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Abstract—An important and emerging component of 

planetary exploration is sample retrieval and return to Earth. 

Obtaining and analyzing rock samples can provide 

unprecedented insight into the geology, geo-history and prospects 

for finding past life and water.  Current methods of exploration 

rely on mission scientists to identify objects of interests and this 

presents major operational challenges.  Finding objects of 

interests will require systematic and efficient methods to quickly 

and correctly evaluate the importance of hundreds if not 

thousands of samples so that the most interesting are saved for 

further analysis by the mission scientists.  In this paper, we 

propose an automated information theoretic approach to identify 

shapes of interests using a library of predefined interesting 

shapes.   These predefined shapes maybe human input or 

samples that are then extrapolated by the shape matching system 

using the Superformula to judge the importance of newly 

obtained objects.  Shape samples are matched to a library of 

shapes using the eigenfaces approach enabling categorization and 

prioritization of the sample.  The approach shows robustness to 

simulated sensor noise of up to 20%. The effect of shape 

parameters and rotational angle on shape matching accuracy has 

been analyzed.  The approach shows significant promise and 

efforts are underway in testing the algorithm with real rock 

samples. 

Keywords—sample return, robotic sample retrieval, perception, 

information theory, Superformula, principle component analysis. 

I. INTRODUCTION 

Planetary exploration has benefitted from rapid 
advancement and miniaturization of electronics, sensors and 
actuators.  Advancements have been made in autonomous 
control systems, particularly in simultaneous, localization and 
mapping (SLAM), obstacle avoidance, low-level planning and 
vision.  However, planetary robotics typically requires humans 
in the loop, particularly, teams of missions scientists to guide 
their every move as the missions are science focused.  The long 
latencies of 9 to 19 minutes to Mars, the relatively low 
communication bandwidth all slow the tempo of operations. 
These challenges will reduce the effectiveness and efficiency 
of robotic sample retrieval and sample return missions. 
According to the Planetary Science Decadal Survey [1], sample 
retrieval and sample return are identified as upcoming major 
goals in planetary science.  They are the focus of upcoming 
Mars 2020 rover and future missions.  Identification and return 

of the right sample can provide significant insight into a 
planet’s origins including its geo-history and origin of life. A 
good example is the Mars meteorite NWA 7034, “Black 
Beauty” found in the Western Sahara (Fig. 1) [2].  The sample 
has provided planetary scientist insight into Mars’ geo-history 
over its first 1.6 billion years.   

 

Fig. 1. Extraterresterial samples, including Mars Meteorite NWA 7034 [2] 

(top) and space dust magnified 3,000 times [3] (bottom) can give new insight 

into the geological history of early planetary bodies. 



 Finding such samples on the Martian surface will be a 

daunting challenge.  If such processes can be partly or fully 

automated, it would enable planetary robotics systems to sift 

through more samples efficiently, prioritize and identify the 

most scientific interesting samples for further examination by 

the human science team.   Beyond planetary exploration, this 

approach has relevance in identifying extra-terrestrial samples 

here on Earth. This includes stardust and particulate deposit 

from our neighboring planets, moons and asteroids (Fig. 1) 

[3].  Recent work has shown that these particles are 

everywhere on earth and at present requires a trained eye to 

distinguish between earth based dust particles [3]. 

 In this paper, we propose an autonomous robotic control 
system to examine rock samples and categorize them by 
finding nearest match for them from a library of interesting 
rock samples.  The matching process uses a Gaussian sensor 
noise model to generate probability of sample points used to 
describe a sample.  The probabilities of points are used to 
determine the information content of the sample.  Using the 
total information content, the shape is described using a linear 
set of eigenfaces of already identified library of “interesting” 
shapes [4].   

