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Abstract 
Intelligent swarms draw their inspiration from 

biology where many simple entities act independently, 
but when grouped, they appear to be highly organized. 
NASA is currently investigating swarm-based 
technologies for the development of prospective 
exploration missions to explore regions of space where a 
single large spacecraft would be impractical. The main 
emphasis of this research is to develop algorithms and 
prototyping models for self-managing swarm-based 
space-exploration systems. This article presents our work 
on formally modeling self-configuring behavior in such 
systems. We present a formal model for team formation 
based on Partially Observable Markov Decision 
Processes and Discrete Time Markov Chains along with 
formal models for planning and scheduling.  
 
 
1. Introduction 
 

Biologically-inspired software systems adopt 
biological approaches to effective problem solving, where 
solutions developed by nature through evolution are 
applied in the computing milieu. Concepts in biology 
inspired the autonomic computing initiative [1, 2], which 
has arisen for self-management of complex systems. The 
idea is that biological systems (in particular the 
autonomic nervous system) are capable of doing 
autonomous self-regulation activities, thus inspiring 
principles for software autonomic systems that are 
capable of self-management.   

NASA is currently investigating biologically inspired 
swarm technologies for the development of prospective 
exploration missions that will be autonomous and exhibit 
autonomic properties. The Autonomous Nano-
Technology Swarm (ANTS) [3, 4] is a new class of 
concept missions based on swarm intelligence [5, 6] 
attained through cooperative interactions of the swarm 
entities. Conceptually, an ANTS swarm system is 
composed of many little spacecraft of different classes 

often grouped in exploration teams (sub-swarms). Note 
that a swarm-based system offers many advantages 
compared with the single-spaceship system, such as 
greater redundancy, reduced costs and risks, and the 
ability to explore regions of space where a single large 
spacecraft would be impractical.  

 
Research Problem & Approach. ANTS is envisioned to 
operate autonomously, which involves autonomous team 
formation. This helps special teams be formed on-the-fly 
by allocating spacecraft of different classes. Such a task 
requires comprehensive knowledge of the global system’s 
state and that of the individual spacecraft together with 
the goal state. Such knowledge may be obtained through 
exhaustive monitoring and reason that bring ANTS to an 
appropriate level of self-awareness. There are several 
factors that may have an impact on the team formation 
algorithm including swarm size, number of spacecraft 
per class and that of freelance spacecraft, existing teams 
and their tasks, communication range, etc.  

This paper tackles an algorithm for self-configuring of 
ANTS teams. A formal model for self-configuring 
behavior is presented where both the system as a whole 
and individual spacecraft are analyzed from a state-goal 
perspective. In this approach, the global system goals 
may trigger team formation or reformation driven by 
team goals derived from the system’s ones. The team 
goals are realized by individual spacecraft performing 
assigned tasks. In this paper, we present a formal model 
for team formation based on the so-called Partially 
Observable Markov Decision Processes and Discrete 
Time Markov Chains. Note that task scheduling is a 
separate problem tackled by this research and described 
in greater detail by another paper of ours [7].      

The rest of this paper is organized as follows. In 
Section 2, we review intelligent swarms and present the 
swarm-based ANTS. Section 3 presents in detail our 
formal approach to self-configuring in ANTS, where 
formal models for team formation, planning, and 
scheduling are presented. Finally, related work, 
conclusions and future work are outlined in Section 4.  
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2. Intelligent Swarms 
 

Intelligent swarms [6] are complex swarm systems 
where the individual members of the swarm have 
independent intelligence. Multi-agent systems may be 
considered as swarm-based systems where many 
intelligent agents interact with each other [8]. These 
agents are considered to be autonomous entities that 
interact either cooperatively or non-cooperatively (on a 
selfish base). Multi-agent systems differ in factors, such 
as system organizational models, interaction models, the 
individual agent complexity, etc. As it is stated in [9], 
considering the multi-agent organizational models two 
main approaches can be distinguished: agent-centered 
and organization-centered. The agent-centered approach 
is more complex due to the more complex nature of the 
agents, which reason on their tasks and relations such as 
join-intentions, join-commitments, dependencies, etc. 
The organization-centered approach exposes agent 
relations defined a priori and imposed on the agents.   

