

Does the XP environment meet the motivational needs of the software
developer? An empirical study

Sarah Beecham1, Helen Sharp2, Nathan Baddoo1, Tracy Hall1 and Hugh Robinson2

1School of Computer Science, University of Hertfordshire, College Lane, Hatfield, Herts AL10 9AB, UK
2Dept of Computing, Faculty of Mathematics and Computing, The Open University, Walton Hall, MK7 6AA, UK

({s.beecham; n.baddoo; t.hall}@herts.ac.uk) ({h.c.sharp; h.m.robinson}@open.ac.uk)

Abstract

This paper examines how XP practice meets the
motivational needs of software developers. Interactions with
peers have been identified by others as one potential area of
(de)motivation but little detail is known. The nature of this
motivator, as expressed by software developers themselves,
was explored through semi-structured interviews with a
high maturity high performing team working on safety
critical software applications in a traditional environment.
From these interviews, we have identified seven themes
which are characteristic indicators of peer motivation. We
interrogate observational data from five mature XP teams
to consider whether and how these characteristic indicators
are present in an XP environment. We find that XP teams in
our study had processes in place that supported many of the
motivational needs voiced by developers coming from a
traditional, heavyweight software development
environment. However, the XP environment is at odds with
other motivational needs.

1. Introduction

Motivation is a complex phenomenon with many
inter-related, context-dependent factors [22].
Motivation refers to the initiation, direction, intensity
and persistence of behaviour and features in one of the
Agile manifesto principles, “build projects around
motivated individuals. Give them the environment and
support they need, and trust them to get the job done”
http://www.agilemanifesto.org. Motivation is
acknowledged to have a major impact on the quality
and productivity of the software product [1-3], yet as it
is a soft factor, and difficult to quantify, it often takes a
backseat [1].

In this empirical study we explore peer
interactions, understood to have a major impact on
software engineers’ motivation [3-7], and the
conditions around these interactions that encourage or
discourage motivational behaviour. Our analysis

compares the XP environment as represented by
observational studies of five mature XP teams, with
the preferred conditions for high motivation as stated
by practitioners in a traditional development
environment.

Several papers have been published that endorse
the XP environment as being a preferred environment
e.g. [8-10], that gives greater job satisfaction [11, 12],
reduces the software development cost [13] and
increases code quality [14]. Yet no study has placed
the known and accepted XP values and characteristics
directly in line with developer preferences coming
from a traditional background, to show where needs
are met and where values are challenged or in some
cases are missing altogether.

In order to consider how the XP environment
compares to preferred conditions for high motivation,
we look at data from interviews with software
engineers (SEs) involved in a high-profile, safety
critical project. The SEs are all highly motivated [15]
having been selected specifically for their previous
high quality performance in this CMM level 5
organisation. Our questions were aimed at uncovering
what characterises a motivating team member and
what characterises a de-motivating team member. We
use this motivating/de-motivating team member data
to interrogate observational data collected in five
mature XP teams. In this way we empirically compare
similarities and differences between perceptions of
traditional software engineers and observed practice of
XP teams in terms of peer interaction.

This paper is organised as follows. In section two
we give a background to motivation in software
engineering as identified in the literature, including
studies which have looked specifically at XP and Agile
environments. In section three we explain our
methodology that involves case studies in traditional
and XP environments. Section four presents our results
relating to software engineer needs in a traditional
environment and how this compares to the XP

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

environment. Section five discusses the strengths and
weaknesses of the XP environment in providing the
conditions conducive to motivating software engineers
as stated by traditional developers. Limitations to this
work are discussed in Section six, and in Section
seven, we give our conclusions and suggestions for
future work.

2. Background

Here, we discuss literature regarding motivation in
software engineering and Agile or XP teams.

2. 1 Motivation in Software Engineering

Motivation in Software Engineering is reported to

have the single largest impact on practitioner
productivity [2] and software quality management
[16], and continues to be ‘undermined’ and
problematic to manage [3]. Motivation is increasingly
cited as a particularly pernicious people problem in
Software Engineering. In DeMarco and Lister’s [17]
survey, motivation was found to be one of the most
frequently cited causes of software development
project failure. The Standish report [18] amplifies this
finding by reporting that having access to competent,
hard working and focused staff is one of ten success
criteria for software projects.

Some studies in this area suggest that conventional
approaches to motivation within the industry might be
outdated. They have concentrated on rewards and
recognition, e.g. [19], whereas some experts have
identified Software Engineers as having a distinctive
personality profile [20] that are instead motivated by
the nature of the job, e.g. technical success,
challenging technical problems [5, 21] and peer
interaction [3-7]. In our systematic review of the
literature on motivation in software engineering 1980
– 2006 [22] we found an increasing awareness of the
importance of motivating software engineers.

Several papers in the literature cite factors relevant
to the relationships between team members as being
motivation factors for software engineering. For
example, the importance of a supervisor being a good
team builder; the developers preference for
collaborative work, the need to belong and fit in with a
group [23] which is physically close [24]. The
importance of supportive relationships, team
identification and dynamics is also a recurring theme
[3-5, 7, 25].

Career path, defined as the opportunity for
advancement, promotion prospects, and career
planning within an organisation, is also an important
motivator. Important motivators in this category

include, promotion prospect/opportunity for
professional advancement [23, 26-29], 30, 31] for the
software developer is often characterised as having
high growth needs [32-36].

Some motivation factors are reported as being
motivating by some studies and de-motivating by
others, for example, change and the maintenance task.
It may be possible to account for this by considering
the different context in which the software is being
developed. However, little work on motivation has
focused on the specific nature of software engineering
itself, or of the impact of the changing environment in
which software engineering is conducted.

