Generalized Disjunction Decomposition for the Evolution of Programmable
Logic Array Structures

Emanuele Stomeo, Tatiana Kalganova, Cyrille Lambert
School of Engineering and Design
Brunel University
Uxbridge Middlesex, United Kingdom
stomeo @ieee.org

Abstract

Evolvable hardware refers to a self reconfigurable
electronic circuit, where the circuit configuration is
under the control of an evolutionary algorithm.
Evolvable hardware has shown one of its main
deficiencies, when applied to solving real world
applications, to be scalability. In the past few years
several techniques have been proposed to avoid and/or
solve this problem. Generalized disjunction
decomposition (GDD) is one of these proposed
methods. GDD was successful for the evolution of
large combinational logic circuits based on a FPGA
structure when used together with bi-directional
incremental evolution and with (1+A) evolution
strategy. In this paper a modified generalized
disjunction decomposition, together with a recently
introduced multi-population genetic algorithm, are
implemented and tested for its scalability for solving
large combinational logic circuits based on
Programmable Logic Array (PLA) structures.

1. Introduction

Evolvable hardware [1]-[3] is a technique to
automatically design electronic circuits [4], robot
controllers [5][6], antennas [7][8] etc. using
evolutionary algorithms [9]-[11]. Since the beginning
of the 1990s, several projects have been initiated and
several researchers and research groups are showing an
interest in this new discipline and trying to find a
solution to evolutionary design problems, which are
mainly the scalability [12] [13]. The term scalability
has been used to describe how the size of the problem
will influence the performance of algorithms [1] [14].
Evolvable hardware systems are not scalable because
of:

. the genotype length, which increases with the
problem size. The genotype is the genetic
composition of an individual that takes part in
the evolution process for the design of circuits;
the bigger the desired electronic circuit, the
lengthier and more complex the genotype.

. the time required for fitness evaluation, which
increases rapidly with the size of the desired
evolvable circuits.

Referring to the evolution of digital circuits, the
length of the genotype increases with the number of
logic gates used during the evolution and the permitted
connectivity between logic gates. The time necessary
for the fitness evaluation is not scalable because it is
exponentially dependent on the number of inputs of the
system that should be evolved. If the number of inputs
increases linearly, the number of input-output
combinations, which represents the description of the
digital logic circuit’s problem, increases by the power
of 2. Consequently, as the number of inputs increases,
the system needs more time to produce new potential
solutions, to evaluate them and to select new
individuals. Several approaches have been introduced
in order to overcome these problems and big
improvements have been obtained. For instance,

. increased complexity evolution [16]: evolve
several different functions using simple building
blocks, then evolve the systems using the
previously evolved functions. This method was
further improved with the introduction of the
training vector and partioned training set [26],
which allows the evolution of the 5-bits
multiplier.

YF]',F.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)

COMPUTER
0-7695-2614-4/06 $20.00 © 2006 IEEE

SOCIETY

. bi-directional incremental evolution [17]:
evolve a system by gradually decomposing it
using the output and Shannon decomposition
[17]. Once the simpler sub-systems are fully
evolved they are merged together to recover the
desired system.

. Function level evolution [18], which uses
function sub-circuits as system building blocks

have been proposed as methods to improve the
evolution of logic circuits and to reduce the required
number of generations to obtain a fully functional
solution to a given task. Although these methods have
brought some benefits to the evolvable hardware field,
the evolution of circuits with high numbers of inputs
remains the central issue. In 2004 another technique
[19], the generalized disjunction decomposition (GDD)
was introduced to improve evolvability and scalability
for the evolution of combinational logic circuits. GDD
is a decomposition technique which can be
implemented into any evolutionary algorithm used for
the design of electronic circuits.

In [19] [20], GDD was extrinsically implemented
into bi-directional incremental evolution (BIE) and the
system “GDD+BIE” was able to design and optimize
circuits based on a FPGA structure better than the
design offered by similar evolutionary algorithms.
Furthermore the BIE with the use of GDD was able to
improve scalability.