 
2.1. NASA Swarm-based Projects 
 

The Autonomous Nano-Technology Swarm (ANTS) 
concept sub-mission PAM (Prospecting Asteroids 
Mission) is a novel approach to asteroid belt resource 
exploration. By its virtue, ANTS necessitates multi-agent 
systems following the organization-centered approach 
and based on extremely high autonomy, minimal 
communication requirements to Earth, and a set of very 
small explorers with a few consumables [3, 4]. These 
explorers forming the swarm are pico-class, low-power, 
and low-weight spacecraft units, yet capable of operating 
as fully autonomous and adaptable agents. The spacecraft 
units in an ANTS swarm are able to interact with each 
other, which helps them to self-organize. 

Figure 1 depicts the ANTS concept mission. A 
transport spacecraft launched from Earth toward the 
asteroid belt carries a laboratory that assembles the tiny 
spacecraft. Once it reaches a certain point in space,  
where gravity forces are balanced, the transport releases 
the assembled swarm, which will head for the asteroid 
belt. Each spacecraft is equipped with a solar sail, thus it 
relies primarily on power from the sun, using only tiny 
thrusters to navigate independently. Moreover, each 
spacecraft also has onboard computation, artificial 
intelligence, and heuristics systems for control at the 
individual and team levels.  

As Figure 1 shows, there are three classes of spacecraft 
- rulers, messengers and workers. By grouping them 
following exploration goals, ANTS forms teams that 
explore particular asteroids. Hence, ANTS exhibits self-
organization since there is no external force directing its 

behavior and no single spacecraft unit has a global view 
of the intended macroscopic behavior. The internal 
organization of a swarm depends on the global task to be 
performed and on the current environmental conditions. 
In general, a swarm consists of several sub-swarms, 
which are temporal teams organized to perform a 
particular task. Each swarm team has a team leader 
(ruler), one or more messengers, and a number of 
workers carrying a specialized instrument. The 
messengers are needed to connect the team members 
when they cannot connect directly, due to a long distance 
or a barrier.  

 

 
Figure 1. ANTS Mission Concept [3] 

 
The following elements briefly describe the three 

different classes of spacecraft in ANTS. 
� Messengers coordinate communication between 

the rulers and workers, and communications 
with the Earth ground station. For example, they 
can alert NASA to send replacement spacecraft 
from Earth or one with additional instruments.  

� Rulers are coordinators that have rules that 
decide the types of asteroids and data the 
mission is interested in and that will coordinate 
the efforts of the workers. 

� Workers, up to 80 percent of the swarm, bear the 
instruments and gather data. Instruments can 
include a magnetometer, x-ray, gamma-ray, 
visible/infrared, or neutral mass spectrometers.  
 

3. Self-configurable Behavior in ANTS 
 

We envision self-configuring in ANTS as an 
automatic team-formation technique where teams are 
formed and spacecraft are assigned new tasks on the fly. 
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In general, the self-configuring task may be divided into 
three phases: 

 
(i) Team formation. In this phase, an idle ruler is 
delegated with the task of team formation. This phase has 
two steps:  

1) ruler self-initiation to perform a team-formation 
task;  

2) team formation to find potential team members 
among the idle (freelance) spacecraft of the 
ANTS swarm.  
 

Here, depending on the specifics of the goal of the new 
team, arbitrary numbers of idle workers carrying task-
required instruments and messengers are allocated by the 
ruler to form the new team.   

 
(ii) Planning. In this phase, the ruler comes up with a 
plan of action to achieve the team goal. Such a plan 
consists of a sequence of tasks broken down by 
instrument (instrument tasks), where some tasks could be 
performed in parallel, but maybe need to be synchronized 
at the end. A task can be performed by workers equipped 
with the instrument this task is related to.  
 
(iii) Scheduling. In this phase, the ruler schedules the 
tasks among the workers. Since the workers can perform 
different tasks, there are two concerns here:  
� Find an idle worker with appropriate instrument. If 

no worker is available, ask the other teams for 
additional worker(s). 

� When more workers are available, break down the 
task into sub-tasks and assign to each idle worker a 
sub-task.  
 

3.1. Formal Approach   
 

In this section, we give an overview of our formal 
approach to the Team Formation. Both Planning and 
Scheduling phases are briefly described as well. For more 
details on these two phases, please, refer to [7].  
 
