New Voter Design Enabling Hot Redundancy for
Asynchronous Network Nodes

Felix Siegle and Tanya Vladimirova
University of Leicester
Leicester, LE1 7RH, United Kingdom

Abstract—In this paper, a novel voter design is presented
which allows the voting of asynchronous network streams in
flow-controlled networks. The voter synchronises incoming data
streams automatically and is able to handle failure modes that
typically occur in streaming applications. The voter degrades to
a comparator if one of the redundant channels has failed and
reintegrates the channels once they are functional again. While
the voter is mainly intended to be connected to a routing switch
of the network, it also comprises a broadcast mechanism that
enables a stand-alone operation. The design has been successfully
implemented in hardware and evaluated by means of fault
injection experiments.

I. INTRODUCTION

Modern payload data processing approaches on board
spacecraft demand increased processing capabilities. In best
case, data can be processed in real time while being streamed
from a data source to a data sink, e.g. from a camera to a mass
memory device. On its way, the data is possibly processed by
several processor nodes in series.

. Raw RGB Image JPEG Data Image
Image Filter) . . .
Compression Encryption

Encrypted JPEG Dala

Fig. 1. Example for an image processing pipeline.

An example would be an image processing pipeline as
outlined in Figure 1 in which video data is first filtered, then
compressed and finally encrypted. To make such a processing
pipeline adaptable in terms of functionality and reliability,
the different processing steps can be implemented on recon-
figurable Field Programmable Gate Arrays (FPGAs). Since
fast hardware implementations of the processing steps can be
rather resource-demanding, techniques are necessary to also
exploit Multi-FPGA systems. An example for such a system is
the Dynamically Reconfigurable Processing Module (DRPM)
developed by University of Braunschweig and Airbus Defence
and Space, UK [1]. This hardware development platform
comprises a scalable number of payload data processing units
with two reconfigurable SRAM-based Virtex-4 FPGAs and one
LEON3 microprocessor per unit. The development platform is
available for our own research on an adaptive Fault Detection,

Jgrgen llstad
European Space Agency / ESTEC
2200 AG Noordwijk, The Netherlands

Omar Emam
Airbus Defence and Space
Stevenage SG1 2AS, United Kingdom

Isolation and Recovery (FDIR) methodology for such systems.
As the methodology is based on hot redundancy which can be
applied to the different processing steps on demand, a new
voting mechanism is necessary that integrates well into such
a Multi-FPGA system.

In the proposed FDIR framework, the aforementioned
processing steps are executed by dedicated stream processors
which can process incoming data streams independently.

IP Core, e.g. compression,
encryption, filtering, etc.

Memory

State
Machine

|

NoC
Interface

Protocol
Gen-

erator

e

Out
Interface

T T

{ Control J
Interface Data %

Data In
Interface

iﬁ

Fig. 2. Stream Processor Architecture.

A typical architecture of such a stream processor is shown
in Figure 2. An IP core of the desired functionality is em-
bedded into a wrapper. This wrapper comprises a Network
on Chip (NoC) interface for the data exchange, some state
machine logic and a memory for state variables. Input control
words are interpreted by the state machine while input data
words are directly fed into the IP core. An additional memory
holds all variables necessary to configure the IP core. If the
processing pipeline uses a specific protocol, a protocol parser
and/or protocol generator may be added to the input and
output of the core. Partitions which can host such a stream
processor are implemented on SRAM-based FPGAs. They are
connected to a packet-switched, flow-controlled NoC and can
be reconfigured during operation by means of dynamic partial
reconfiguration.