2.2 Motivation and XP

Published studies that relate motivation or job

satisfaction to Agile and XP emphasise the positive
aspects of these approaches. For example, a
longitudinal study by Syed-Abdullah et al. [9] revealed
that XP methodology has a positive impact on an
individual’s disposition to be happy, across time and
situations. This finding is supported in a comparative
study, where job satisfaction was found to be higher in
developers using XP practices as opposed to
developers not using XP practices [10]. Practitioners
showed a strong preference for working in an XP
environment, using XP practices.

Continuing the positive theme, Melnik and Maurer
[12] empirically compared job satisfaction in Agile
and Non-Agile Software development teams finding
that the greater the experience of working in an Agile
environment the greater the job satisfaction. Melnik
and Maurer study is particularly helpful in linking job
satisfaction to motivation, “.. the benefits of higher job
satisfaction mentioned have been: … increased
individual team morale, motivation, performance
productivity and retention.” The importance of
motivation and teamwork is further explored in
Asproni [11] who explains how Agile development
methods contain the necessary ingredients to motivate
developers to make effective teamwork possible.

Coram and Bohner [37], take a slightly different
view, indicating that perhaps the largest impact of
Agile Methods is on the developers, stating that Agile
Methods depend on strong developers that must be
amicable, talented, skilled and able to communicate
well (in [38]). They must be willing to work as a team,
able to handle constant change, and resourceful
enough to solve problems. Agile Methods are very
lightweight methods, not affording strict guidelines
and processes for developers to follow. Hence, they do
not accommodate weaker developers well. In this
theoretical study, Coram and Bohner [37] touch on the

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

difficulty that some developers might have coming
from a traditional background, “Given the need for a
high level of expertise, Agile Methods may be difficult
to employ in a traditionally staffed organization.” They
add that it might be difficult to build a long term
human capital strategy where skilled staff are always
in demand.

Law and Charron [8] also reflected on some of the
benefits and disadvantages of XP. For example they
found pair programming motivating in two separate
projects because it addressed the need for learning,
autonomy and social activity. However, Law and
Charron (2005) do accept that pairing can have a
negative impact if pairs have personality conflicts and
that the project might suffer from autonomy where less
interesting work might not be tackled immediately.

3. Methodology

To compare similarities and differences in

developer perceptions of what constitutes a motivating
group member and team environment we draw on two
empirical data sets. The first set comprises transcripts
of a series of nine interviews with software developers
working in a traditional development environment.
The second is a set of observational data from five
mature XP teams. Our overall approach is to analyse
the interview responses to gain further insight into the
kind of supportive relationships the developers find
motivating, and then to use these findings to
interrogate the observational XP data. All data was
collected and analysed by the authors.

3.1 Empirical data sets

3.1.1 Semi-structured interview data from a
traditional software development team. The findings
presented are from nine semi-structured interviews
conducted in July 2004. The interviewees were
developers working in a large complex embedded
software development project (LEDS) based in a large
UK engineering company. The company considers
LEDS to be a prestigious, high profile project. LEDS
has been set up to showcase the high quality work of
the company and is composed of several disciplines
including a hardware team, a requirements modelling
team, and a software development team. The project is
managed by a dedicated project management team.

The software development team was a member of
the company’s Software Department. The Department
was assessed at CMM level 5 in 2004. The processes
used by the Department were therefore of high
maturity. The LEDS software team had been hand-

picked by the Department’s managers to ensure a high
quality outcome [15].

We interviewed all members of the software
project team. One week was spent on site where one
hour, one-to-one semi-structured interviews were
conducted. The interview questions reflected three
elements:
• Developer performance (what are the attributes of a

good and bad developer)
• Motivation for performance (what encourages

developers to be good or bad)
• Consequences (how does a good and bad developer

impact the project/team).
Developers were not asked directly about

motivation, but analysing their answers to questions
relating to good experiences and bad experiences of
working with colleagues on this project reveals issues
that affect their relationships with fellow team
members, and hence may affect their motivation, as
suggested by literature reported in section 2.1 above.
For example, issues around progress were mentioned
the most when discussing both the “best” developer
and the “worst” developer. This indicates that progress
is a significant concern of the developers when
considering peer interaction.

3.1.2 Observational data from mature XP teams.
Our observational data arises from ethnographically-
informed studies [39] of five mature XP teams. These
teams are ‘mature’ in that they have been practising
XP for at least a year (collectively or individually)
before we have studied them. Each study lasted at least
a week. Our observations focused on the interactions
between team members; the data collected consisted of
contemporaneous notes, photographs and some audio
recordings. For the purposes of anonymity, we refer to
these teams as Teams B, C, K, S, and W.

Team B (composed of 12 developers and a
business analyst) produced software applications in
Java to support the management of operational risk
within a large bank. The application was being
developed in an environment of uncertainty as policy
pertaining to operational risk had not yet been issued.
XP within the company was championed by a senior
manager.

Team C (composed of eight developers, one
graphic designer and one infrastructure specialist)
developed web-based intelligent advertisements using
Java. Although they had several strong clients, the
company was working hard to satisfy its investors.
There was no evidence to suggest that the team
members would feel that their jobs were threatened.

Team K (composed of 23 developers, one project
manager and two business development staff)

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

developed and maintained travel information
webpages and travel alerts for a variety of customers in
the UK. The company was doing well and expanding
its workforce at the time of the study.

Team S (composed of six developers, one project
manager, three business analysts, and one domain
expert) worked in a large international bank, and
programmed in Java. Their project concerned the
migration of database information from several smaller
databases to one large database. All of the developers
and business analysts were on short-term contracts.
This was common within this bank, and the
individuals were used to this kind of arrangement.