3.1.1. Self-initiation for Team Formation. In the first 
step of the Team Formation phase, an idle ruler interacts 
with the swarm to come up with self-initiation of team 
formation. For this, a behavior model based on the so-
called Partially Observable Markov Decision Processes 
(POMDP) [10] is considered. Note that this model is 
appropriate when there is uncertainty and lack of 
information needed to determine the state of the swarm. 
For example, in ANTS spacecraft are supposed to operate 
under harsh conditions in space limiting the 
communication. In addition, an idle ruler does not 

actively participate in the swarm’s activities, and thus, it 
is not well informed of the swarm states. Therefore, the 
POMDP model helps an idle ruler reason on the current 
swarm state and thus, to self-initiate itself when a new 
team is needed to be formed for the exploration of new 
asteroid. According to our POMDP-based model, an idle 
ruler takes as input the state of the swarm and generates 
as output actions initiating team formation, i.e., the 
generated actions affect the state of the swarm. Formally, 
this model is a tuple M = <S; A; T; R; Z; O>, where: 

� S is a finite set of states of the swarm that are 
not observable. 

� An initial belief state s0 ϵ S is based on p0 (s0; s0 
ϵ S), which is a discrete probability distribution 
over the set of swarm states S, representing for 
each state the ruler's belief that is currently 
occupying that state. 

� A is a finite set of actions that may be 
undertaken by the idle ruler. 

� T: S × A → Π(S) is the state transition function, 
giving for each swarm state s and ruler action a, 
a probability distribution over states. Here, T (s; 
a; s’) computes the probability of ending in state 
s’, given that the start state is s and the ruler 
takes action a, p (s’ | s; a). 

� O: A × S → Π(Z) is the observation function 
giving for each swarm state s and ruler action, a 
probability distribution over observations Z. For 
example, O (s’; a; z) is the probability of 
observing z, in state s’ after taking action a, p (z 
| s’; a). 

� R : S × A → R is a reward function, giving the 
expected immediate reward gained by the ruler 
for taking an action in a state s, e.g., R (s; a). 
The reward is a scalar value in the range [0..1] 
determining, which action (among many 
possible) should be undertaken by the ruler in 
compliance with the swarm goals.     

 
Interpretation. To illustrate this model, let’s assume 
that an ANTS swarm is currently occupying the state s = 
“new asteroid is discovered, but no exploration team has 
been formed yet and still no ruler is self-initiated for 
team formation”. Let’s assume there is at least one idle 
ruler in the swarm ready to undertake a few actions A, 
including the action a = “self-initiation for team 
formation”. The ruler performs the following reasoning 
steps in order to self-initiate for team formation. 

1) The ruler computes its current belief state s0 – 
the ruler picks up the state with the highest 
probability p0 and eventually s0 = s. 

2) The ruler computes the probability p1 of the 
swarm occupying the state s’ =  “new asteroid is 
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discovered and a ruler has self-initiated for 
team formation” if the action a is undertaken 
from state s0.  

3) The ruler computes the probability p2 (z | s’; a) 
of observation z = “there are sufficient numbers 
of idle workers carrying needed instruments and 
messengers to form a new exploration team”. 

4) The ruler computes the reward r (s0; a) for 
taking the action a (self-initiation for team 
formation) in state s0. If no other immediate 
actions should be undertaken (forced by other 
swarm goals), the reward r should be the highest 
possible, which will determine the execution of 
action a. 

 
3.1.2. Probability Computation. The POMDP model for 
self-initiation requires the computation of a few 
probability values. In this subsection, we present a model 
for assessing probability applicable to the computation of 
POMDP probability values such as probability of the 
swarm being in a state and probability of observation (cf. 
Section 3.1.1). In our approach, the probability 
assessment is an indicator of the number of possible 
execution paths a ruler may take, meaning the amount of 
certainty (excess entropy) in the swarm’s behavior. To 
assess that behavior prior to the swarm implementation, 
it is important to understand the complex interactions 
among the spacecraft in an ANTS swarm. This can be 
achieved by modeling the behavior of individual reactive 
spacecraft together with the team behavior as Discrete 
Time Markov Chains [11], and assessing the level of 
probability through calculating the probabilities of the 
state transitions in the corresponding models. We assume 
that the ruler-swarm interaction is a stochastic process, 
where the swarm events are not controlled by the ruler 
and thus their probabilities are considered equal.  