Without any loss of generality, the here presented work is
based on a NoC implementation called SoCWire [2]. SoOCWire
is a minimal version of SpaceWire, a popular point-to-point
network architecture standardised by the European Space
Agency [3]. The flow-control between two network nodes
is shown in Figure 3. Each network packet may start with
a logical address (that is typically used for routing within
switches) and is terminated by an End of Packet (EOP)

EOP Marker Logical Address

| |
(o} (eleTe oo {~(mn]

Network Packet
Interface #2

Cs | C,

din
nwrite — TX Buf |---f---
full

Interface #1

dout |
nread — RX Buf |&--f------------------ FCT fp-------------------1 ---|1 TX Buf
empty |

Fig. 3. Flow-control mechanism between two network nodes.

marker. Every time the receive buffer has space for eight more
characters, the receiving node sends out a Flow Control Token
(FCT). Therefore, the receiving node can easily apply back-
pressure to the communication channel, i.e. it can force the
source node to freeze by ceasing the transmission of further
FCTs.

The paper is structured as follows. In Section II, the
motivation for the development of the new voter design is
explained. In Section III, a brief overview of related work
is given. In Section IV, different failure modes are analysed
which must be anticipated to occur in the output network
streams of processors. Based on this analysis, a robust voter
design is proposed in Section V which is able to cope with all
failure modes found. Finally, in Section VI, a hardware imple-
mentation is evaluated by means of fault injection experiments.

II. PROBLEM DEFINITION

4,5,6,7 3

Fig. 4. Distributed Failure Detection: Example network topology.

Our Distributed Failure Detection methodology, first out-
lined in [4], makes failure detectors part of the network.
This novel approach allows the free distribution of redundant
processors throughout the network because the output of each
processor can be routed to any failure detector, independent
of its location in the network. As some processors can be
quite resource-demanding, the possibility to place redundant
processor instances even on different FPGAs can be a great
benefit for some applications.

An example network topology is shown in Figure 4. Several
partitions (circles) are interconnected via routing switches. A
processor has been triplicated and the resulting instances (gray
circles) are placed on some of these partitions. Say, data is sent

from a source node Src to the processor and the processor
sends the resulting data to sink node Sink. As the processor is
triplicated, the data must be first broadcast which is typically
done by the routing switches. For instance, routing switch 1
broadcasts the packets to output port 2, 4 and 5. In switch 2
and 3, the packets are then routed to the other two redundant
instances. After processing, the resulting packets are routed to
the failure detector which in this case is the voter module V,
connected to routing switch 3. Finally, the output of the voter
is routed to the sink node. It is quite likely that the packets
do not arrive simultaneously at the redundant processors. The
latency between each redundant processor and the voter may
differ too. In addition, the partitions are possibly implemented
in different clock domains. As a result, the voter module must
be able to deal with asynchronous network streams.

Due to an embedded broadcast mechanism, the voter
module can also be used as a stand-alone device. An example is
shown in Figure 4 where three partitions are directly connected
to the stand-alone voter module Vg 4. Network packets arriving
via link 1 are broadcast to all three partitions. Then, the data
returning from the three partitions is voted and the result leaves
the voter module again via link 1.

In this paper, implementation details of the proposed voter
module Vg4 are discussed. As the voter module is part of the
network, it must be able to deal with asynchronous network
streams because (i) the redundant stream processors might
be in different clock domains and (ii) the network packets
arriving from these redundant processors can be misaligned
due to different latencies within the network. Aside from
simply voting the content of the network packets, the voter
module must also be able to detect failure modes which are
typical for networks. For instance, a faulty network node may
cease the transmission of packets or it may start to transmit
packets with random content and size.

