
25 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

ABLUR: An FPGA-based adaptive deblurring core for real-time applications / AIRO' FARULLA, Giuseppe; Indaco,
Marco; Prinetto, Paolo Ernesto; Rolfo, Daniele; Trotta, Pascal. - ELETTRONICO. - (2014), pp. 104-111. (Intervento
presentato al  convegno Adaptive Hardware and Systems (AHS), 2014 NASA/ESA Conference on tenutosi a Leicester
nel 14-17 July 2014) [10.1109/AHS.2014.6880165].

Original

ABLUR: An FPGA-based adaptive deblurring core for real-time applications

Publisher:

Published
DOI:10.1109/AHS.2014.6880165

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2572144 since:

IEEE / Institute of Electrical and Electronics Engineers



ABLUR: an FPGA-based adaptive deblurring core
for real-time applications
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Abstract—If a camera moves while taking a picture, motion
blur is induced. There exist mechanical techniques to prevent
this effect to occur, but they are cumbersome and expensive.
Considering for example an Unmanned Aerial Vehicle (UAV)
engaged in a save and rescue mission, where recording frames
of scene to identify people and animals to rescue is required.
In such cases, weight of equipments is of absolute importance,
and no extra hardware can be used. In such case, vibrations
are unavoidably transmitted to the camera, and recorded frames
are affected by blur. It is then necessary to deblur in real-time
every frame to allow post-processing algorithms to extract the
largest possible amount of information from them. For more
than 40 years, numerous researchers have developed theories
and algorithms for this purpose, which work quite well but
very often require multiple different versions of the input image,
huge amount of computational resources, large execution times
or intensive parameters tuning.
We propose ABLUR, a novel self-adaptive core, implemented
on a single Field Programmable Gate Array (FPGA) device,
that is able to perform the deblurring task of single input
images in real-time. The Dynamic Partial Reconfiguration (DPR)
feature of modern FPGAs is exploited to enable self-adaptation
of the deblurring algorithm parameters to the input images
characteristics.
Experimental results show the limited amount of logic and mem-
ory resources required by the proposed hardware architecture.

I. INTRODUCTION

Nowadays, computer vision is one of the most evolving
areas of Information Technology (IT). In every computer
vision application, one or several images are taken from a
camera, and processed, in order to extract information, used,
for instance, for features identification [1], edge detection [2],
or image registration [3].
However, there are cases in which it is not possible to rely
on images’ quality, as they may be affected by noise [4] or
motion blur [5].
While capturing a frame, the camera must maintain the shutter
opened for a finite amount of time, in order to acquire the
proper amount of light and take a well defined image; relative
movements between the camera and the scene during this
interval induce motion blur in the captured image.
It is very difficult to obtain good results by processing blurry
frames, and so input images must be firstly enhanced, in order
to identify targets or extract information from them.
Restoring the latent image from the input blurry one has long
been a challenging problem in digital imaging (e.g., [6], [7],

[8]).
Authors have modelled the task as a two dimensional deconvo-
lution process [9]. This simplification holds on when the blur is
considered spatially invariant (or shift-invariant), meaning that
every point in the original image spreads out the same way in
forming the blurry image [10]. In this case, the blurry image is
the result of the 2-D convolution of the real scene image with
the blur kernel, also known as Point Spread Function (PSF)
[11].
However, even in this simplistic case, to accomplish the
deblurring task it is necessary to deal with 2-D deconvolution,
that is well known to be an ill-conditioned and heavy task [12].
As 2-D convolution cannot be directly inverted, it is necessary
to perform complex mathematical operations to retrieve the
real image hidden behind the blurry input [13]. For this reason,
deblurring algorithms are usually unable to achieve real-time
performances.
Researchers in this field have always been more attracted by
developing software than hardware accelerated solutions to the
problem of deblurring, e.g., proposing interesting but slow
solutions as in [14]. Very often, to obtain acceptable output
results, a tuning phase is required in order to setup the deblur-
ring algorithm parameters. In addition, a new setup phase is in
general required when the input images characteristics change
(e.g., due to contrast or brightness variations).
In literature, hardware is usually exploited as a medium to
collect more in-depth information about the blurring procedure
(e.g., by using sensors to detect the relative camera motion [15]
[16]) rather than a way to speed-up mathematical calculations
and, thus, software deblurring approaches.
Moreover, when dealing with real-time systems, a software
implementation of complex algorithms cannot be used, since
it does not meet the required performances. In this context,
modern Field Programmable Gate Arrays (FPGAs) represent
a good choice to hardware accelerate computational intensive
software algorithms. FPGA-based implementations are often
preferred to follow the current trend based on replacing Appli-
cation Specific Integrated Circuits (ASICs) with more flexible
FPGA devices, providing lower Non-Recurrent Engineering
cost and time-to-market, even in mission-critical applications
[17].
This paper proposes ABLUR, an adaptive hardware architecture
that is able to deblur single input 1024*1024 frames in
real-time, using a single reconfigurable FPGA device. The
algorithm described in [18] has been choosen to be opti-
mized and implemented on a modern FPGA to achieve high