In this paper the advantages brought by the use of
GDD for the design and the optimization of logic
circuits structures are shown. A modified version of
GDD is here implemented together with a recently
introduced genetic algorithm [21], which is designed
for the evolution of PLA. A PLA structure (see Figure
1) has been chosen as it is a good structure for
designing combinational logic circuits in VLSI and for
its simplicity, regularity and flexibility. The chosen
genetic algorithm will also be briefly described. The
system implemented here: modified GDD with the GA
proposed in [21] it is novel and it was never
implemented before. The experimental results, which
are statistically relevant since they have been obtained
over several simulations, prove that the generalized
disjunction decomposition can improve scalability and
evolvability for the evolution of large logic circuits.

For the simulations multipliers and adders of
different complexities, have been used. It has been
decided to consider these tasks because they are widely
used within the evolvable hardware community, hence
an easier comparison with other evolutionary algorithm
can be made.

- J/ S/
AND PLANE K;
S R

Figure 1. Example of a Programmable Logic
Array (PLA) with 3 inputs and 2 outputs. In a
PLA the AND plane and OR plane are
programmable.

The paper is organized as follows: the next section
considers the implemented genetic algorithm and the
generalized disjunction decomposition which are both
used for the evolution of logic circuits based on a PLA
structure. Section 3 describes the system setup used for
the simulations. Section 4 shows the experimental
results. Section 5 concludes this paper and provides a
summary of the key conclusions.

2. Methods used for the Design of PLA

In this section the generalized disjunction
decomposition together with the chosen genetic
algorithm for the evolution of combinational logic
circuits are discussed. The first sub-section gives a
brief description of the multi-population genetic
algorithm which uses two different mechanisms to
generate new individuals [21]. The second sub-section
gives a concise introduction on the generalized
disjunction decomposition; a complete description of
the GDD is given in [20].

2.1 Evolutionary Algorithm for the Design of
PLA

The genetic algorithm briefly described in this
section is intended for the design of combinational
logic circuits based on a PLA structure. The algorithm
makes use of a multi population system (see Figure 2)
and it also shares some characteristics with:

YF]',F.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)

COMPUTER
0-7695-2614-4/06 $20.00 © 2006 IEEE

SOCIETY

Current populations

ES
A

Selection

T e

MBB !
I
|
I
ES = Evolution Strategy w

MBB = mutation of the best built population
Figure 2. Basic schema of the multi population
genetic algorithm [21].

Next populations

. the Cooperative Coevolution Architecture [22]
introduced by Potter and De Jong. This
architecture models an ecosystem consisting of
two or more species, which are genetically
isolated and working together to reach the final
goal. The species are in cooperation and at the
same time in competition. This is because each
species receives credit for the achievement of a
final goal (therefore different species cooperate
together) and also in relation to how good they
are in comparison with other species (the
species compete with each other to obtain more
credits).

. (Wp, A) evolution strategy [23][24]; where the
letter L means the total number of parents within
the population, p refers to the number of parents
which will be taken into consideration for the
reproduction of other individuals for the future
generation, and A is the number of offspring.
During the evolutionary process W individuals
are tested for their efficiency and the best p are
chosen to create a new population of other A
individuals that are used to replace the previous
population. Therefore, the new population is
generated from the best individuals of the
previous generation using the mutation operator.
Mutation consists of flipping some genes of the
individual’s chromosome.

Furthermore, the chosen genetic algorithm has got
something completely new: the construction of the
chromosome from the elitism’s pool (which contains
the best chromosome of each population). A more
detailed description of this algorithm is given in [21]. A

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

particularity of the algorithm used is the reproduction
mechanism that is depicted in Figure 2. Some of the
populations are replaced using the (Wp, A) evolution
strategy [23][24] and some by mutating the best built
population, which is the population created by
collecting the best chromosomes from each region of
the solution space.

2.2 Generalized Disjunction Decomposition

Generalized disjunction decomposition [19][20] was
introduced as an independent method (independent
because it can be implemented within different
evolutionary algorithms) which enhances the
performance, based on number of generations and
evolution time, of the evolutionary algorithm used for
the design of electronic circuits. GDD also improves
the scalability and allows the design of large circuits
never before evolved, as the 17-bit even parity circuit,
the 6-bit multiplier and the ALU4 which is a circuit
with 14 inputs taken from the MCNC library [25]. The
scalability problem limits the size of the circuit that
may be evolved. In [20] the aims of the GDD have
been proven. In order to show how GDD works,
supposing that the circuit in Figure 3 with n inputs and
m outputs needs to be evolved. The number of required
generations for the design of that circuit is mainly
dependent on the number of inputs rather than the
number of outputs [19]. Therefore to improve the
scalability the system in Figure 3 is decomposed into
two subsystems, as shown in Figure 4; the sub-system
G with r inputs and s outputs (see Equation 1) and the
subsystem H, which is made of multiplexers. After the
GDD decomposition, both subsystems could be
evolved using any evolutionary technique. The ease of
evolving the sub-systems G and H depends on the
evolutionary algorithm chosen.

