its informality, 
this type of requirement is easy to specify.  Similar to 
stories in XP [3, 5], Level 0 PRs are the starting point 
from which customer and developer generate more 
precise specifications.  One example of Level 0 PR is 
“The authentication process shall complete before the 
user loses his or her patience.”  Level 0 PRs are 

usually specified qualitatively.  As a result, they can 
usually be validated with qualitative evaluation.  In 
the authentication process example, the development 
team might provide a prototype to the customer, and 
see whether the user is satisfied with the response time. 
 
3.1.2. Level 1.  Successful agile testing relies heavily 
on test automation [9]; human testing is undesirable 
and should be limited whenever possible.  To make 
the requirement testable with automation, the first step 
is to provide quantitative expectations in the 
specification, and promote it to a Level 1 PR.  The 
quantitative expectations might come from the 
customer, the development team’s experience, domain 
experts, survey, or research. 

Level 1 PRs are associated with quantitative 
metrics.  Table 1 lists some typical performance 
metrics (adapted from [11]).  For example, after some 
discussion with the customer, the developer can define 
a Level 1 PRs such as “The authentication process 
shall complete in 0.2 seconds.”  Because the metrics 
are quantitatively measurable, one can run the 
authentication process and see whether it completes 
within the expected amount of time.  A timed test that 
runs one particular functionality at a time suites this 
purpose well, and is very similar to how a single user 
uses the system.  With proper runtime environment 
configuration, level 1 PRs may be sufficient for a 
single-user system. 

 
Table 1. Typical performance metrics [11] 

Type Performance Metrics 

Throughput 

# of transactions / second 
# of messages / second 
# of pages rendered / second 
# of queries / second 

Response Time 
Transaction processing time 
Page rendering time 
Query processing time 

 
3.1.3. Level 2.  In commercial websites or multi-user 
systems, Level 1 PRs are insufficient because they do 
not show how different processes interact with each 
other and how they respond to system workloads 

Q
ua

nt
ita

tiv
e 

ex
pe

ct
at

io
n

Ex
ec

ut
io

n 
ch

ar
ac

tis
tic

s

Re
al

ist
ic 

wo
rk

lo
ad

 

ch
ar

ac
te

ris
tic

s

 
Figure 3. Performance requirements evolution model 



variations. We call such details of NFRs system 
execution characteristics (SECs).  SECs include 
information of what processes are in the system, and 
the frequency of the execution of the processes.  A 
developer may identify SEC based on his or her 
experience.  Software performance engineering [15, 
16, 17] also provides a systematic way to identify 
SECs.  A Level 1 PR graduates to Level 2 when SEC 
information is added. 

Level 2 PRs are specified as quantitative 
performance objectives with the SECs of the system.  
An example of Level 2 PR is “On average, twenty 
requests arrive at the server per minute.  The 
authentication process accounts for 10% of incoming 
requests.  The authentication process shall be 
completed in 0.2 seconds.”  To show that the 
performance objective is achieved, one needs to 
generate a workload that matches the SECs.  A simple 
stochastic process, such as a Poisson process [14], can 
be used to represent the distribution of the workload. 
 
3.1.4. Level 3.  For real-time or performance-critical 
systems, the time constraints of an operation may have 
to be more strictly specified, or they may have to be 
met in worst-case conditions. For these systems, 
workload characteristics gathered from actual usage of 
the system can be more appropriate than probability 
models [2]. Level 3 represents the PRs with this kind 
of precision or worst-case specification. An example of 
a Level 3 worst-case PR is “During the peak hours, 
200 mobile shopping tablets are in use.  8% of the 
shoppers are either being served at the five checkout 
stations or are waiting in lines.  For the rest of the 
customers, the promotional message shall display on 
the mobile tablet within 1 second after a customer 
enters a lane where the promotional items are 
located.”  The workload characteristics can be 
derived from the observation of user behaviors or from 
an older version of the system.  Unless the project is 
performance-critical, Level 3 PRs are typically not 
needed. 