III. RELATED WORK

The concept of using majority voters as failure detection
and masking mechanisms for the improvement of the reliability
of computer systems goes back to the early 60s. For instance,
Brown et al. presented the concept of Triple Modular Redun-
dancy (TMR) in [5] and Fleck his redundancy techniques for
reliable flight-control computers in [6]. Every now and then
the topic emerges with new technologies again. One example
from the heydays of the microcontroller is the fault-tolerant
microcomputer system proposed by Yang and Smith in 1986
[7]. In recent years, reconfigurable SRAM-based FPGAs for
space applications established a popular research field. As
these devices are prone to Single Event Effects triggered by
radiation, a revival of work on Triple Modular Redundancy
could be observed. Two typical mitigation approaches can
be found in literature. The first approach applies TMR to
the netlist of the circuit. Single bit voters are then placed at
appropriate positions of the netlist. The second approach is
rather course-grain and shows great similarity with the classic
approaches in fault-tolerant computing. Here, a whole process-
ing module is triplicated and only the output is voted. This
approach has some advantages because the TMR partitions are
clearly separated which allows a quick recovery of a faulty
module. There are, however, also some drawbacks like the
classic problem of data re-synchronisation after repair. Rather

early work in this field has been presented for instance by
Paulsson et al. [8], [9] and Azambuja et al. [10], [11].

To the best of our knowledge, voter modules proposed in
literature are always hardwired to the instances they should ob-
serve. In contrast, the novel voter design proposed in this paper
can be integrated into a flow-controlled network. The design
offers some distinct advantages like an increased reusability,
automatic data stream synchronisation and the option of a
spatial separation between the redundant instances and the
failure detector.

IV. FAILURE MODES AND THEIR EFFECTS

Case (A)

o[« [[1]

Case (B)

’E()P|4|3|2|1|LA‘

Case (C)

wop| o [s [2 [1 [

Case (D)

’EOP|4|3|2|1|LA‘

Tir Tip
Case (E) ’FF|FF FF|FF|FF|FF|FF|FF|FF‘
’EOP| 4 | 3 | 2 | 1 |LA‘
’E()P| 4 | 3 | 2 | 1 |LA‘
Fig. 5. Different failure modes that can be observed in network streams.

We found in a recent Failure Mode and Effects Analysis
(FMEA) that two types of failure modes must be expected,
those which affect the payload of network packets (application
data) and those which affect the network traffic itself. A short
summary of the analysis is shown in Figure 5:

e Case (A): Typical operation. The network packets are
identical but may arrive at different points in time due
to the aforementioned asynchronicity.

e Case (B): The network packets have an identical
structure but their payload differs due to a failure in
the application.

e Case (C): One of the network packets does not ar-
rive at all. It seems that the corresponding processor
became faulty and stopped the transmission for some
reason.

e (Case (D): The transmission of one of the network
packets suddenly stops before the EOP marker is
reached.

e Case (E): One processor becomes a babbling idiot
and is transmitting confusing data with unpredictable
timing (including infinite streams).

In most applications, case (B) will be the most observed
one because typically, the probability of a failure in the
application is much larger than the probability of a failure
in the network interface. This failure mode can be detected by
a voter mechanism that compares the (synchronised) network
streams character by character. Case (C) can be handled by
defining a timeout value 77p, hereafter also referred to as
Inter-Packet Timeout, which starts once the first packet arrives
in one of the slots (i.e. a receive buffer assigned to a particular
processor) of the voter. It is assumed that all redundant streams
arrive within this timeout period during normal operation. If
a network packet is missing, however, the corresponding slot
(and with that the associated processor) is marked as faulty.
Case (D) can be handled by a second timeout value 77¢,
hereafter also referred to as Inter-Character Timeout, which
always starts when a new data character arrives in one slot
while other slots are still empty. If the timeout expires, it must
be assumed that the processor associated with the still empty
slot suddenly stopped the transmission and thus the slot is
marked as faulty. Dealing with case (E) can be tricky if the
data from the babbling idiot arrives much earlier than the data
from two other healthy processor instances. Then, the Inter-
Packet Timeout would expire first and the two healthy slots
would be spuriously marked as faulty (actually all slots would
be marked as faulty because further voting is not possible).
As it is rather unlikely that two processors fail at the same
time, we handle this case by assuming that the early packet
is wrong, i.e. the corresponding slot is temporarily marked
as faulty. Then, a second timeout value 17, hereafter also
referred to as Last Resort Timeout, is started. If the packets
from the healthy processors arrive within this timeout period,
no further action is required. If they do not arrive, however,
all slots must be marked as faulty.