n—r
s=m-2 (1)
X A
r?4. s F P Xy My x | A fee -
i ‘ 0 o 0

X s 00 1
n = number of inputs s/m
m = number of outputs
p = number of products

11 o | T

1 1| T

(a) (b)
Figure 3. General description of a logic circuit.
(a) the schemata of the evolved system; (b) the
truth table for the evolved system.

YF]',F.

COMPUTER
SOCIETY

&,

xo - —/o
X, —— _,]:
p— A R
X,)

xr+1

X

X X X |88, e PO <CRSTTT G viovenerneesnenenenenieeine g,
610 0 0 0 | 1 [2]

0 o T m)+ I wm2]
q,

11 0 | [_tre2sm | [2*@29m]
q251 11 1 [1+g-Ds/m 1 [__2+aem] as/m

(b)
Figure 4. Generalized disjunction decomposition (a) Connections between the two subsystems.
(b) Truth table of the subsystem G. Picture taken from [20].

3 System Setup and Initial Data Table 1. Initial data for the experimental
results
The system used for the experiments is the Logic | Num. Num. of M“;aﬁo Populatio
generalized disjunction decomposition together with circuits | of runs | generations rate n
the briefly described genetic algorithm. This system is Mult4 15 25.000 2.0% 40
implemented in C++ and tested in an extrinsic Mults 15 50,000 2.0% 40
environment using a desktop PC with the following Mult6 15 250,000 2.0% 40
characteristics: Pentium 4 at 3.00 GHz and 768 MB of igger‘s‘ g ;8’888 ;82" 28
.. . . . er 5 .0%
RAM. The initial data for the simulations are shown in ddert 15 250,000 0% 0

Table 1, where “Logic circuits” refers to the circuit’s
name, then the number of runs is illustrated. In order to
have statistically relevant results each circuit has been initial circuit using the generalized disjunction

evolveq 15 times. In th1s table the number of decomposition and then applies the described genetic
genera.ltlons for the evolution process as well as the algorithm, thus GDD+GA. The aims of these
mutation rate' and the number of populations selected experiments are to demonstrate that the proposed
for th? experiments are also S'hOWI.l. The values for the system requires less time and provides better optimized
mutz}tlon rate gnd the population size are selected after logic circuits (this is based on the number of required
a primary teStmg phase of ﬂ?e algorithm; the chosen products, or input-output combinations). Since the
values are tuned in order to gain the best performance. system is able to fully design and optimize larger logic

circuits it also improves scalability. In Table 2 the

The second system is made by decomposing the

4 Experimental results experimental results are summarized. As can be seen
from that table, each circuit has been evolved using two

In this section the experimental results of the different methods. One using genetic algorithm (GA)
combinational logic circuits evolved by using two and the other using GA implemented into the
different systems are shown. For the first system the generalized disjunction decomposition (GDD+GA).
circuits are evolved using the briefly described genetic For the circuits Mult4, Mult5, Adder4 and Adders it is
algorithm only (see Section 2.1), a larger description is noticeable that the system GDD+GA requires less time
given in [21]. to fully evolve the logic circuits. Furthermore, for those