The theoretical foundation for our Probability 
Assessment Model is the property of Markov chains, 
which states that, given the current state of the swarm, its 
future evolution is independent of its history, which is 
also the main characteristic of a reactive autonomic 
spacecraft.  

 
Table 1. Transition Matrix P 

S1 S2 … Sj … Sn 
S1 p11 p12 … p1j … p1n 
S2 p21 p22 … p2j … p2n 
… … … … … … … 
Si pi1 pi2 … pij … pin 
… … … … … … … 
Sn pn1 pn2 … pnj … pnn 

 

An algebraic representation of a Markov chain is a 
matrix (called transition matrix) (cf. Table 1) where the 
rows and columns correspond to the states, and the entry 
pij in the ith row, jth column is the transition probability of 
being in state s’ at the stage following state s. The 
following property holds for the calculated probabilities:  

 
��  j  pij = 1      (1) 
 
We contend that probability should be calculated from 

the steady state of the Markov chain. A steady state (or 
equilibrium state) is one in which the probability of being 
in a state before and after a transition is the same as time 
progresses. Here, we define probability for a swarm 
configuration composed of k spacecraft as the level of 
certainty quantified by the source excess entropy, as 
follows. 

 
Probability (ANTS) = �  i=1,k Hi  - H    (2) 

H =  - �  i  v i �  j  pij  log 2 ( pij )    (3) 

 
Here,  
� H is an entropy that quantifies the level of 

uncertainty in the Markov chain corresponding 
to an ANTS swarm;  

� Hi is a level of uncertainty in a Markov chain 
corresponding to a spacecraft (e.g., an idle 
ruler); 

� v is a steady state distribution vector for the 
corresponding Markov chain; 

� pij values are the transition probabilities in the 
extended state machines that model the behavior 
of the ith spacecraft.  

 
Note that for a transition matrix P, the steady state 

distribution vector v satisfies the property v*P = v, and 
the sum of its components vi is equal to 1.  

 
Interpretation. The level of uncertainty H is 
exponentially related to the number of statistically 
typical paths in the Markov chain. Having an entropy 
value of 0 means that there is no level of uncertainty in a 
Markov system for a specific spacecraft’s behavior. Here, 
a higher value of a probability measure implies less 
uncertainty in the model, and thus, a higher level of 
predictability.  

 
3.1.3. Modeling ANTS Behavior as Discrete Markov 
Chains. Note that ANTS behavior may be modeled at 
two levels: individual spacecraft level and the level of 
exploration team.  
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Markov Chain for Spacecraft. The behavior of 
spacecraft is modeled as an extended state machine [12]. 
We construct Markov chains for the participating 
reactive spacecraft from their extended state machines, 
i.e., states are mapped to the states of the corresponding 
Markov chain. We assume the most common stochastic 
queuing model for the arrival time of the external 
(swarm) events (e.g., “a new asteroid has been 
discovered”), namely Poisson Distribution (derived from 
first principles and the notion of Markov chains, which 
are extended to include continuous time Markov chains) 
[11].  Let Exti be the set of external events and Inti the 
set of internal events triggering a change from a state s to 
another state s’. The transition probabilities are 
calculated as follows: 

1) If Exti is empty, then the probability of a 
transition due to an internal event is:  
 

pij = 1 / | Int i |     (4) 
 
Similarly, the probability of a transition due to 
an external event is  
 

pij = 1 / | Ext i |        (5) 
 
when Inti is empty.  
 

2) If both Exti and Inti are non-empty, the 
probability of a transition due to an external 
event is first calculated, as follows:  
 

pext
ij =��  i (1/n) / | Exti |    (6) 

 
where n is the total number of external events 
for the spacecraft and 1/n is the equal 
probability of each external event taking place. 
Next, the probability of an internal event is 
calculated, as follows. 
 

 pint
ij = (1- �  i (pext

ij)) /  | Inti |   (7) 
 

3) When there is more than one transition with 
identical source and destination states, the above 
transitions are substituted in the Markov model 
by one for which probability pij is equal to the 
sum of the probabilities of the corresponding 
transitions. 

 
Markov Chain for Exploration Teams. The behavior 
model for ANTS exploration teams (consisting of a ruler, 
workers, and messengers) is a synchronous product 
machine of the single-state machines of the participating 
spacecraft, where the synchronization between the 

spacecraft is achieved via shared external events. The 
probabilities are computed as described above. 