Aside from the aforementioned failure modes, another
mode must be considered when broadcasting data. If a pro-
cessor becomes faulty, it may start to block incoming traffic.
This case can be handled by using a non-blocking broadcast
mechanism that comprises a Broadcast Timeout. If one of
the processors blocks incoming data throughout the timeout
period, it is excluded from the broadcast until the end of the
current packet transmission.

It is important that the voter degrades to a comparator
once one of the slots is marked as faulty. Furthermore, it
must be feasible to signal the health status of the slots to
an external device, e.g. a microcontroller which can initiate a
failure recovery approach. After recovery, the external device
should be able to reset the health status register within the
module. Then, the voter module will integrate the freshly

TABLE 1. VARIABLE DEFINITIONS: BROADCAST

TABLE II. VARIABLE DEFINITIONS: VOTER

Variable Description

Variable Description

Transmit buffer of at least one active NoC Port is full
Transmit buffers of all active NoC Ports are full

minlActiveIsFull
allActiveFull

repaired processor into the running voting process as soon as
possible.

V. VOTER DESIGN

dout din NoC Port 1 4_;>
\

nread nwrite —
empty full —
P
j H
i
NoC Port 2 «=——
'
_—L Voter
din dout
nwrite nread

full empty NoC Port 3 <—ﬁ>

<—%—> NoC Port 0

Fig. 6. Block diagram of the voter module.

A block diagram of the voter module with embedded
broadcast mechanism is shown in Figure 6. From the per-
spective of the broadcast sub-module, input data is provided
by NoC Port 0 and is broadcast to NoC Port 1-3. From the
perspective of the voter sub-module, input data is provided by
NoC Port 1-3 and the voted, respectively compared data is sent
out via NoC Port 0. The interface between the application layer
and each port is rather simple. To write data to the transmit
buffer, the input word must be valid at din while nwrite
is pulsed low. The fullness of the transmit buffer is flagged
by signal full. To retrieve the next data character from the
receive buffer (available at dout), nread must be pulsed
low. The emptiness of the receive buffer is flagged by signal
empty. A signal not shown in Figure 6 is called active
which is asserted high when the corresponding NoC interface
is up and running.

A. Broadcast

The broadcast mechanism comprises a small state machine
with two states S1 and S2. The machine remains in the first
state until the beginning of a new packet is detected, i.e. when
the receive buffer of NoC Port 0 is not empty anymore. Then,
the timer is pre-loaded with the Broadcast Timeout value and
the broadcast_en register with the active signal:

if not empty(0) then

timer = Broadcast Timeout Value
broadcast_en(3:1) := active(3:1)
state := S2

end if

Once in state S2, the packet is broadcast to all enabled
ports. In principle, data is only written to the transmit buffers
of the enabled output ports when data is available in the receive
buffer of NoC Port 0. On the other hand, data is read from
NoC Port 0 only if there is some space in the transmit buffers
of the enabled output ports. If one of the redundant processors

data_available (3:1) not empty (3:1)

min2SlotsOk At least two slots are marked as healthy
minlOkSlotHasData At least one healthy slot has data available
min20kSlotHaveData At least two healthy slots have data available
allOkSlotsHaveData All healthy slots have data available
allOkSlotsHaveEOP An EOP character arrived in all healthy slots
allOkSlotsVotedOk Data in all healthy slots is identical

becomes faulty and starts to block incoming traffic, the broad-
cast mechanism must ensure that the remaining processors still
receive the input data stream. For this reason, the timeout
counter is enabled if the full flags of the enabled output ports
disagree because once a processor blocks incoming traffic, all
buffers in the network path will fill up, including the transmit
buffer connected to the broadcast mechanism. It is, however,
absolutely valid that all processors block incoming traffic
during normal operation. Thus, the timeout counter is always
reloaded when either all transmit buffers of the active output
ports are full or empty (see Table I for variable definitions):