performances, while obtaining high-quality outcomes. Main
contribution of this paper is to exploit the Dynamic Partial
Reconfiguration (DPR) feature (i.e, the ability to dynamically
change selected portions of a circuit, while the rest of the
design is left unchanged and fully functional [19] [20]) to adapt
the algorithm parameters to the input images characteristics,
that are not always predictable.
The paper is organized as follows: Section II presents an
overview about existing deblurring approaches, Section III
details the chosen deblurring algorithm and the proposed self-
adaptive architecture, Section IV discusses the experimental
results and, finally, Section V summarizes the contributions
and obtained results.

II. DEBLURRING ALGORITHMS OVERVIEW

The problem of developing an algorithm to recover latent
images from blurry input ones has thrilled the scientific com-
munity during the last four decades; one of the very first works
on this topic is presented in [21], where an iterative procedure
is used for recovering a latent image that has been blurred by
a known PSF.
Some of the most important contributions given to the state-
of-the-art are here listed.
Classical deblurring approaches can be classified in blind and
non-blind algorithms. While the former approach does not
need any information about the blur kernel, the latter requires
at least an estimated value. In any case, the problem is severely
unconstrained [22].
Early works on deblurring usually model the blur kernel using
simple shapes and priors, as in [23]. On the other hand, these
exemplifications may lead to poor results when applied to
natural images [18].
Linear motion blur kernel model used in many works is very
often overly simplified for true motion blurring [24]. Authors
in [25] state that the contents of real-world images can vary
significantly across different frames or different patches in the
same image. So, it is possible to learn various sets of bases
from a pre-collected dataset of sample image patches and then,
for a given patch to be processed, adapt one set of bases to
characterize the local sparse domain.
During the last years, to consider more complex blurring mod-
els, several multi-image based approaches have been proposed.
These methods estimate the blur kernel by analysing multiple
images of the same scene [26], [27]. Although these ap-
proaches have the advantage of discarding too simplistic (and
often unrealistic) assumptions, they cannot be applied when it
is necessary to work on single input images. For example, [28]
presents a hybrid camera system equipped with two imaging
sensors. It can simultaneously captures high-resolution video
together with a low-resolution one that has denser temporal
sampling. Frames captured with higher temporal frequency are
less affected by blur, since the smaller camera occlusion time
is, the fewer relative movements between camera and scene
are. Using the different information retrievable at the same
moment from the two sensors, it is possible to deblur frames
in the high resolution video and to contemporaneously estimate
new high-resolution video frames from the low-resolution
input ones.
Super-resolution (SR) is an imaging technique that leverages
multiple low-resolution frames to construct a high-resolution
frame [29]. It involves an exchange of information from frames

basing on the assumption that the target has remained invariant.
The majority of the work published on SR focuses on the
mathematical algorithms behind SR and the ability to over-
come inherent obstacles such as non-uniform blur [30], and
motion estimation errors [31]. However, SR approaches are
not suitable when a single standard camera is employed.
An interesting single-image deblurring approach based on
Hyper-Laplacian priors is presented in [18]. Theoretical basis
behind this method rely on the fact that typical gradients distri-
butions in real-world scene images have been proven to be well
modelled by a Hyper-Laplacian distribution (p(x) ∝ ek|x|

α

),
with 0 < α < 1. However, the usage of such sparse
distributions makes the problem more complex, thus slow to
solve.
To speed-up the algorithm, authors in [18] present a method
that splits the deblurring task into two separated sub-problems.
Both these two phases aim at minimizing a cost function to
retrieve the most probable latent image. This method proved
to be very fast since the most time-consuming computations
can be avoided by using a Look-Up-Table-based approach.
However, it requires a heavy tuning phase before providing
good quality outcomes.
For what concerns deblurring approaches, hardware acceler-
ation has been mainly used for SR [32], [33]. To the best
of our knowledge, we present for the first time a hardware
implemented FPGA-based core, here called ABLUR, able to
perform single-image deblurring in real-time. It exploits the
algorithm presented in [18], avoiding human interaction during
the algorithm parameters tuning phase, by self-adapting to the
input images characteristics at run-time.