 
3.2. PREM and agile requirements engineering  

 
Auer and Beck suggest that performance criteria be 

established early and revised as the system matures [1].  
PRs are handled in a similar fashion in PREM. Using 
PREM, PRs also start with a short description of 
performance. During the development, PRs 
specifications and corresponding test cases are refined 
to an appropriate level.  PREM reminds the 
developers to find out more performance factors with 
performance engineering techniques and tools, which 
are indispensable for performance-critical systems. 

A difference between a functional story and a 
performance specification is that the latter is not 
addible.  At iteration planning, some stories are 
picked up to be implemented in the iteration.  
However, performance specifications cannot be 
implemented and added to the software system.  
When implementing a performance-critical story, the 
development team should write related performance 
test cases, based on the specification. The test cases are 
refined with more performance details discovered later 
in the software lifecycle.  When the performance test 
case fails, the development team can discuss how and 
when to solve the problem. 

 
3.3. Other considerations  

 
A team might be tempted to skip levels and start 

from a high level PR specification.  However, starting 
from a higher level is not an advised strategy. First of 
all, gathering information for a higher level PR takes 
time. For example, in one case study, twelve months 
were used to record the inputs to the system for the 
purpose of workload characterization [2].  Second, 
each level of PREM provides a new perspective of the 
system performance: Level 0 identifies which part of 
the system has performance requirements; Level 1 
introduces a quantitative metric to measure the 
performance; Level 2 shows the interaction between a 
part and the overall system; Level 3 demonstrates how 
different components work together under realistic 
workloads  

Specifying PRs at a lower level can sometimes 
suffice in practice even though the usage profile would 
indicate a need for additional specifications. For 
example, a short, rarely-used function might have little 
impact on the overall performance. Therefore a Level 1 
specification will be enough for such functionality, 
even in a multiple-user system. We further observed 
that the presence of PRs and ongoing measurements 
within a test-driven development (TDD) [4] approach 
can give rise to a consistent progression of 
performance improvements that may obviate higher 
level PRs and associated testing.  We shall discuss 
this experience in Section 4. 
 
4. IBM experience 

 
In this section, we use an IBM software project with 

a high focus on performance to show how the PRs are 
mapped to the PREM levels. 

 



4.1. Performance requirements specification 
 
An IBM software development group had been 

developing device drivers in C/C++ for over a decade.  
The group develops mission-critical software in the 
retail industry for its customers in a domain that 
demands high availability, correctness, reliability, and 
consistent and rapid throughput.  Beginning in 2002, 
the group re-developed device drivers on a new 
platform in Java and adopted the TDD approach.  
Previous reports [12, 20] of this team have focused on 
their use of TDD to reduce post-release defects by 
40%.  Approximately 2390 automated JUnit test cases 
were written, including over 100 performance test 
cases.  

Management was concerned about the potential 
performance implications of using Java for device 
drivers.  As a result, performance was a focal point of 
the project throughout the development life cycle.  
The team was compelled to devise well-specified PRs 
as a means to demonstrate, in the early stages of the 
development, the feasibility of creating the device 
drivers in Java.  The team utilized JUnit tests to 
monitor performance at the external wire, operating 
system kernel, and application levels, as the drivers 
were implemented.  

Originally, rough performance requirements for the 
device drivers were collected from three primary 
sources.  First, a small set of performance goals were 
distilled from direct customer feedback by 
representatives in marketing.  These tended to be 
numerically inexact, i.e., Level 0 PRs, but they did 
serve to highlight specific areas where performance 
improvements beyond that of earlier versions were 
most desired. 

Second, a domain expert specified which drivers 
were considered performance-critical versus non- 
performance-critical. Each performance-critical device 
driver had certain Level 1 performance metrics that 
were classified as requirements. For performance- 
critical drivers, the performance must exceed the 
drivers of the previous versions and be shown in 
quantitative metrics. Performance at least roughly 
comparable to that of the earlier versions was a goal 
for non-performance-critical drivers.  