YF]',F.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06) COMPUTER
0-7695-2614-4/06 $20.00 © 2006 IEEE SOCIETY

circuits the number of products at the end of the
simulation is much smaller, which results in better
optimized solutions. To better understand the quality of
the evolved logic circuits, the evolution of the 5-bit
multiplier using the GA and the system GDD+GA is
considered and depicted in Figure 5. The initial circuit
(see Figure 5.a) is described by a truth table with 1024
input combinations (also called products). After the
evolution of several (exactly 15) runs the designed 5-
bit multiplier contains an average of 607.6 products
(see Figure 5.b). Each product represents one AND
logic gate when implemented into the PLA. The initial
circuit is now decomposed into two subsystems using
the generalized disjunction decomposition (see Figure
5.c). At this point the newly created subsystems are
both evolved using the described GA (see Figure 5.d).
Table 2 reports the results of the evolution of the
subsystem G; instead Table 3 shows the results of the
subsystems H (the multiplexer part). Regarding the
subsystem H, only 3 different multiplexers, with one,
two and three control signals respectively, have been
evolved. This because they are the only multiplexers
used during the decomposition of the initial systems F.
As can be seen from those results, only few logic gates
are required to fully describe the behavior of the

algorithm has been used. Since the evolution of MUX3

(a multiplexer with 3 control signals), with the use of

the only genetic algorithm, requires lots of time (an

average of 11,300 seconds), it has been decided to
evolved them using the system GDD plus GA. This
solution has brought a significantly reduction of
evolution time (the new system requires and average of

1,100 seconds, it means a reduction of 89.7% of the

computational time), see last two rows of the Table 3.

From the experimental results (Table 2 and Table 3)

can be noticed that

. a fast evolution of logic circuit is possible when
the briefly described genetic algorithm [21] is
used, few generations are required to fully
evolve the desired circuit. Thus, it enhances the
evolvability.

° with the use of the GDD, the evolved circuits
are better optimized; consequently less logic
gates are required. Furthermore, it can be seen
that the system GDD+GA is able to fully design
and optimizes the circuits Mult6 and Adder6,
which are not evolved by the standalone genetic
algorithm. Thus, the decomposition used
improves scalability for the evolution of
combinational logic circuits based on a PLA

multiplexers. The multiplexers with 1 and 2 control structure.
signals are easily evolvable; therefore for the evolution
of those circuits only the multi population genetic
5 bit multiplier
10 10 GA 10 Optimized |10
7 prl?jl%its 7 7 pPLA
[Design and Optimization > contains an
average of
608
(a) F products (b)

8, 256 "% 64
products |10 products

G o H
c1 T

(©)

GA

Design and
Optimization

10

8, | 244 »00 4
products |10 01 products

10

G o H

1

cl T

(d)

A 4

Figure 5. The evolution of the 5-bit multiplier using two different methods. GA stands for
genetic algorithm and GDD for generalized disjunction decomposition. (a) Initial system with
1024 product lines, or input-combinations. Each product line represents and AND gate in the
PLA. (b) PLA optimized by the genetic algorithm. (c¢) 5 bit multiplier after the GDD
decomposition. (d) Optimization of the two subsystems using the genetic algorithm.

YF]',F.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)

0-7695-2614-4/06 $20.00 © 2006 IEEE

COMPUTER

SOCIETY

Table 2. Experimental results of the selected tasks. Each circuit has been evolved 15

times.
Task Info circuits — Initial data before evolution After evolution. Average of
Num. of Num. of Num. of Num. of . Num. ot
Name Method Input Output Product Generations Time [s] Product
GA 8 8 256 25,542.6 1,785.1 137.0
» Mult4
8 GDD+GA 6 32 64 13,104.6 366.0 59.0
,E- Mults GA 10 10 1,024 49,982.9 8,266.3 607.6
= GDD+GA 8 40 256 49,729.1 5,362.7 244.1
= Mult6 GA 12 12 4,096 Not evolved
GDD+GA 9 96 512 47,816 364,752 504.0
Adderd GA 8 5 256 9,980.9 2,170.3 75.4
GDD+GA 6 20 64 9,870.1 637.0 56.8
é Adders GA 10 6 1,024 49,979.5 1,1425.9 167.6
< GDD+GA 7 48 128 49,899.5 2,098.5 121.1
Adder6 GA 12 7 4,096 Not evolved
GDD+GA 9 56 512 2498914 | 939251 [368.0

Table 3. Evolution of the required multiplexers to be used as subsystem H when the

generalized disjunction decomposition is used.