Team W (composed of 16 developers, three
programme managers, two testers, one technical
author, and one development team coach) were part of
a medium-sized company producing software products
in C++ to support the use of documents in multi-
authored work environments. The company had moved
to XP because it was failing to sell its products.
Business performance had since improved and the
threat of redundancies had faded.

3.2 Analysis

3.2.1 Analysis of traditional development team
data. Digital audio tapes of the interviews were
listened to and detailed notes taken at the time of the
interviews were examined. We recorded developer
responses to what constitutes the ‘best’ and ‘worst’
developer on the project in terms of performance. We
also recorded how good and bad characteristics were
encouraged, and how these developers impacted the
project. We identified recurring themes in participant
answers, and using a content analysis classification
scheme [50] created a reduced list of categories as
shown in tables 1 and 2. Content analysis is defined as
“objective, systematic, and quantitative description of
the manifest content of communication” [51]. Our
classification scheme involved two researchers. One
researcher identified an initial set of developer
attributes, which a second researcher looked at along
with the associated definitions. The second researcher
validated the identified themes by querying any
ambiguities. The final list of attributes given in tables
1 and 2 is a result of refining and combining the initial
list to the satisfaction of these two independent
researchers.

3.2.2 Analysis of XP observational data. Tables 1
and 2 were analysed to identify characteristic
indicators of motivational peer behaviour, and
conditions which affected the presence of these
characteristics. We applied a thematic approach to
produce cross-cutting themes that can be viewed as

both negative and positive influences on individual
motivation. These themes (see Table 3) were used as
prompts with which to explore the XP observational
data.

Analysis of the observational data followed a
rigorous approach based on ethnographic principles. In
this approach, each theme from Table 3 was used to
interrogate the observational data to see if any
recurring patterns emerged regarding the issue being
addressed. Throughout this interrogation, we looked
for disconfirming as well as confirming evidence to
support our conclusions. For example, one of the
findings from the interview data suggested that a ‘poor
developer’ does not admit to having a problem in a
piece of software. We took this finding and looked
through the observational data to see if there were any
occasions when we observed any developers hiding
problems. We could not find any examples of
developers hiding problems across all XP teams, on
the contrary, we found several examples of developers
communicating problems. Our conclusions were then
based on all the evidence related to this issue.

4. Results

4.1 Traditional development team results

Tables 1 and 2 reflect the characteristics of an
environment that traditional developers believe will
encourage developers to be ‘good’ (best) or to be ‘bad’
(worst). In this context, ‘good’ means ‘people they
want to work with’. For example, an environment with
a very open culture leads to quality solutions and better
flow of information among the team. This in turn
encourages developers to develop as good
communicators. The tables give a definition of the
attribute (taken directly from the interview data), and
how this attribute is encouraged (in ‘helped by’
column); and the impact of this attribute (in ‘outcome’
column).

Table 3 is the result of identifying cross-cutting
themes from the interview data where the following
themes emerged: access to information, fear/
insecurity/confidence, openness/communication,
progress, responsibility/ autonomy/ ownership,
software quality, team morale.

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

TABLE 1: Attributes of best developer on the project, how attribute is encouraged and outcome
Attribute (desired) Defined as (from data) Helped by outcome
Technically competent
/knowledgeable/
experienced

Good knowledge of programming
language, software paradigm and
tools. Wide knowledge of software
as well as hardware. Looks at the
bigger picture.

Tools, information, Individual interest
Training. Motivation.

Supportive role. Project success
Lots done and progress made.

Good communicator/
sociable/ open /sharing
/respectful

Articulate –teaches team tool use
and techniques; says what is going
right what is going wrong

Team dynamics. Open culture. Truth
can be voiced

Quality of solution improved.
Better flow of information

Confident Faith in own abilities. Self
dependent

Encouragement. Opportunity to show
what they can do

Improves quality

Motivated Driven/motivated. Doesn’t need
any pushing

Innate, enjoys hard work. interesting/
challenging jobs

Lots done and progress made.
Drives colleagues to work
harder.

Resourceful
/desire to learn

Will get/learn skills required, or
find someone who knows.

Individual interest. Lack of pressure.
Ownership, autonomy, responsibility.

Improved quality

Scientific/engineering/o
rderly

Works preventatively sorting things
out before you get too far into it.
Methodical. Thoughtful about every
stage.

Interest/ experience in specialist tasks.
Ownership of code. orderly person

Morale boosting. Adds
adaptability- cheaper to modify.
aids customer perception –
reputation.

Committed to team/
enjoys challenge / high
standards/ professional

Doesn’t get stressed. High
expectations of themselves. Invests
time on a difficult task

Accountability: High visibility project
so problems will be noticed

Good drive to milestones

Responsible Accepts responsibility (that you
have to report bad news).
Ownership.

Structure. Ownership. Autonomy.
Punitive. Feature of young age and
personality.

Gets rid of blame culture

Flexible Learns and adapts quickly.
Flexible/adaptable – able to change
priorities.

Receptive to new ideas and
technology - a natural thing

Project flows better. Things get
done quicker and right.
Minimises Rework effort

TABLE 2: Attributes of worst developer on the project, how attribute is encouraged and outcome
Attribute (undesired) Defined as (from data) Helped by Outcome
Technically incompetent Hacks code. Doesn’t take design

seriously. Writes code that does not
work. Caught up in tiny detail do not
see the larger picture. No practical
experience. Not logical about
development

Not recognising poor requirements.
Lack of time. Fear of re-training.
Punitive management practices for
missed deadlines. Personalise the
punishment for missing milestones.