III. ABLUR ARCHITECTURE

The aforementioned approach presented in [18] has been
chosen because it has proven to be very fast and accurate;
moreover, it is based on the Discrete Fourier Transform (DFT),
an operation that is easily implementable in hardware [34]. We
have developed a hardware architecture that is able to deblur
single 1024x1024 pixels images in real-time (i.e., 25 frames-
per-second, fps).
As explained in [18], the problem of restoring a latent image
x, starting from the input blurry one y, can be solved in the
frequency domain, exploiting Eq. 1.

x = F−1
(
F(−f1 ⊕ w1 − f2 ⊕ w2) + λ · F(K)∗ · F(y)
‖F(F 1)‖+ ‖F(F 2)‖+ λ · ‖F(K)‖

)
,

(1)

where F(Z) and F−1(Z) denote the two-dimensional direct
and inverse DFT of a matrix Z, respectively [35], and ‖Z‖
represents the matrix obtained by applying the modulus oper-
ator to each element of Z.
In Eq. 1, ∗ is the complex conjugate, ⊕ is the convolution
operator and · denotes component-wise multiplication (the
division is also performed component-wise), while λ is a
weighting constant, choosen equal to 2000 in authors’ MAT-
LAB implementation1. Moreover, since this method belongs
to the family of non-blind deblurring algorithms, it requires
in input the blur kernel, represented with its Optical Transfer
Function (OTF) K. The OTF models the transfer function of
an optical system, and is represented as a matrix as big as the

1http://dilipkay.wordpress.com/fast-deconvolution/



input image [36].
Instead, F 1 and F 2 are the OTFs of f1 and f2, that are the
two first-order derivative filters in the x and y axis, respectively
(f1 = [1 − 1] and f2 = [1 − 1]T ).
Finally, w1 and w2 are computed as:

w1 = argmin
w
|w|α +

1

2
(w − v1)2

w2 = argmin
w
|w|α +

1

2
(w − v2)2,

(2)

where

v1 = y ⊕ f1

v2 = y ⊕ f2.
(3)

In Eq. 2, α is a parameters related to the distribution of the
gradients in the input image, and in general it is between
0 < α < 1 for real-world images, denoting a Hyper-Laplacian
ditribution [18], while argminz f(z) represents the values of
z that minimize the function f(z).
Authors propose to solve Eq. 2 by using a Look-Up Table
(LUT), which, for a fixed α, stores pre-computed data (i.e., w1

and w2), for each possible vi. Obviously, data are discretized,
in order to limit the LUT size. In addition, they propose to
compute off-line F(K)∗ and the whole denominator from
Eq. 1 as they do not depend on the input image y.
However, this algorithm presents two main limitations:

1) it is a non-blind deblurring algorithm, which implies
that the exact blur kernel should be provided as an
input parameter to correctly restore an image;

2) it requires a tuning phase that has major impacts on
the final produced outcomes, as the value of α has to
be fixed, for each input image.

To effectively implement this algorithm on an FPGA device,
some considerations and optimizations have been done.
Concerning the first problem, from the knowledge of the
system (e.g., vibrations induced to the camera or expected
relative motion between camera and the scene), a generic
estimation of the blur kernel can be employed as input. Tests
have demonstrated that this algorithm is quite robust to errors
in the initial kernel estimation, which can be fixed a-priori,
and applied on each image at run-time (see Section IV).
To solve the second problem, we propose to estimate at run-
time the distribution of the input image gradients, characterized
by α, thus adapting the computations to the actual image scene
characteristics.
It is worth noting that, with respect to Eq. (1), since the OTFs
K, F 1 and F 2 are fixed a-priori, the denominator is fully off-
line pre-computable thus, at run-time, it can be retrieved from
an external memory.
Figure 1 shows the overall architecture of ABLUR.
ABLUR processes a stream of 8-bit packets representing a
sequence of 1024x1024 grey scale frames, with 8 bit per
pixel (bpp) resolution. It is assumed that the image pixels are
received in a raster format, line-by-line from left to right and
from top to bottom. ABLUR outputs a stream representing the
deblurred input frames, with the same bpp resolution.
Several interfaces to external memories are also needed in
order to store temporary data, that cannot be efficiently kept
in the FPGA internal memory resources.