Info circuits — Initial data before evolution After evolution. Average of
Num. of Num. of Num. of Num. of . Num. of
Name Method Input QOutput Product Generations Time [s] Product
MUX1 GA 3 1 8 103.0 1.0 2.0
MUX2 GA 6 1 64 2,506.7 24.1 4.0
MUX3 GA 11 1 2,048 49,992.1 11,334.5 9.7
GDD+GA 9 4 512 41,226.2 1,159.6 8.0

5 Conclusion

This paper has shown the implementation of the
generalized disjunction decomposition (GDD) for
evolvable hardware into a multi-population genetic
algorithm (GA). The proposed system has been used
for the evolution of large combinational logic circuits
based on a programmable logic array structure.
Multipliers and adders of different complexities have
been selected to be used for testing and analyzing the
proposed method. The implemented system, as proven
from the experimental results, has improved the
evolution of all the tested combinational logic circuits
in terms of processor time and in terms of the number
of logic gates required for the system. Furthermore the
presented method, multi population genetic algorithm
with generalized disjunction decomposition, improves
scalability: the 6-bit multiplier and 6-bit adder have
been evolved several times. Every attempt to evolve
those circuits was successful, i.e. 100% of the
evolutions achieved high-quality results. Those circuits
were only previously evolved thanks to the use of GDD
implemented together with BIE for the evolution of
FPGA structures. No other proposed evolutionary
algorithms and/or decomposition strategies were able
to produce such results in terms of computational time
and overall size of the circuits.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and System
0-7695-2614-4/06 $20.00 © 2006 IEEE

6 Acknowledgement

The authors gratefully acknowledge the Engineering
and Physical Sciences Research Council (EPSRC) for
the financial support grant GR/S17178.

7. References

[1] N. Forbes. “Evolution on a chip: evolvable hardware
aims to optimize circuit design”. Computing in Science
& Engineering [see also IEEE Computational Science
and Engineering]. Volume 3, Issue 3, May-June 2001
Pages: 6 — 10.
[2] X. Yao, T. Higuchi. “Promises and challenges of
evolvable hardware” IEEE Trans. Systems, Man and
Cybernetics, Part C, vol. 29, Pages. 87 - 97, February
1999.
[3] L. Sekanina. Evolvable Components: From Theory to
Hardware Implementations. Natural Computing Series.
Springer-Verlag, 2004. ISBN 3-540-40377-9. Pages:
194.
[4] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi, M.
Murakawa, 1. Kajitani, E. Takahashi, K. Toda, N.
Salami, N. Kajihara, N. Otsu. “Real-world applications
of analog and digital evolvable hardware” I[EEE

s (AHS'06)

YF]',F.

COMPUTER

SOCIETY

Transactions on Evolutionary Computation, Vol. 3
Issue: 3, Sept. 1999. Pages: 220 — 235.

[51 A. M. Tyrrell, R. A. Krohling, Y. Zhou. “Evolutionary
algorithm for the promotion of evolvable hardware”.
IEE Proceedings of Computers and Digital Technique.
Volume 151, Issue 4, 18 July 2004. Pages: 267 — 275.

[6] R.J. Terrile, H. Aghazarian, M. I. Ferguson, W. Fink,
T. L. Huntsberger, D. Keymeulen, G. Klimeck, M. A.
Kordon, L. Seungwon , P. von Allmen. “Evolutionary
Computation Technologies for the Automated Design of
Space Systems”. Proceeding of 2005 NASA/DoD
Conference on Evolvable Hardware. 29-01 June 2005.
Washington DC, USA. IEEE Computer Society. Pages:
131 -138.

[71 S. V. Hum, M. Okoniewski, R. J. Davies. “An
Evolvable Antenna Platform Based on Reconfigurable
Reflectarrays”. Proceeding of 2005 NASA/DoD
Conference on Evolvable Hardware. 29 - 01 June 2005.
Washington DC, USA. IEEE Computer Society. Pages:
139 — 146.

[8] J. D. Lohn, G. S.Hornby, D. S. Linden. “An evolved
antenna for deployment on NASA's Space Technology 5
Mission”. Genetic Programming Theory and Practice
1I. Boston: Kluwer Academic Publishers. Chapter 18.

[91 D. E. Goldberg. Genetic algorithm in search,
optimization and machine learning. Addison-Wesley
Publishing Company, Incorporated, Reading,
Massachusetts, 1989.