Quality slips. Problems with
integration, dependencies,
system reliability, Time delays,
updating and maintaining
artifact, complexity, completion.
Shifts problem.

Insecure / closed /
distrustful

Hides having a problem in a piece of
software. Poor communication.
Lack of faith to do anything if not
trained. Too much watching his
back. Does not share knowledge.

Strong need for self promotion-
encouraged by managers
Expectation that people can pick
things up. Wanting to maintain
consistent level of attainment.

Makes others paranoid;
encourages them to behave
defensively. If problems [that
are hidden] are progress related
affects time and money.

Inflexible Don’t like change - stuck in their
ways. Arrogant.

Only want to do things they want to
do in the way they want to do it.
Trains, children, out late.

Negative effect on team - less
cohesive/friction. Change and
lessons learnt difficult to
implement. Poor coordination =
delays & imperfect solutions.

Over-confident Too much confidence and faith in
themselves. Arrogant. Self-deluded
– people thinking they’re better than
they are

Brought up to think they are good.
Too judgmental. Attempt to get
recognised for promotion.

Other people get annoyed.
Difficult to work with. Chooses
work with high profile for him-
self rather than good of project.

Disorganised Take on too much at the same time
.No foresight in needing more time
etc

Under pressure and trying to save
time. Looking good more important
than doing good work

Affects schedule. Quality and
design will be poor. Affects how
often people think about their
work. Affects the mindset of
others. Distracts others.

Uncommitted to team /
demotivated

Comes to work for works sake. Will
do what you say and needs lots of
direction.

If project managers not good at
motivating person.

Affects colleagues and overall
morale of team. More defects
and latent faults. Lack of
coordination - introduce delays
& lead to imperfect solutions.

Unprofessional People who panic under pressure.
Very reactive to problems

Personal circumstances. Job
insecurity.

Can affect everyone around
them and affect overall morale.

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

Table 3: Cross-cutting themes emerging from
the interview data (both negative & positive)
Cross-cutting
themes

Definition

progress Relates to movement towards and
achievement of goals, where goals
might be milestones, meeting
requirements, quality, timescales

access to
information

Relates both to the flow of
information regarding development
matters, and the desire of
individuals to acquire more
information and to learn

openness/
communication

Relates to the flow of information,
but it focuses more on the culture of
the team and of individuals’
willingness to help others, to say
what they believe and to encourage
others to do the same

responsibility/
autonomy/
ownership

Relates to Software Engineers
defending their best ideas, voicing
problems, working exceptionally
hard, a culture where people don’t
blame others. Not waiting to be told
what to do. Ownership of a process
and piece of code.

software quality Covers software reliability,
integration, dependencies,
complexity, meeting requirements,
design, defects, latent faults,
maintainability, solutions

team morale Includes (de)motivation, team
dynamics, drive others in team,
morale boosting, blame culture,
punitive management practices,
negative effect on team, friction,
team cohesion, annoying others,
difficulty working with people.

fear/insecurity/
confidence

Includes both positive and negative
characteristics. Behaviour is
influenced by encouragement (or
lack of it); threats from other team
members performing too well;
management personalising
punishment for not meeting targets;
treating others with distain. Job
security. Behaviour is defensive and
paranoid. Can be over-confident,
which is seen as negative.

4.2 XP team results

We used the themes identified in Table 3 to

interrogate observational data from the mature XP
teams. We were looking to see what the data could
tell us about how XP teams regard the themes. Of
course, these themes overlap to some degree – for
example, openness and communication are likely to
affect access to information – but we focused on each
one separately.

4.2.1 Progress. Progress was mentioned several
times in the interviews: making progress was viewed

as positive while barriers to progress were rated
negatively. XP teams are also concerned about
progress. This is reflected in a constant awareness of
progress and talk about progress.

In all our teams, progress was carefully recorded
and tracked with the story card being a key artefact.
For example, in team C different coloured stars were
used to denote the story’s status: a red star indicated
an unfinished card, yellow a card that has been
finished by developers and is ready for acceptance
test, green indicated that the change has been
accepted by the customer. In addition, a blue star
indicated that the card was a task card, i.e. an
element of a story card. Team K used different
coloured annotations to capture estimates, actual
work done, and whether or not the story was
‘finished’.

Another key artefact related to progress used in
all our teams was a large visible display - the
information radiator (or Wall) used to exhibit the
cards. Cards were placed on the Wall in particular
locations to indicate whether or not they were
completed (see fig 1). For example in Team K cards
at the top of the Wall were being worked on while
cards at the bottom were finished. Rate of progress
was therefore clear from one glance at the Wall. In
Team S, there were two sections of wall – one for the
analysts and one for the developers, to show the
progress of work from analysis through to
development.

Figure 1 All our teams had some form of Wall for
displaying story cards and tracking progress

The use and focal nature of these artefacts also
promoted awareness about progress. Stand-up
meetings, which took place in all our teams every
day, were held while standing around the Wall, the
planning game where stories for the next iteration are
chosen, inherently focuses on which stories have
been completed and which are remaining.

In team S we witnessed several examples of the
frustration caused when progress was held up
because of others’ mistakes (from outside the team),
or lack of communication. For example, the team
needed to access a database that was administered in

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

France, and the administrators there controlled
password access, but didn’t appear to communicate
these passwords consistently to developers in the
UK.

4.2.2 Access to information. The flow of
information and active dissemination regarding
implementation problems and successes, company
matters and personal issues, is facilitated by stand-
ups, regular meetings with customers (or customer
proxies), and pairing, and by the visible nature of the
Wall. The detail of how these were implemented in
each team varied.