Figure 1. ABLUR block diagram

The following subsections detail all the main modules com-
posing ABLUR.

A. Input Image Fast Fourier Transform module (FFT(y))

This module computes the two-dimensional Fast-Fourier
Transform of the input image. Since the input image is
1024x1024 pixels, it outputs a matrix of 1024x1024 64-bit
complex values (both the real and the complex parts of each
value are represented on 32-bits).
In literature, many real-time FFT hardware modules have been
presented (e.g., [37], [38]). Since the focus of this paper is
not to present an architecture that implements the Fast Fourier
Transform, this module has been implemented resorting to the
Xilinx LogiCore Fast Fourier Transform core [39].
However, to compute a two-dimensional fourier transform, two
phases must be performed. First, the FFT is computed for each
row of the image, and stored in External Memory 1. Then, the
final FFT results are computed by retrieving the temporary
FFT data in a column order [40].
This module is also in charge of computing the Inverse FFT
in Eq. 1, to extract the deblurred image results.

B. Gradient calculator

This module computes the gradients (i.e., v1 and v2) of
the input image by convolving it with the filters f1 and f2

(see Eq. 3). Figure 2 shows the internal architecture of the
Grandients calculator module.

Figure 2. Gradient calculator architecture

For each pixel composing the input image, it outputs the
associated gradients in the x and y axis (i.e., v1 and v2).
Since the input images are received in a row-by-row raster



format, and the convolution with the filters f1 and f2 operates
on adjacent pixels in the x and y axis, a First-In-First-Out
(FIFO) buffer is needed to store a single 1024 pixels row of
the input image (i.e., Row Buffer in Figure 2). This buffer has
been implemented using a single FPGA internal Block-RAM
(BRAM) memory resource [41]. At startup, the FIFO buffer
is filled with all the pixels associated to the first row of the
image. Then, whenever a new input pixels is received, it is
stored inside the buffer. Leveraging the dual-port feature of
the BRAMs, in the same clock cycle, the oldest stored pixel
is read-out. The new read-out pixel is used, in conjuction with
the last read-out one, stored in the register FF in Figure 2, to
compute v1. Simultaneously, the read-out pixel is subtracted
to the actual received pixel to compute v2.

C. α estimator

The α estimator module computes the α parameter (see
Eq. 2) that best fits the characteristics of the input images. The
resulting value of α is used to select the right configuration of
the w calculator LUT, to be applied to the following image.
This is acceptable since, at real-time frame rate (i.e., 25 fps),
the image characteristics are very similar between the actual
frame and the following one.
In particular, α characterizes the gradients distribution of
the input image, that, for real-world image, follow a hyper-
laplacian distribution (i.e., p(x) ∝ e|x|

α

where 0 < α < 1)
[18]. The distribution of the gradients can be computed by
extracting the gradients histograms.
As shown in Figure 3, the α estimator is composed by two
main sub-modules: (i) the Histogram Calculator, and (ii) the
α selector.

Figure 3. α estimator architecture

The Histogram Calculator computes the histogram of the input
image gradients. Its internal architecture, shown in Figure 4,
is based on two dual-port BRAM buffers (i.e., BRAMx and
BRAMy), each one associated to a 20-bit counters.
The values of v1 and v2, received from the Gradients calcu-
lator, are used to address the two buffers. Within the same
clock cycle, the two read-out values are incremented by one,
and stored in the same address location of the respective
buffer. During this phase the α read signal is set to 0 by
the Controller. When all v1 and v2 values are received, the
Controller sets the HD signal, indicating that the two buffers
contain the complete histograms associated to the gradients in
the x and y directions.
The α selector, using a Look-Up Table (LUT) approach,
outputs the α value that best fits the computed histogram
distribution. In particular, it contains the αLUT, as shown
in Figure 5, which stores 12 α values in the range (0.40,
0.95), discretized with a step of 0.05. Figure 6 plots the hyper-
laplacian distributions associated to some α stored in the αLUT
and their average slopes in the ranges [−30,−20] and [20, 30].