In general, the behavior of the ANTS exploration 
teams is driven by the global swarm goals. Here, team 
rulers (including idle rulers) determine their next action 
(resulting into team tasks) based on the reward function 
R (cf. Section 3.1.1) determining the action with the best 
reward (highest compliance to the swarm goals). Thus, a 
ruler determines its next action, by undertaking from 
state s the action a leading to the highest compliance to 
one of the m swarm goals G: 

 
R (s, a) ≈ max { Compliance (gi; gi ϵ G) } i = 1,m  (8) 
 
The process of probability and reward assessment is 

based on the concept of Intelligent Control Loop [1, 2] 
and consists of the following steps: 

1) Monitor: continuously track evolving changes 
within the swarm, such as configuration 
changes, time constraints change, and 
synchronization axioms change.  

2) Analyze: assess probability values and rewards 
according to the evolving changes collected at 
the monitoring stage, and make the decision as 
to whether or not those changes are acceptable.  

3) Plan: arrange how the changes will be adapted, 
such as setting of the appropriate timing and 
checkpoints to apply the changes, and arrange 
how the team status and the spacecraft status 
will be restored if the execution fails.  

4) Execute: apply the changes that were accepted 
at the Analyze stage, and follow the plans made 
at the Plan stage.  

 
3.1.4. Team Formation. In the second step of the Team 
Formation phase, the ruler allocates idle worker and 
messenger spacecraft to form a team. To accomplish this 
task, the self-initiated ruler simply broadcast a “team 
formation” message to the entire swarm. Any idle worker 
or messenger replies with a “join” message and 
eventually is assigned to the new team with an 
“assigned” message sent by the ruler (cf. Figure 2).   
 
 
 
 
 
 
 
 

Figure 2. “Team Formation” Broadcasting 
 

  1) team  formation 

2) join 

  3) assigned 
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To assign new workers and messengers to the team, 
the ruler follows a simple algorithm where together with 
the targeted number of team members (team size) per 
spacecraft class, properties of individual spacecraft are 
considered as well. Properties of major importance are:  
� team membership m (a worker member of 

another team may also be in idle state);  
� class of spacecraft cl (worker or messenger);  
� instrument on board in (cf. Section 2.1).  

 
Thus, the formal model of the function AF that 

assigns idle spacecraft to the team is: 
 
TF ( Ts(in), m, cl, in )    (9) 

 
Here, Ts(in) is a function computing the need of more 

team members carrying an instrument in.   
 
3.1.5. Planning. The formal planning model for ANTS 
[7] is derived from work described in [13]. In this model, 
we consider for a given ANTS swarm: 
� the initial state of the team denoted by s0; 
� the goal states (set of goal states) denoted by G; 
� the possible instrument tasks that can be 

performed by the workers, denoted by:  
 
R = {r1, r2, …. rn}    (10) 
 

� the time, if the goal G is time-constrained, 
denoted by t; 

 
to determine a plan P, as a sequence of tasks R that 
transforms s0 to G for the time t. Here, the formal 
definition of Planning could be: 
 

P = f(s0, G, t) = { S1, S2, …. Sn }        (11) 
 

where, 
 

G = { g1, g2, …. gn }               (12) 
 

and g1, g2, …. gn are intermediate goal states and S1, S2, 
…. Sn are series of instrument tasks, needed to achieve 
states g1, g2, …. gn respectively. A series is a set of 
instrument tasks performed sequentially S�� or in 
parallel S||. Here, the notation � means sequential 
execution, and the notation || means parallel execution. 
 

Si � { S� , S||  },    i � N   (13) 
 
S�  = { ri � ri � … � ri }              (14) 
 
S||   = { ri || ri ||  …. || ri }                    (15) 

 
ri � R ,    i � N     (16) 
 
Here, ri can be any of the possible instrument tasks R. 
 

3.1.6. Scheduling. Theoretically, workload can be 
partitioned according to the workers’ performance. 
Workers, carrying identical instruments, in ideal 
conditions, should perform equally. But, in reality, many 
factors affect workers’ performance. The workers work 
under severe conditions, so their instruments get 
damaged, i.e., they may still be operational, but their 
performance may get degraded. Therefore, some of the 
workers will perform more efficiently than others. For 
example, a less damaged Laser Distance Meter will need 
less measuring attempts to measure a distance than a 
more damaged one. Another factor is the distance 
between a ruler and a worker. Some workers will need a 
messenger in order to communicate with the ruler. So, 
the transmission time will be added to the overall 
performance time.  