The information flows around Team K are simple
yet rich [41]. In this team, every member of the
development team was aware about all aspects of the
company. This was also true in Team C, but it wasn’t
true in all our teams. For example in Team W the
developers were divided into smaller teams to
concentrate on individual products. When we
enquired of one developer about progress on another
team, they had no idea. While the information may
not have been withheld, it was not actively
disseminated. Indeed, the coach in Team W
commented that part of his role was to protect the
team from things they didn’t need to know about.

Access to information to support individuals’
desire to learn is facilitated in both the availability of
information and the culture of the team in having
courage. When pairing, developers have access to
several information sources including developer
websites, internally-documented wikis, books, each
other and customers. The desire to learn was not
strong in all our teams, but was strong in many of
them. For example, Team C readily committed to
learn Python when it became clear that this was the
most appropriate language to use. One member of
Team B told us that he could earn more money if he
moved to a different job, but he was happy where he
was because he was learning new things. Team K
decided not to employ an outside consultant to work
on a database issue because they wanted to keep the
knowledge ‘in house’.

In all our teams, the use of documentation was
limited, in line with the XP philosophy of keeping
documentation minimal. However when estimates
are made in the planning game, this sometimes
assumes a certain design choice, and if this choice is
not communicated and remembered by developers,
then it can lead to repeated work, or implementation
based on a different design. This in turn can have an
effect on actual work required to complete a story.

4.2.3 Openness/communication. In all our XP
teams, the stand-ups and pairing appeared to be

conducted in an open fashion. Team K would have a
company stand-up every three weeks, and new
members of the company were encouraged to chair
these meetings if they wanted to. During our visit we
observed an example of this. In some teams,
however, it was clear that some individuals felt
uncomfortable with this kind of approach. In team W
one developer openly confessed that he didn’t like
pairing because he preferred to get on with things on
his own (however the fact that he could say this
without fear of recrimination speaks to the open
nature of the team itself).

In Team S, the project manager exerted more
control on the team and their work than we observed
elsewhere. He called a team meeting during our
observation, and one team member became very
frustrated because he didn’t understand the purpose
of the meeting and he felt that it was wasting time
when he could be making progress. This was an
example of lack of communication between the
project manager and the team.

4.2.4 Responsibility, autonomy, ownership.
Responsibility is one of the characteristics of an XP
team [52], as well as an underlying value of XP
itself, and shared ownership is a theme we’ve seen in
all our teams. The informative environment,
openness of communication and regular exchange of
ideas all contribute to this characteristic. In the
interview tables above, there is a negative view of
this theme, i.e. that a ‘worst’ developer wants to do
things the way they want to and not listen to anyone
else.

In our XP teams, decisions have tended to be
made by consensus across the team or across a pair,
bolstering team ownership and team responsibility.
We observed successful outcomes of XP teams
running retrospectives to modify process issues
indicating ownership of a process. XP teams are self-
organising and hence individuals take responsibility
too. However, in one of our teams, we were told after
the observation visit that one team member had
significantly more influence over the team and its
operation than others. It seems that the team as a
whole was tolerant of this – an example of team
strength.

One downside of everyone feeling responsible
about the project and making team decisions is that it
becomes difficult to identify distinct contributions of
individuals. This can cause problems in terms of
promotion and career progression. One member of
Team B, for example, left the XP team specifically in
order to gain experience in other areas of the bank
because he was aiming for promotion. In Team W,
none of the team members was given a particular

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

title, e.g. architect, senior (or junior) engineer, etc.
This became an issue for individuals wanting to
move to a different company, and so there was an
informal agreement that for the purposes of job
applications, individuals could decide on their own
titles.

4.2.5 Software Quality. A clear theme that emerged
from Team C’s data is that coding and quality of
code matters within an XP team [40]. This has been
echoed throughout our teams, but the value of
simplicity which leads developers to develop code
that solves the current problem may result in code
that is difficult to read. Hence refactoring (improving
code structure while keeping the same functionality)
is needed. However problems arise when the team is
not given the time or opportunity to refactor. For
example, one developer in team C became upset
when he recognised the need for refactoring a piece
of code that linked to software he was developing,
but hadn’t the time available in the current story
estimate to work on it. Part of XP’s philosophy is
that every team member has the responsibility to
modify code if they see that it needs improving, but
in this case the desire for disciplined progress
overcame the desire to improve code quality. Instead,
the developer wrote a story card for the refactoring
so that it could be handled in a stand-up like every
other story, but we have not seen this kind of card in
other teams.

4.2.6 Team Morale. Team morale is an outcome that
may be influenced by many things, including the
other themes identified in this section. The presence
of this theme confirms that team morale is a key
concern of developer teams. This is true whether the
development approach is traditional or agile.

It would be inaccurate to suggest that our XP
teams did not suffer from team morale issues. For
example, in Team C, the regular rhythm of
development led to significant boredom within the
team. Team B also reported that they gave up trying
to pair all day every day because it became too
intense and difficult to sustain.

4.2.7 Fear/insecurity/confidence. This theme did
not arise often in our interview data, and is more
common when talking about ‘worst’ developers.
There are many causes of insecurity and fear, which
then lead to lack of confidence. In our XP teams,
some developers were more technically competent
and were more confident than others, but pairing
exposes everyone to equal scrutiny. One side-effect
of pairing that has been reported to us by several
developers is that continuous pairing can lead to a

lack of confidence in your ability to solve a problem
when left on your own. Teams C, B, and W were
under pressure to perform well due to organisational
situations at the time of our visits, but fear or
insecurity is not a strong theme in our data.