Figure 4. Histogram calculator architecture

Figure 5. α selector internal architecture

As can be noted from Figure 6, looking to the slopes of the
functions in the ranges [−30,−20], or [20, 30], is sufficient to
discriminate between hyper-laplacian functions with different
α values. Thus, the α selector reads from both histogram
buffers the values of the histogram bars, associated to the
gradient values 20, -20, 30, and -30, only. To accomplish this
task, the Controller of the Histogram Calculator sets α read
to 1, while the HIST Address signal is used by the α selector
to extract the histogram bar values HBx and HBy , associated
to the aforementioned gradient values.
Then, the average slope of the hyper-laplacian function in the
selected range is computed and used to address the αLUT in
order to extract the α parameter (Figure 5).
It is worth noting that, although only few values are used, we
have chosen to compute the whole gradients histograms since
these information are often exploited by subsequent image
processing algorithms (e.g, for edge detection [42]), thus they
can be an additional output of ABLUR. In any case, this
computation does not affect the overall performances, and it
requires very few resources.

D. Reconfiguration Manager

The Reconfiguration Manager receives in input the α,
computed by the α estimator, and retrieves, from an external
memory the partial configuration bitstream associated to the
new chosen configuration for the LUT in the w calculator. The



Figure 6. Hyper-Laplacian distributions with different α values

configuration bitstream is then written to the internal configu-
ration port (i.e., ICAP in Xilinx FPGAs [43], or Configuration
Control Block in Altera ones [20]), located inside the FPGA
device, and directly connected to its configuration memory.
At the end of the reconfiguration process the w calculator LUT
contains the updated values, corresponding to the selected α,
that can be used to compute w during the next image cycle.

E. w calculator

The w calculator module operates in two consecutive
steps. First, it solves Eq. 2 using a LUT approach. Basically,
it receives v1 and v2; as the LUT stores the corresponding
values of w for discretized v values, it is possible to compute
w1 and w2 very fast. For each different value of α a different
LUT is required (as Eq. 2 depends on α).
To ensure a good approximation, for a fixed α, the LUT
contains 104 w1 and w2 32-bits values, as proposed in [18],
leading to the usage of two 312,5 Kbits memories (each one
used to compute w1 and w2, respectively).
In order to save FPGA internal memory resources, at run-
time, only the LUT associated with the actual estimated
value of α is instantiated inside the FPGA device. Run-time
partial reconfiguration is then exploited to change the LUT
configuration when the α value changes.
Afterwards, w1 and w2 are convolved with the negated values
of the filters f1 and f2, using the same architecture as in Fig
2. Finally, the two convolved values are added togheter (see
Eq. 1) to calculate the value of the w that is the output of
this module.

F. w Fast Fourier Transform module (FFT(w))

This module computes the two-dimensional Fast-
Fourier Transform of the values received from
the w calculator. It is important to note that the
received values represent a 1024x1024 elements
matrix.
As the FFT(y) module, the FFT(w) has been implemented
resorting to the Xilinx LogiCore Fast Fourier Transform core
[39].

G. Formula Solver

The Formula Solver module is in charge of computing
the sums and the component-wise division required by Eq.
1. This module receives F(y) and F(w) as inputs, and reads
an external memory to retrieve both F(K)∗ and the whole
denominator D, which are pre-computed off-line (see Section
III).
This module outputs a 1024x1024 complex matrix on which
will be applied the inverse Fourier Trasform to retrieve the
deblurred output image.

H. Control Unit

This module coordinates the operations of all the aforemen-
tioned modules. In fact, ABLUR operations can be grouped in
four phases.
During the first phase, while the input image is received,
the FFT(y), the Gradients Calculator, the w calculator, the
FFT(w), and the α estimator modules are activated. In par-
ticular, FFT(y) and FFT(w) compute the first part of the two-
dimensional Fourier Transform, on the rows of the respective
input matrices (as mentioned in Section III-A and Section
III-F), while α estimator computes the gradients histograms.
In the second phase, when the image is completely received,
FFT(y) and FFT(w) computes the second part of the Fourier
Transforms, retrieving the data computed during the first phase.
In the meanwhile, α estimator outputs the α value. During this
phase, the Formula Solver receives in input all the data needed
to compute the sums and the division in Eq. 1.
In the third phase the FFT(y) module is used to compute
the first part of the inverse Fourier Transform of the values
extracted by the formula solver, while the Reconfiguration
Controller reconfigures the w calculator LUT with the chosen
configuration, reading the estimated α value.
Finally, in the fourth phase, the same module computes the
second part of the inverse Fourier Transform and outputs the
deblurred image values.