timerReload := not minlActiveIsFull or allActiveFull

If the timeout expires anyway, one of the enabled
output ports seems to block incoming traffic. Then, the
broadcast_en register is updated with the negated full flag
of the corresponding port, i.e. those ports with full transmit
buffers are marked as faulty and are therefore disabled. State
S2 is left once an EOP character has been detected or if all
output ports has been disabled:

nread (0) minlActiveIsFull
nwrite(1:3) := empty(0) or minlActiveIsFull

if timerReload then

timer := Broadcast Timeout Value
else
if timer = 0 then
broadcast_en(3:1) := not full(3:1)
else
timer := timer - 1
end if
end if
if dout (0) = EOP or broadcast_en(3:1) = "000" then
broadcast_en(3:1) := "000"
state 1= S1
end if

A diagram of the circuitry that is active while the machine
is in state S2 can be seen in Figure 7. To simplify matters,
only the control signals are shown.

B. Voter

Compared to the broadcast mechanism, the design of the
voter circuit is more complex as it needs to take both data
and timing failures into account. The voter comprises a state
machine with five states S1 S5 as can be seen in the state
diagram depicted in Figure 8.

First, some variables are defined which simplifies the
following description of the state machine, see Table II. Aside
from these variables, voting_ok (3:1) is a bus provided

RX In cmpty
NoC Port 0
nread

nwrite

NoC Port 1

(broadcastEn(1))

nwrite

Sull
ﬁ%
Y EN
timerReload _l FF 3
(broadcastEn(3))
Timer

Fig. 7. Circuit of the non-blocking broadcast mechanism.

Fig. 8. State diagram of the voter sub-module.

by the embedded

follows:

voting_ok (3:1)

din (0)

dout (1)

dout (2)

"ni1qn
"gll"
"io1"
"11o"

when
when
when
when

dout (1)=dout
dout (1)=dout
dout (1)=dout
dout (1)=dout

when voting_ok (3:1)

when voting_ok (3:1)

= "11Q"

(
(
(
(

N W NN

)
)
)
)

D
| + Qlpp o BN

(broadcastEn(2))

TX 3

nwrite

NoC Port 3

Word-Voter [12] which is implemented as

=dout (3)

= "111" or "011" or "101"

The signal slot_status(3:1) is a register which
stores the health status of each slot and which can also be
updated by an external instance. The registration of the new
status is done in several steps. If a write enable signal is active,
the new status is temporarily stored and a pending flag is set
for each updated slot.

Then, the pending flag register is moved to a temporary
register once data is flowing in all pending slots again. After-
wards, a status update flag reg_status_update is set for
each slot in which an EOP character has been detected. This
flag is used by the state machine to finally reactivate the slot
in its idle state.

Waiting for the data to flow again is necessary since
there might be some delay between the registration of the
new status and the arrival of the first valid data. Waiting for
the EOP character is necessary due to the integrated spilling
mechanism: If a slot is marked as faulty, all incoming data
in this slot is deleted (or spilled) to prevent other parts of
the network from being blocked. After the slot is marked as
healthy again, the next arriving packet in this slot will be valid
(detectable by an EOP of the current packet). Thus, the spilling
must be stopped once a status update has been registered
successfully. This is achieved by setting the following default
value for the nread signals:
for i = 1:3 loop

nread (i) :=
slot_status (i) or reg_status_update (i)
end loop

1) State S1: This is the idle state in which the state
machine remains until a new packet arrives in at least one
healthy slot under the premise that at least two slots are healthy.