5. Discussion

Several of the issues raised by the traditional
development team, while recognised as significant in
XP, are not causing XP developers a problem, i.e. XP
teams have found ways of tackling them or avoiding
them. How? Is it because XP team members are ‘just
like that’ or is it the structure of the practices that
avoids common problems in software development
teams?

There are clear differences in what is considered
good and bad practice when looking at the two
different development approaches. For example,
commenting code is considered good practice in
traditional development, whereas XP uses an
alternative practice of clear naming – avoiding the
need to spend time on comments. Differences in
technical approach are also dependent on the type of
software being developed. For example our
traditional team were frustrated by working with
developers who couldn’t see the bigger picture,
something of great importance when working on
safety-critical embedded system development.

To explore the complex question of how
motivational peer relationships are supported in XP
we draw on the Agile literature and general literature
on motivation. We incorporate findings from our
data to consider where the practices and structure of
XP teams support positive peer relationships, and
where they support or conflict with views from
traditional developers.

5.1 XP practices that support the traditional
view

The need for developers to feel they are making
progress is strong, which is to be expected in a group
of professionals with extremely high growth need
strength, i.e. individuals with a high need for
personal growth and development [42, 43]. In terms
of tracking progress, XP methods appear to meet
these needs as shown by the display of story cards,
regular stand-up meetings and the planning game
which featured in all our XP teams. Should the
developer want information the XP environment
provides a good, accessible flow of information, as
seen in regular meetings with customers, pairing and
visible records on the wall. However, even in the XP

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

environment there are no controls for external
influences holding up progress, such as mistakes and
withholding of information by people outside the
team.

The need to learn is strong in many developers,
e.g. [3, 44], who according to our interview data, will
use available resources to learn new techniques and
develop new skills to solve problems. Indeed, one
developer in our XP Team B preferred to stay in his
current job because he had the opportunity to learn
new things rather than move to a better paid job.

The XP teams all limited the use of
documentation. Controlling the flow of information
to ensure that only useful information is circulated to
the team, protects individuals from information
overload. (Regulating levels of information is likely
to be a ‘hygiene factor1’ where too much information
could be considered de-motivating.)

Developers are motivated by working in a team
that is open with members who can communicate
well (poor communication was found to be de-
motivating in [24]). The informative environment,
openness of communication and regular exchange of
ideas helps to avoid the problem of developers hiding
problems. There was no evidence in our XP data of
developers hiding problems (although we cannot be
certain), and we observed one developer speaking
openly about his reservations with pairing, which
suggests that he felt comfortable speaking freely
about problems.

XP teams are self-organising and hence
individuals take responsibility. Yet decisions tend to
be made by consensus across the team or across a
pair, bolstering team ownership and team
responsibility (e.g. retrospectives). This practice
discourages developers from working in an insular
myopic fashion that de-motivates other members of
the team.

5.2 XP practices that conflict with the
traditional view

In an XP team, it is difficult to identify individual
contributions as the work is so collaborative. This
may cause those who want promotion or career
progression to be de-motivated. According to the
literature, career progression is an important
motivator [46]. Furthermore, passive programmers
can lose their motivation in pairing activities, as the

1 Hygiene-motivator theory asserts that removing the de-
motivator (or hygiene factor) will not necessarily translate to
motivating employees. It will simply maintain practitioners in their
job and avoid dissatisfaction [45. Herzberg, F., B. Mausner and
B.B. Snyderman, The Motivation to Work, 2nd Ed. 1959, London:
Chapman & Hall..

dominant programmer tends to dictate the path for
development [8].

The importance of fair treatment of individuals is
encapsulated in equity theory [47]. People are likely
to be de-motivated if their inputs such as experience,
education, skills and seniority, are not matched by
outputs gained from the organization such as salary,
recognition, opportunity for achievement and so on.
Practitioners will compare the balance of their inputs
and outputs with others [47]. In a recent study of
software engineers, Agarwal and Ferratt found
unequal treatment of individuals de-motivating
where key items were: compensation, assigned work,
and recognition [48]. Equity is relative to others.
Therefore there is a potential problem with the XP
environment where individual inputs into the project
might be subsumed by the whole, again impacting
promotion opportunities.

Developers are known to have high growth needs,
where task variety leads to job satisfaction [49].
These needs are not always met in XP. We observed
instances where team morale was reduced by
individuals becoming bored with the regular rhythm
of development, where continuous pairing became
too intense when practised day after day, and where
developers became dependent on working in pairs,
and lost their confidence to work alone.

6. Limitations

In this work we have considered two different

ends of a spectrum – mature XP teams, versus a
CMM level 5 team developing software traditionally.
There are teams who take a balanced position
between these extremes, integrating aspects from
both, and we have not considered this balance in our
discussion or in our data.

We did not ask developers directly what
motivates them to work productively and to produce
high quality software. Our results are drawn from
questions relating to how developers view good and
bad developers in their team. Our findings in this
paper are therefore based on the understanding that
developers like to work with – and are motivated by
– good developers and don’t like working with, and
are de-motivated by working with bad developers [3-
5, 7, 23, 25]. Factors unrelated to team interactions
are not included, such as financial compensation and
job security. The findings we present here are all
based on how an individual’s behaviour within a
team might motivate or de-motivate other
developers.

We cannot be sure that all motivators and desired
attributes noted by our developers in a traditional

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

environment would be motivating in an XP
environment. There is likely to be a shift in attitude
when moving from a heavyweight development
methodology to a lightweight methodology. Further
work in this area would be to replicate the study
made in the traditional environment and ask XP
developers what they consider to be the best and
worst developers they have worked with in an XP
environment. In this way we could see more clearly
where the differences and similarities lie between
each group.