IV. EXPERIMENTAL RESULTS

To evaluate the hardware resources usage and the timing
performances of the proposed architecture, ABLUR has been
synthesized and implemented, resorting to Xilinx ISE Design
Suite 14.6, on a Xilinx Virtex 7 VX485T FPGA device. Post
place-and-route simulations have been done using Modelsim
SE 10.0c to annotate the switching activities of internal nodes,
and Xilinx XPower Analyzer has been exploited to estimate the
overall power consumption.
Table I reports the FPGA resources usage of each internal
module, along with the percentages of consumed resources
with respect to the ones available in the selected device.
From Table I it is possible to note the limited hardware
resources consumption, in terms of both logic (i.e., LUTs and
Digital Signal Processors (DSPs)) and memory resources (i.e.
BRAMs), for the selected device.
The 37 internal memory resources consumed by the w calcu-
lator are needed to store the Reconfigurable LUT associated
to the run-time selected α value. The reconfiguration of this
Look-Up Table requires 0.2 ms, since the configuration bit-
stream is about 80 KBytes, and the maximum bandwidth of the
internal reconfiguration port (called ICAP in Xilinx devices)
is equal to 3.2 Gbit/s [43]. This reconfiguration time does



Table I. Resource Usage for Xilinx Virtex 7 VX485T FPGA device

Module
FPGA Area Occupation

LUTs FFs BRAMs DSPs
Control Unit 1,347 113 - -

FFT(y) 2,207 376 16 94

FFT(w) 2,207 376 16 94

Gradients Calculator 112 35 1 -

α estimator 315 34 2 -

w calculator 265 53 37 -

Reconfiguration controller 150 66 - -

Formula Solver 2,113 560 - 4

Total 8,716 (2.87%) 1,613 (0.27%) 72 (3.50%) 192 (6.86%)

not influence the overall throughput, since the reconfiguration
process can be performed while carrying out the final inverse
Fourier transform, that is more time consuming.
At the maximum operating frequency of 255 MHz, ABLUR is
able to process 29 1024x1024 frames per second, thus achiev-
ing real-time performances. This working frequency leads to
a power consumption of about 664 mW, where the major
contribution is given by the clock generation and distribution
circuitry (1 Digital Clock Manager FPGA internal resource is
used to generate the system clocks [44]) and by the internal
Digital Signal Processors (DSPs) modules [45].
To demonstrate the effectiveness and to quantify the accuracy
of the proposed self-adapting approach, a test environment
has been developed to read sharp natural-world images and
injecting motion blur. The proposed architecture has been
modeled as a Matlab script resorting to a fixed-point algebra
to emulate the actual hardware precision. The Matlab model
has been used also to perform functional verification of the
implemented hardware architecture.
During the test phase, a motion blur kernel was used to
simulate relative movements between camera and scene that
are 7-pixel long and with an angle of 3 degrees with the x axis.
The test environment is based on Matlab R2012b, running on
Windows 7 x64 on a Notebook PC equipped with an Intel
Core i5-2450M @2.50GHz CPU and 8 GB of RAM.
After injecting blur in the original images, the test environment
invokes the deblurring function, implementing in software the
algorithm executed by ABLUR. The blur kernel k passed to the
algorithm is a minor perturbation of the true kernel, to mimic
kernel estimation errors, as done in [18].
Tests have been performed on 100 1024x1024 pixels images.
For each image, a software routine finds the α value that best
fits the image gradients distribution. This value is also the
one that minimizes the error between the reconstructed latent
image, and the original input one. In particular, to quantify the
quality of the reconstructed images, we used the Root Mean
Square Error (RMSE), computed as:

RMSE(L,O) =

√∑1024
i=1

∑1024
j=1 (Li,j −Oi,j)2

1024 · 1024
(4)

where Li,j and Oi,j represent a pixel in position (i, j) in the
latent and original images, respectively.
Figure 7 shows two images examples along with their hyper-
laplacian gradients distributions, characterized by two different
α values.
Instead, the graph in Figure 8 shows the RMSE results while
applying the algorithm implemented in ABLUR, with different