The third consideration was the set of limiting 
factors beyond which performance improvement was 
of little relevance. For example, the operating system 
kernel routines for port access, the internal USB 
hardware, and the external USB interface all contribute 
to the latency from command to physical device 
reaction.  As long as the device operation was 
physically possible and acceptable within these 

constraints, these latencies were considered to form a 
bound on the performance of the device drivers. 

 
4.2. Performance testing 

 
The team designed performance tests that meet the 

high-level descriptions of the specification using the 
JUnit framework as code was being developed.  This 
was done alongside the functional unit tests as an 
integral part of the TDD process.  These performance 
test cases were designed to exercise the driver under 
test according to sample usage patterns specified by a 
domain expert. 

In addition to individual test cases for different 
drivers, a “master” performance suite instantiated 
performance tests for every device.  During 
development, unit tests were routinely run prior to 
check-in of new function, so the developers had early 
visibility to any severe problems caused by new code.  
Periodically, at snapshots called “levels,” the fully 
integrated system was subjected to the suite of 
functional tests and the master performance test suite.  
A record of performance test results was kept by level. 

The development team did not expect that the 
performance tests results should improve 
monotonically with each new code level.  In fact, as 
the code was made more robust by checking for and 
handling an increasing number of exception conditions, 
the opposite trend was sometimes expected.  In 
practice, however, we observed that the performance of 
successive code levels generally did increase. We 
believe that this upward trend in performance was due 
in large part to the continual feedback provided by the 
built-in performance tests and the periodic tabulation 
of the full suite of performance test results.  Contrary 
to a strategy of post-development “optimization” or 
“tuning”, the information provided by the performance 
test tools exercised as an integral part of development 
enabled a conscious tendency to design and code for 
better performance.  

A final phase of performance testing for this project 
was a separate multi-threaded test case that activated 
multiple devices simultaneously (corresponding to 
Level 2 PRs).  The degree of device activity overlap 
was varied while execution times were measured, in 
order to observe any potentially severe degradation 
induced by overlapping device driver activity. In 
practice, no severe degradations were observed over 
the spectrum of expected simultaneous device usage. 

 
5. Conclusion and future work 

 
Our primary contribution in this paper is the 

software performance requirements evolution model, 



PREM.  Using the model as a guideline, a 
development team can identify and specify PRs 
incrementally, starting with casual descriptions, and 
refine them to a desired level of detail and precision.  
This evolutionary model fits in the “good enough” 
attitude of agile methods.  Additionally, this model 
also helps the developers to write appropriate test cases 
for PRs.  Furthermore, the IBM experience tells us 
PRs and performance test cases can be specified with 
appropriate level of detail, based on requirements.  
The experience also demonstrates TDD can be used to 
verify whether performance objectives have been met. 

When PRs are evolved with more performance- 
related information, the corresponding test cases need 
to be modified to reflect the new performance 
characteristics. We are developing a testing framework 
to support evolutionary performance testing.  The test 
framework will allow test writers to add more 
workload definition or to change a performance 
scenario with little modification. PREM along with this 
test framework will be the cornerstone for our further 
research about PRs specification and management. 

 
6. Acknowledgements 

 
The IBM device driver performance tests described 

in this paper were implemented by development team 
members Julio Sanchez, Raul Raudry, Susana Perez, 
Abraham Romo, Bobby Hargett, Dan Streetman, 
Kevin Bell, William White, and Phuc Do.  This work 
is supported by The Center for Advanced Computing 
and Communication (CACC). We would like to thank 
the RealSearch reading group for their comments and 
help on the paper. 

 
7. References 
 
[1] Auer, K., and K. Beck, “Lazy Optimization: Patterns for 

Efficient Smalltalk Programming,” in Pattern Language 
of Program Design 2, Addison-Wesley, Reading, MA, 
1996. Also available at http://www.rolemodelsoftware. 
com/moreAboutUs/publications/articles/lazyopt.php. 