7. Conclusion

In this paper we have presented an assessment of
how XP practices meet the motivational needs of
software developers, in terms of relationships with
fellow team members. We have analysed data from
traditional developers talking about how they view
fellow team members, and extracted themes which
reflect the issues uppermost in their minds. Using
these themes we have interrogated data from mature
XP teams, and have found that similar themes exist
in this data too.

The five XP teams in our study had processes in
place that supported many of the motivational needs
voiced by developers coming from a traditional,
heavyweight software development environment.
Our observations revealed that XP developers were
able to clearly monitor project progress, share
knowledge, support those with less experience, adapt
quickly to changes in requirements, learn on the job,
work independently, and communicate good and bad
news without worrying about punitive repercussions.

However, the XP environment doesn’t support
the need for individual recognition, for clear career
progression, and variety of work, and may weaken
the developer’s ability and confidence to work alone,
should the developer need to move out of an XP
environment.

Acknowledgements: We are sincerely grateful to the
companies and practitioners in this study who, for
reasons of confidentiality, must remain anonymous.
This research was supported by the UK’s
Engineering and Physical Science Research Council,
under grant number EPSRC EP/D057272/1.

References

1. McConnell, S., Problem programmers. IEEE

Software, 1998. 15(2), 128, 127, 126.
2. Boehm, B.W., Software Engineering

Economics. Advances in computing science and

technology series, 1981, Englewood Cliffs:
Prentice-Hall, Inc.

3. Procaccino, J.D., J.M. Verner, K.M. Shelfer and
D. Gefen, What do software practitioners really
think about project success: An exploratory
study. Journal of Systems and Software, 2005.
78(2), 194-203.

4. Andersen, E.S., "Never the twain shall meet":
exploring the differences between Japanese and
Norwegian IS professionals. In Proceedings of
the 2002 ACM SIGCPR Conference on
Computer Personnel Research, Kristiansand,
Norway, May 14-16, 2002, pp 65-71.

5. Tanner, F.R., On motivating engineers,
Engineering Management Conference, 2003.
IEMC '03. Managing Technologically Driven
Organizations: The Human Side of Innovation
and Change, pp 214-218.

6. Klenke, K. and K.-A. Kievit, Predictors of
leadership style, organizational commitment
and turnover of information systems
professionals. In Proceedings of the 1992 ACM
SIGCPR Conference on Computer Personnel
Research, A. L. Lederer, (ed) SIGCPR '92, pp
171-183.

7. Linberg, K.R., Software developer perceptions
about software project failure: a case study.
Journal of Systems and Software, 1999. 49(2-
3), 177-92.

8. Law, A. and R. Charron, Effects of agile
practices on social factors. In Proceedings of
the 2005 Workshop on Human and Social
Factors of Software Engineering (St. Louis,
Missouri, May 16, 2005). HSSE '05, pp 1-5.

9. Syed-Abdullah, S.L., J. Karn, M. Holcombe, T.
Cowling and M. Gheorge, The positive affect of
the XP methodology. In Proceedings of XP
2005, LNCS 3556. Springer-Verlag. 2005, pp
218-21.

10. Mannaro, K., M. Melis and M. Marchesi,
Empirical Analysis on the Satisfaction of IT
Employees Comparing XP Practices with Other
Software Development Methodologies. In
Proceedings of XP 2004, LNCS 3092.
Springer-Verlag 2004, pp 166-174.

11. Asproni, G., Motivation, Teamwork, and Agile-
Development. Agile Times, 2004. IV(1), 8-15.

12. Melnik, G. and F. Maurer, Comparative
Analysis of Job Satisfaction in Agile and Non-
Agile Software Development Teams. In
Proceedings of XP2006, LNCS 4044, 2006,
pp32-42.

13. Kuppuswami, S., K. Vivekanandan, P.
Ramaswamy and P. Rodrigues, The effects of
individual XP practices on software

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

development effort. SIGSOFT Software
Engineering Notes, 2003. 28(6), 1-6.

14. Müller, M.M. and F. Padberg, On the economic
evaluation of XP projects. In Proceedings of the
9th European Software Engineering
Conference, 2003, pp 168-177.

15. Baddoo, N., T. Hall and D. Jagielska, Software
developer motivation in a high maturity
company: a case study. Software Process:
Improvement and Practice, 2006 11(3), 219-
228.

16. McConnell, S., Avoiding classic mistakes
[software engineering]. IEEE Software, 1996.
13(5), 111-112.

17. DeMarco, T. and T. Lister, Peopleware -
Productive Projects And Teams. 1999.

18. Standish Report (1995) Standish Group Chaos
Report. Available from: URL
http://www.scs.carleton.ca/~beau/PM/Standish-
Report.html.

19. ProjectLink (2006) Motivation House.
Available from:
http://www.projectlink.co.uk/whoweworkfor.ht
m, accessed 12.5.2006.

20. Capretz, L., Personality Types in Software
Engineering. International Journal of Human-
Computer Studies, 2003. 58(2), 207-214.

21. Ramachandran, S. and S.V. Rao, An effort
towards identifying occupational culture among
information systems professionals. In
Proceedings of the 2006 ACM SIGMIS CPR
conference on computer personnel research:
Claremont, California, USA, 2006: p. 198-204.

22. Beecham, S., N. Baddoo, T. Hall, H. Robinson
and H. Sharp, Motivation in Software
Engineering: A Systematic Literature Review
(in review). ACM Computing Surveys, 2007.

23. Jordan, E. and A.M. Whiteley, HRM practices
in information technology management In
Proceedings of computer personnel research
conference (SIGCPR), Alexandria, Virginia,
1994, pp 57 - 64.