(a) Blurry image (b) Image gradients and Hyper-
Laplacian fitting

(c) Blurry image (d) Image gradients and Hyper-
Laplacian fitting

Figure 7. Real-world scene images affected by blur and their gradients dis-
tribution, together with the Hyper-Laplacian that better fits them (represented
with black crosses)

Figure 8. RMSE of the recovered latent images w.r.t. the original ones, varying
the input α value, for the two examples in Figure 7 (the minimum RMSE is
highlighted with a circled star)

α values.
It can be noted that the optimal α value is different between
the two images, and correspond to the ones that characterize
their Hyper-Laplacian gradients distribution.
During simulations ABLUR was able to identify the optimal
α value, with a 0.05 resolution, thus ensuring equals, or even
better outcomes w.r.t using a static α input.
In addition, since the hardware implementation of ABLUR uses
fixed-point data representation, we evaluated the error intro-
duced w.r.t. using a software implemented double precision
version of the same algorithm. Figure 9 shows the visual results
and the RMSE values of ABLUR and software double precision
version outputs.
For the sake of completeness, the output results of ABLUR
have been compared with the ones obtained by other single-



(a) Latent image restored by
ABLUR

(b) Latent image restored by dou-
ble precision software algorithm

Figure 9. Example from Figure 7 deblurred by ABLUR (RMSE=0.044) and
by software implemented double precision version of the same algorithm
(RMSE=0.039)

image deblurring approaches (i.e., [18] and two MATLAB
built-in functions Deconvlucy and Deconvblind, both based on
the algorithm discussed in [21]). Results are summarized in Ta-
ble II, and show that ABLUR achieves real-time performances
while still providing high quality outcomes. Slight worsening
in RMSE are due to approximations of the considered fixed-
point algebra. The average elapsed time and the average RMSE
are computed over 100 runs.

Table II. Comparison among deblurring approaches in terms of execution time
and RMSE

Algorithm Avg Elapsed Time (s) AVG RMSE

ABLUR (HW) 0,034 0,0574
[18] 2,094 0,0409

Deconvlucy 3,126 0,0454
Deconvblind 6,396 0,0455

ABLUR ensures a speed-up of about 60x with respect to
the Matlab version of the algorithm proposed in [18], while
providing still acceptable results.
Deconvlucy and Deconvblind provide similar results in terms
of RMSE, while being more time consuming w.r.t. the ap-
proach exploited by ABLUR [18].
Finally, we briefly discuss a possible example of usage of
ABLUR. Consider an Unmanned Aerial Vehicle (UAV) en-
gaged in a save and rescue mission, recording frames of scene
to identify people to rescue while flying. To automatically
detect people in difficulties, it could be useful to detect edges
in every frames; such edges may be compared to typical human
shapes, so that an alarm is triggered when possible human tar-
get is found. However, in such case, vibrations are unavoidably
transmitted to the camera, and recorded frames are affected by
blur, so that small edges are confused (or even totally hidden)
by blur and impossible to detect. It is then necessary to deblur
in real-time every frame to allow post-processing algorithms to
extract the largest possible amount of sharp edges from them.
Figure 10 shows the outcome of an edge-detection algorithm
applied on the original image, its blurry version and the the
latent image recovered by ABLUR. As is highlighted in this
example, edges are definitely more sharp and detailed when
extracted from the deblurred image, and very similar to the
ones extracted from the original image.

(a) Original sharp image (b) Edges extracted from original
image

(c) Blurry image (d) Edges extracted from blurry
image

(e) Latent image restored by
ABLUR

(f) Edges extracted from de-
blurred image

Figure 10. Example from Figure 7 deblurred by ABLUR and edges extracted
from blurry and deblurred image

V. CONCLUSION

This paper presented ABLUR, a high performance FPGA-
based adaptive deblurring core for real-time applications.
ABLUR is able to self-adapt the deblurring parameters to the
characteristics of the input image, resulting in more accurate
outcomes.
Experimental results show the limited FPGA hardware re-
sources consumption and an improvement of the quality of
the recovered latent image w.r.t. the one obtained from a
static deblurring approach. These enhancements allow better
precision of all the following image processing modules (e.g.,
edge detector), that receive in input the deblurred image.
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