Furthermore, if the slot status register has been updated from
an external instance in the meanwhile, the new status is
registered now.

for i = 1:3 loop
if register_status_update (i) then
slot_status (i) := register_status (i)
end if
end loop

—-— Transition T1
if min2SlotsOk and minlOkSlotHasData then

timer := Inter-Packet Timeout Value
state := S2
end if

2) State S2: The role of this state is the synchronisation
of the incoming data streams. Since data is not taken out of
the receive buffers yet, back pressure is applied to the slots
where data arrives earlier. While the state machine remains in
this state, the Inter-Packet Timeout counter is active. The state
is left under two possible conditions: Either data has arrived
in all healthy slots or the timeout expired. In the first case, the
state machine proceeds to the normal voting operation in state
S4. In the latter case, the next action is determined in state
S3.

timer := timer - 1

-— Transition T2a

if allOKSlotsHaveData then
timer := Inter-Character Timeout Value
state := S4

—-— Transition T2b

elsif timer = 0 then
state := S3

end if

3) State S3: This state is entered once the timeout has
expired in state S2, i.e. not every healthy slot received a packet.
The state is left under three possible conditions. If only two
slots were healthy before, all slots must be marked as faulty
and the state machine moves to idle state S1. If all slots were
healthy and two packets arrived, the slot without packet is
marked as faulty and the state machine moves on to state S4.
If three slots were healthy and only one packet arrived, the
slot in which this packet arrived is marked as faulty and the
Last Resort Timeout value is loaded into the timer. Then, the
state machine moves back to state S2.

if slot_status(3:1) = "111" then
—-— Transition T3a
if min20KSlotsHaveData then
for i = 1:3 loop
slot_status (i) := slot_status (i) and
data_available (1)

end loop
state := S4
—-— Transition T3b
else
for i = 1:3 loop
slot_status (i) := not (
slot_status (i) and
data_available (1))
end loop
timer := Last Resort Timeout Value
state := S2
end if

-— Transition T3c

else
slot_status(3:1) = "ooO"
state := S1
end if

4) State S4: During the voting, respectively comparison of
the incoming data, the state machine remains in this state. Data
is only read from each healthy slot if the transmit buffer of the
output port is not full. On the other hand, data is only written
to the transmit buffer if at least two healthy slots have data
available. As long as some healthy slots have data while some
others are empty, the Inter-Character Timeout counter is active.
Once all slots have data available, however, the counter is
reloaded. This state is left under two conditions: If the current
packet was transferred successfully, the state machine moves
back to idle state S1. If the Word-Voter flags a mismatch or
the timeout expired, the state machine moves to state S5.

for i = 1:3 loop

if slot_status(i) = "1’ and full(3) = 0’ then
nread (i) := "0’
end if
end loop
if min20KSlotsHaveData then
nwrite (3) := "0’
end if

if allOKSlotsHaveData then

timer := Inter-Character Timeout Value
else

timer := timer - 1
end if

-— Transition T4a
if allOkSlotsHaveEOP then

state := S1
—-— Transition T4b
elsif timer = 0 or (allOKSlotsHaveData and not
allOkSlotsVotedOk) then
last_char_voting ok (3:1) := voting_ ok (3:1)
state := S5
end if

5) State S5: This state is entered if either the Inter-
Character Timeout has expired or a voting mismatch has been
detected. If only two slots were healthy so far, all slots are
marked as faulty and the state machine moves to idle state
S1. Otherwise, it is checked if the timeout expired or a voter
mismatch occurred. In the first case, the empty slot is marked
as faulty. In the latter case, the slot that disagreed with the
other slots during voting is marked as faulty. Then, the state
machine moves back to state S4.