Hence, in order to perform task analysis and 
scheduling, the ruler should be able to evaluate the 
performance of each of the workers at the time of task 
scheduling or to ask every worker to self-estimate its 
performance for a particular task.  

Therefore, the rulers should maintain statistics on the 
workers’ health status. Thus, a ruler should perform 
external monitoring over the workers it maintains. 
External monitoring can be achieved proactively by 
having each worker send its heartbeat or pulse message 
regularly. A heartbeat message provides a summary of 
the state of a worker, thus including its health status 
(damage in %, is it still operational, etc.), its operational 
status (is it idle, percentage of complete work, etc.) and 
its coordinates.     

ANTS workers, are designed to provide a specific set 
of services over their entire lifetime (cf. Section 2.1). 
Thus, the tasks they execute are generally fixed at some 
point during development, based on their instrument. 
Additionally, we have significant a priori knowledge 
regarding the tasks’ characteristics and the current health 
status of the spacecraft units (damage in %). We derive 
this knowledge from the heartbeat messages and the 
restrictions the space environment imposes. Leveraging 
this information is essential for task-set feasibility 
analysis. 

In general, to define formally the partition of a task 
that can be assigned to a worker, we need the overall 
remaining task R, the current health status of that worker 
H, the deadline time for the task t, the current 
environmental conditions C, the communication latency 
l, and the communication bandwidth b. 
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r0 = 0, R = R – ri-1, ri = f (R, H, t, C, l, b)        (17) 

 
Here f ( ) is a function possibly of more inputs, e.g., the 

number of idle workers carrying the appropriate 
instrument.  

The worker performance self-estimation of specific 
sub-task ri depends on the health status H and on the 
environmental conditions C. Thus, 
 

Et  = f (ri, H, C)                      (18) 
 
where Et is the expected sub-task execution time. 

 
4. Related Work and Conclusion 
 
4.1. Related Work   

 
A motion planning framework for a large number of 

autonomous robots is studied in [14]. Such framework 
enables robots to configure themselves adaptively into 
arbitrary environments (areas of arbitrary geometry). In 
this approach local-interaction techniques allow robots to 
converge to a uniform distribution by forming an 
equilateral triangle with their two neighbors. The basic 
idea is that a swarm of robots can be regarded as a liquid 
where robots behave like liquid particles that change 
their relative positions conforming to the shape of the 
container they occupy. 

Similar research is described in [15] where physics 
properties of liquids, solids, and gases are used to 
maintain swarm formation. Other existing methods of 
team formation in swarms depend on a central controller 
[16, 17], but dependence on a single entity is prone to 
failure and it is not ideal for space-exploration missions 
where there is a high possibility of failure. Decentralized 
formation control methods are presented in [18, 19]. 

In [20], Chapelle et al. propose architecture for 
cooperative agents, where due to a satisfaction model and 
local signals, agents learn to select behaviors that are 
well adapted to their neighbor’s activities, thus helping 
the system self-configure efficiently. 

 
4.2. Conclusion and Future Work   
 

In this paper, we have documented our formal approach 
to self-configuration of intelligent swarm systems. 
Formal models for the three self-configuration phases: 
team formation, planning, and scheduling, have been 
presented by using the NASA ANTS (Autonomous Nano 
Technology Swarm) prospective space exploration 
mission as a case study. The key point in our approach is 
the so-called “self-initiation for team formation”. This is 

the first step of the team formation phase where an idle 
ruler (special ANTS spacecraft) automatically determines 
the need of a new team and starts the team formation 
procedure. Our formal model for team formation is based 
on the Partially Observable Markov Decision Processes 
and Discrete Time Markov Chains where we do not 
consider any central controller, but complex algorithms 
working on state-action relationships and considering a 
variety of probability values.  

Our future research is concerned mainly with the 
implementation of the presented models. It is our 
intention to model the proposed self-configuring behavior 
with ASSL (Autonomic System Specification Language) 
[21] and generate an ANTS autonomic system 
incorporating the self-configuring properties (note that 
the ASSL framework has a built-in code generator). This 
will help us perform real experiments with the generated 
code and further refine our algorithms based on the 
obtained results.  
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