24. Frangos, S.A., Motivated humans for reliable
software products. Microprocessors and
Microsystems, 1997. 21(10), 605-610.

25. Klenke, K. and K.-A. Kievit, Predictors of
leadership style, organizational commitment
and turnover of information systems
professionals. In Proceedings of the 1992 ACM
SIGCPR Conference on Computer Personnel
Research, 1992, pp 171-183.

26. Burn, J.M., E.M. Ng Tye, L.C. Ma and R.S.
Poon, Job expectations of IS professionals in
Hong Kong. In Proceedings of the 1994 ACM

SIGCPR Computer Personnel Research
Conference, 1994, pp 231-241.

27. Garden, A., Behavioural and organisational
factors involved in the turnover of high tech
professionals. SIGCPR Comput. Pers., 1988.
11(4), 6-9.

28. Igbaria, M., G. Meredith and D.C. Smith,
Career orientations of information systems
employees in South Africa. The Journal of
Strategic Information Systems, 1995. 4(4). 319-
340.

29. Mak, B.L. and H. Sockel, A confirmatory factor
analysis of IS employee motivation and
retention. Information & Management, 2001.
38(5), 265-276.

30. Niederman, F. and M.R. Sumner, Job turnover
among MIS professionals: an exploratory study
of employee turnover. Proceedings of the 2001
ACM SIGCPR Conference on Computer
Personnel Research (San Diego, California,
United States), 2001, pp 11-20.

31. Niederman , F. and M. Sumner, Decision paths
affecting turnover among information
technology professionals. In Proceedings of the
2003 SIGMIS conference on Freedom in
Philadelphia: leveraging differences and
diversity in the IT workforce, April 10-12, 2003,
Philadelphia, Pennsylvania, pp 133-142.

32. Couger, J.D. and R.A. Zawacki, What
motivates DP professionals? Datamation, 1978.
24(9), 116.

33. Dittrich, J.E., J. Daniel Couger and R.A.
Zawacki, Perceptions of equity, job satisfaction,
and intention to quit among data processing
personnel. Information & Management, 1985.
9(2), 67-75.

34. Couger, J.D. and A. Ishikawa, Comparing
motivation of Japanese computer personnel
versus these of the United States. In
Proceedings of the Twenty-Eighth Hawaii
International Conference on System Sciences,
1995. IV, pp 1012-1019.

35. Couger, J.D., Comparison of motivation norms
for programmer /analysts in the Pacific Rim and
the U.S International Journal of Information
Systems, 1992. 1(3) 16-30.

36. Burn, J.M., J.D. Couger and L. Ma, Motivating
IT professionals. The Hong Kong challenge
Information & Management, 1992. 22(5) 269-
280.

37. Coram, M. and S. Bohner, The impact of agile
methods on software project management. In
12th IEEE International Conference and
Workshops on the Engineering of Computer-
Based Systems. ECBS '05, 2005, pp 363-370.

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

38. Highsmith, J. and A. Cockburn, Agile Software
Development, The Business of Innovation.
Computer, 2001. 34(9) 120-122.

39. Robinson, H., J. Segal and H. Sharp,
Ethnographically-informed Empirical Studies
of Software Practice. Information and Software
Technology, 2007, 49(6) 540-551.

40. Sharp, H. and H. Robinson, An ethnographic
study of XP practices. Empirical Software
Engineering, 2004. 9(4) 353-375.

41. Sharp, H., H. Robinson, J. Segal and D. Furniss,
The Role of Story Cards and the Wall in XP
teams: a distributed cognition perspective. In
Proceedings of Agile 2006, 2006, pp 65-75.

42. Couger, J.D., Motivators vs. demotivators in the
IS environment. Journal of Systems
Management, 1988. 39(6) 36-41.

43. Couger, J.D., Comparison of motivating
environments for programmer/analysts and
programmers in the US, Israel and Singapore.,
1989. In Proceedings of the Twenty-Second
Annual Hawaii International Conference on
System Sciences, 1989. IV, pp 316-323.

44. Enns, H.G., T.W. Ferratt and J. Prasad, Beyond
Stereotypes of IT Professionals: Implications
for IT HR Practices. Communications of the
ACM, 2006. 49(4) 106-109.

45. Herzberg, F., B. Mausner and B.B. Snyderman,
The Motivation to Work, 2nd Ed. 1959, London:
Chapman & Hall.

46. Smits, S.J., E.R. McLean and J.R. Tanner, A
longitudinal study of I/S careers: synthesis,
conclusion, and recommendations. In
Proceedings of the 1997 ACM SIGCPR
Conference on Computer Personnel Research
(San Francisco, California, United States),
1997, pp 36-48.

47. Adams, J.S., Inequity in social exchange, in
Advances in experimental social psychology.
1965, L. Berkowitz (ed.), New York: Academic
Press: New York. pp 267-299.

48. Agarwal, R. and T.W. Ferratt, Crafting an HR
strategy to meet the need for IT workers.
Communications of the ACM, 2001. 44(7) 58-
64.

49. Reid, M.F., M.W. Allen, C.K. Riemenschneider
and D.J. Armstrong, Affective commitment in
the public sector: the case of IT employees. In
Proceedings of the 2006 ACM SIGMIS CPR
conference on computer personnel research.
Claremont, California, USA 2006, pp 321-332.

50. Krippendorf (2004) Content analysis: an
introduction to its methodology, London: SAGE

51. Berelson, Bernard (1952) Content Analysis in
Communication Research. Free Press, New
York.

52. Robinson, H., and Sharp, H. (2004) The
characteristics of XP teams, in Proceedings of
XP2004 Germany, June, pp139-147

AGILE 2007
0-7695-2872-4/07 $25.00 © 2007