—-— Transition T5a
if slot_status(3:1) = "111" then
if timeout expired then
for i = 1:3 loop
slot_status (i) := slot_status (i) and
data_available (1)

end loop
else
for i = 1:3 loop
slot_status (i) := slot_status (i) and
last_char_voting_ok (i)
end loop
end if

state := S4

—— Transition T5b

else
slot_status (3:1) = "000O"
state := Sl

end if

VI. EVALUATION

The voter module has been successfully implemented on a
Xilinx Virtex-4 SX55 FPGA as part of the DRPM hardware
system, see Section I. If the network data width is chosen to
be 16 bit wide, the design occupies 1,237 slices (5%) and the
achievable clock frequency (after place & route and without
further timing constraints) is ca. 107 MHz, i.e. the design can
easily handle data streams with throughput rates of 1.6 and
more Gbit/s. The utilisation of logic resources is ruled by the
four NoC interfaces.

RAM Host PC
Telecommands
via SpW
Config.
[«mnfzg Image data
via SpW
LEON3 pC j«— E E
. SpW !
E to NoC E
H Bridge '

Modified Config. 1
Frame via Select MAP

NoC Switch

1

JPEG 3 } :

'l JPEG 1 JPEG 2

Fig. 9. Fault injection system.

To evaluate the functionality of the voter module, a fault
injection system has been set up as outlined in Figure 9.
Within the FPGA fabric (dashed box), three reconfigurable
partitions are connected to a SoCWire routing switch. In
addition, the switch is connected to a SpaceWire-to-SoCWire
bridge which allows the communication between the Host
PC and a processor installed on one of these partitions. An
image compression stream processor has been implemented
and redundant instances are placed on each partition. The Host
PC retrieves a video stream from a webcam and transmits the
raw image data via SpaceWire (SpW) to one of the processors
which replies with compressed JPEG images. The Host PC
interacts with a LEON3 microcontroller which can inject a
fault into the configuration memory of the FPGA on demand.
Therefore, the Host PC can initiate a fault injection and check
the functionality of the stream processor afterwards by sending
a raw image to the processor and analysing its response. In the
course of a fault injection experiment with 150,000 random
faults per partition, a SQL database has been created which
eventually contained more than 20,000 sensitive configuration
bits for each partition that are guaranteed to lead to measurable
failures. The database contains the information necessary to

address the sensitive configuration bits, i.e. the Frame Address
Register (FAR), the word position within the frame and the
bit position within the word. Furthermore, the failures are
classified during the fault injection campaign and the results
are stored in the database too. For instance, the failures are
classified by their occurrence (application data or network
protocol) and by the way the system can be recovered from the
failure (scrubbing, scrubbing with subsequent reset or partial
reconfiguration).

After the fault injection campaign, the SoCWire routing
switch has been replaced by a stand-alone voting module and
its slot status signals have been connected to a General Purpose
Input/Output (GPIO) Port of the LEON3 microprocessor. If
a slot fails, the falling edge of its status signal triggers
an interrupt which is caught by a software routine. Then,
the software routine initiates a partial reconfiguration of the
corresponding stream processor and updates the health status
register in the voter module.

For debugging purposes a second bus is connected to the
LEON3 which helps us to understand why a slot has been
detected as being faulty. With the aid of the SQL database, it
is now easy to precisely test the voting module in hardware.
A few hundred sensitive bits have been tested with a 100%
success rate. The voter always detected the failure and the
failure recovery mechanism as well as the reintegration of
repaired partitions worked flawlessly. Although no detailed
statistics have been collected, the assumption was correct that
most failures are detected due to a voter mismatch, although
Inter-Packet and Last Resort Timeouts can be observed too.
The only detection mechanism that could not be observed yet is
the Inter Character Timeout. It can be assumed that this failure
mode is rather rare because the failure must emerge during a
transmission. The transmission time is, however, very short
for the image compression processor as it sends out packets
in small 1 kB sized chunks.