[2] Avritzer, A., J. Kondek, D. Liu, and E. J. Weyuker, 
“Software Performance Testing Based on Workload 
Characterization,” Proceedings of the 3rd International 
Workshop on Software and Performance, Rome, Italy, 
July, 2002, pp. 17-24. 

[3] Beck, K., and M. Fowler, Planning Extreme 
Programming, Addison Wesley, Boston, MA, 2001. 

[4] Beck, K., Test Driven-Development by Example, 
Addison Wesley, Boston, MA, 2003. 

[5] Beck, K., Extreme Programming Explained:  Embrace 
Change, Second edition, Addison Wesley, Boston, MA, 
2005. 

[6] Chung, L., B. A. Nixon, E. Yu, and J. Mylopoulos, 
Non-Functional Requirements in Software Engineering, 
Kluwer Academic Publishers, Dordrecht, The 
Netherlands, 2000. 

[7] Clements, P. C., “Coming Attractions in Software 
Architecture,” Technical Report No. 
CMU/SEI-96-TR-008, Software Engineering Institute, 
Carnegie Mellon University, Pittsburgh, PA, 1996. 

[8] Clements, P. C. and L. M. Northrop, “Software 
Architecture: An Executive Overview,” Technical 
Report No. CMU/SEI-96-TR-003, Software Engineering 
Institute, Carnegie Mellon University, Pittsburgh, PA, 
1996. 

[9] Crispin, L., and T. House, Testing Extreme 
Programming, Addison-Wesley, Boston, MA, 2003. 

[10] Fox, G., “Performance Engineering as a Part of the 
Development Life Cycle for Large-Scale Software 
Systems,” Proceedings of the 11th International 
Conference of Software Engineering, Nice, France, 
March, 1990, pp. 52-62. 

[11] Gao, J. Z., H.-S. J. Tsao, and Y. Wu, Testing and 
Quality Assurance for Component-Based Software, 
Artech House, Norwood, MA, 2003. 

[12] Maximilien, E. M. and L. Williams, “Assessing 
Test-Driven Development at IBM,” Proceedings of the 
25th International Conference on Software Engineering, 
Portland, OR, May 2003, pp. 564-569. 

[13] Paetsch, F., A. Eberlein, and F. Maurer, “Requirements 
Engineering and Agile Software Development,” 
Proceedings of the 12th IEEE International Workshop 
on Enabling Technologies: Infrastructure for 
Collaborative Enterprises, Linz, Austria, June 2003, pp. 
308-313. 

[14] Ross, S. M., Introduction to Probability Models, 8th 
Edition, Academic Press, Burlington, MA, 2003. 

[15] Smith, C. U., Performance Engineering of Software 
Systems, Addison-Wesley, Reading, MA, 1990. 

[16] Smith, C. U. and L. G. Williams, “Software 
Performance Engineering: A Case Study Including 
Performance Comparison with Design Alternatives,” 
IEEE Transaction on Software Engineering, vol. 19, no. 
7, July 1993, pp. 720-741. 

[17] Smith C. U. and L. G. Williams, Performance Solutions: 
A Practical Guide to Creating Responsive, Scalable 
Software, Addison-Wesley, Boston, MA, 2002. 

[18] Sommerville, I., Software Engineering 7th Edition, 
Addison-Wesley, Boston, MA, 2004. 

[19] Weyuker, E. J., and F. I. Vokolos, “Experience with 
Performance Testing of Software Systems: Issues, an 
Approach, and Case Study,” IEEE Transactions on 
Software Engineering, vol. 26, no. 12, December 2000, 
pp. 1147-1156. 

[20] Williams, L., E. M. Maximilien, and M. Vouk, 
“Test-Driven Development as a Defect Reduction 
Practice,” Proceedings of the 14th International 
Symposium on Software Reliability Engineering, 
Denver, CO, November, 2003, pp. 34-35. 

[21] Zadrozny, P., J2EE Performance Testing with BEA 
WebLogic Server, Expert Press, Birmingham, UK, 2002. 