[10] M. Srinivas, L. M. Patnaik; “Genetic algorithms: a
survey”. IEEE JNL Computer, Volume: 27, Issue: 6,
June 1994. Pages: 17 — 26.

[11] D. B Fogel. “What is evolutionary computation?”
Spectrum, IEEE Volume 37, Issue 2, Feb. 2000. Pages:
26, 28 — 32.

[12] V. K. Vassilev, J. F. Miller “Scalability problems of
digital circuit evolution evolvability and efficient
designs” Proceedings of The Second Proceedings of
The Second NASA/DoD Workshop on Evolvable
Hardware, 2000. IEEE Computer Society. 13-15 July
2000. Pages: 55 — 64.

[13] C. A. Coello, A. D. Christiansen, A. A. Hernindez,
“Towards automated evolutionary design of
combinational circuits”, Computers and Electrical
Engineering, Pergamon Press, Vol. 27, No. 1. January
2001. Pages: 1-28.

[14] S. Xian-He, D. T. Rover. “Scalability of parallel
algorithm-machine combinations”. IEEE Transactions
on Parallel and Distributed Systems, Volume 5, Issue 6,
June 1994. Pages: 599 — 613.

Proceedings of the First NASA/ESA Conference on Adaptive Hardware and Systems (AHS'06)
0-7695-2614-4/06 $20.00 © 2006 IEEE

[15] Lee Altenberg. The Evolution of Evolvability in Genetic
Programming. Chapter 3 in Advances in Genetic
Programming, ed. Kenneth Kinnear. MIT Press,
Cambridge, 1994. Pages: 47-74.

[16] J. Torresen. “A Divide-and-Conquer Approach to
Evolvable Hardware”. Second International Conference
on Evolvable Hardware (ICES98), Springer LNCS
1478, 1998, Lausanne, Switzerland.

[17] T. Kalganova, “Bidirectional incremental evolution in
evolvable hardware”. Proceedings of The Second
NASA/DoD Workshop on Evolvable Hardware, 2000.
Los Alamitos, CA: IEEE Computer Society. 13-15 July
2000. Pages: 65 — 74.

[18] T. Higuchi, M. Iwata, I. Kaijitani, M. Murakawa, S.
Yoshizawa, and T. Furuya, “Hardware evolution at gate
and function level” Proc. Int. Conf. Biologically

Inspired Autonomous Syst.: Computation, Cognition
Action, Durham, NC, 1996.

[19] E. Stomeo and T. Kalganova. “Improving EHW
performance introducing a new decomposition
strategy.” 2004 IEEE Conference on Cybernetics and
Intelligent Systems. Singapore 1-3 December 2004.
Publisher IEEE Inc., New York, NY 10016-5997,
United States. Pages 439 — 444.

[20] E. Stomeo, T. Kalganova, C. Lambert. “Generalized
Disjunction Decomposition for Evolvable Hardware”
IEEE Trans. Systems, Man and Cybernetics, Part B.
2006 (In Press).

[21] E. Stomeo, T. Kalganova, C. Lambert. “A Novel
Genetic Algorithm for Evolvable Hardware”. IEEE
World Congress on Computational Intelligence. IEEE
CEC 2006. (Accepted for publication).

[22] Mitchell A. Potter Kenneth A. De Jong. Cooperative
Coevolution: An Architecture for Evolving Coadapted
Subcomponents. Evolutionary Computation. 8 (1):
Pages: 1-29, 2000, The MIT Press.

[23] T. Bick, F. Hoffmeister, and H. P. Schwefel. “A survey
of evolutionary strategies”. In R. Belew and L. Booker,
editors, Proceedings of the 4th International
Conference on Genetic Algorithms, San Francisco, CA,
1991. Morgan Kaufmann. Pages 2-9.

[24] H.-P. Schwefel. Numerical Optimization of Computer
Models. John Wiley & Sons, Chichester, UK, 1981.

[25] S. Yang. Logic synthesis and optimisation benchmark
user guide version 3.0, MCNC. 1991.

[26] J. Torresen, “Evolving multiplier circuits by training set
and training vector partitioning”. In proc. of Fifth Int.
Conf. on Evolvable Hardware (ICES03), Springer
LNCS 2606. March 2003. Pages: 228-237.

YF]',F.

COMPUTER
SOCIETY

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