VII. CONCLUSIONS

In this paper, the design of a novel voter module has
been presented. In fact, the module is much more than just
a majority voter: First, it integrates into a network architecture
which allows the voting of processor instances that can be
freely distributed over the network. Secondly, it is able to
synchronise streams and can cope with several failure modes
which typically emerge in such streams. Thirdly, it can signal
the status of each slot to an external supervisor and can
automatically reintegrate repaired processors. Finally, it also
includes a broadcast mechanism and can therefore be used
as a stand-alone device. Furthermore, the evaluation of a real
hardware implementation revealed that the amount of needed
logic resources is reasonable, especially considering the high
data rates the module is able to deal with. In addition, fault
injection experiments confirm that the voter offers an excellent
failure detection coverage.

ACKNOWLEDGMENTS

Sponsorship from ESA under the NPI Programme, Airbus
Defence and Space, UK and the University of Leicester is
gratefully acknowledged.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

REFERENCES

F. Bubenhagen, B. Fiethe, J. Ilstad, H. Michalik, P. Norridge, B. Oster-
loh, W. Sullivan, and C. Topping, “Enhanced dynamic reconfigurable
processing module for future space applications,” in International
SpaceWire Conference. International Space Wire Conference, June
2010, pp. 475-482.

B. Osterloh, H. Michalik, B. Fiethe, and K. Kotarowski, “SoCWire: a
network-on-chip approach for reconfigurable system-on-chip designs in
space applications,” in NASA/ESA Conference on Adaptive Hardware
and Systems, 2008. AHS °08, Jun. 2008, pp. 51 -56.

ECSS, “Spacewire - links, nodes, routers and networks. ECSS-E-ST-
50-12C,” ESA/ESTEC, Tech. Rep., 2008.

F. Siegle, T. Vladimirova, O. Emar, and J. Ilstad, “Adaptive FDIR
Framework for Payload Data Processing Systems using Reconfigurable
FPGAs,” in Proc. of 8th NASA/ESA Conference on Adaptive Hardware
and Systems, June 2013.

W. G. Brown, J. Tierney, and R. Wasserman, “Improvement of
electronic-computer reliability through the use of redundancy,” Elec-
tronic Computers, IRE Transactions on, vol. EC-10, no. 3, pp. 407-416,
Sept 1961.

J. J. Fleck, “Redundancy techniques (or reliable flight-control comput-
ers,” American Institute of Electrical Engineers, Part I: Communication
and Electronics, Transactions of the, vol. 82, no. 4, pp. 535-546, Sept
1963.

T. Yang and K. Smith, “A proposed fault-tolerant microcomputer
system,” Electrical Engineering Journal, Canadian, vol. 11, no. 3, pp.
138-144, July 1986.

K. Paulsson, M. Hubner, M. Jung, and J. Becker, “Methods for run-time
failure recognition and recovery in dynamic and partial reconfigurable
systems based on Xilinx Virtex-II Pro FPGAs,” in IEEE Computer
Society Annual Symposium on Emerging VLSI Technologies and Ar-
chitectures, 2006, vol. 00, Mar. 2006, p. 6 pp.

K. Paulsson, M. Hubner, and J. Becker, “Strategies to on-line failure
recovery in self-adaptive systems based on dynamic and partial recon-
figuration,” in First NASA/ESA Conference on Adaptive Hardware and
Systems, 2006. AHS 2006, Jun. 2006, pp. 288 —291.

J. Azambuja, C. Pilotto, and F. Kastensmidt, “Mitigating soft errors in
SRAM-based FPGAs by using large grain TMR with selective partial
reconfiguration,” in 2008 European Conference on Radiation and Its
Effects on Components and Systems (RADECS), Sep. 2008, pp. 288
—293.

J. Azambuja, F. Sousa, L. Rosa, and F. Kastensmidt, “Evaluating large
grain TMR and selective partial reconfiguration for soft error mitigation
in SRAM-based FPGAS,” in On-Line Testing Symposium, 2009. IOLTS
2009. 15th IEEE International, Jun. 2009, pp. 101 —106.

S. Mitra and E. J. Mccluskey, “Word-voter: A new voter design for triple
modular redundant systems,” in Proc. VLSI Test symposium, 2000, pp.
465-470.