 By composing the identified shape as a set of eigenfaces, it 
is then possible to determine the best match of the sample to a 
library of interesting shapes.  The shapes are discounted if it 
fails to show closest match beyond an information theoretic 
threshold.  The library of interesting shapes is generated using 
the Superformula developed by botanist Johan Gielis [5].  
Alternately, the library maybe generated using human input 
and samples.  The Superformula has been shown to be used to 
describe natural objects including rocks, plants, trees and 
animals.  The algorithm can generate both symmetrical and 
non-symmetrical shapes.  Hence, the approach permits 
matching against a diverse number of interesting objects 
without having to have a library of 3D shape models.  Our 
approach allows for extrapolation of the library of relevant 
interesting shapes based on a given set of samples.   

 Our paper is organized as follows:  Section II presents 
related work, followed by presentation of the algorithm in 
Section III, analysis of the algorithm in Section IV, followed 
by discussion in Section V and conclusions in Section VI. 

II. BACKGROUND AND RELATED WORK 

There exists a significant number of exploration planning 

algorithms capable of navigating and mapping previously 

unknown environments [6-9]. However, these algorithms are 

most often designed to maximize the efficiency of mapping an 

area without incorporating the possible value of other factors 

like object analysis (for sampling) and evaluation. 

 One of the more rigidly defined challenges of this line of 

research is the definition of the specific metric by which 

interest, value and cost are to be judged [9]. The quantification 

of interest is a function of the definition of interest. Similarly, 

the quantification of cost must follow logically from a well-

defined framework. There must also be a method of relating 

the relative importance of these two qualities. Fortunately, 

while the method of comparing the costs and benefits is 

fundamentally subjective and contextual, the costs themselves 

may be far more easily quantifiable.  

 An important challenge associated with this project is 

identifying a point of interest and classifying it as interesting. 

There are a plethora of different variables that could be 

assessed when considering interest. Temperature, shape, and 

color are just a few of the possibilities [9]. Even after defining 

this of these variables to consider, categorizing them or 

quantifying them in terms of interest is not a straight forward 

task. Some have simple and immediately apparent approaches. 

For example, it may be easy to determine that a region is 

unexpectedly hot and therefore worthy of investigation 

because its temperature differs significantly from the 

surrounding environment. Other characteristics, however, are 

much more difficult to analyze. Shape in particular presents 

some unique challenges. First, shapes are, in a sense, 

subjective. While there is an established mathematical 

definition of shape, it's only really effective for categorizing 

identical shapes [10]. There are statistical approaches, but they 

tend to presume a foreknowledge of feature correspondence 

and/or discard important shape information [10]. Other 

approaches using trained neural networks to identify or 

organize shapes [11],[12],[13],[14]. Consequently, specific 

mathematical definitions of shape are insufficient for 

performing comparisons based on sensory similarity. 

After an object has been classified, another problem 

emerges: how to assign a metric that defines the interest value 

of that object. This is a separate but related challenge to 

defining a metric of interest. Each prototypical object or class 

of object can be assigned an interest value but it is highly 

unlikely that any object discovered in an environment will 

perfectly match one of these categories. As a result there must 

be some method of incorporating the quality of the 

categorization into the assigned interest value. Much like 

matching itself, the key difficulty of this task is assigning a 

numeric value to this quality. From a human perspective, it is 

fairly easy to draw these distinctions qualitatively. For 

example, it is fairly easy to say that an ellipse is more like a 

circle than it is like a square. This comparison does not, 

however, present a metric that defines how much more similar 

to a circle an ellipse is than it is to a square. 

From the standpoint of the categorization of real objects, 

the answer to these questions depends on the task. If it is a 

task in which the object to be identified can take either curved 

or straight forms, or forms with convex and concave curves, 

then these naturally fall into the same category. The inverse is 

true if each shape exists in a separate category. Similarly, the 

importance of closeness of match can vary with specifications. 

If the objects being sought have a wide variation then matches 

less similar to the prototypical shape are still valuable, while 

objects that have little variation should closely hew to the 

definition of the category. The challenge that derives from 

this, then, is to develop a system that can be adjusted to match 

a wide variety of shapes to a category depending on the needs 

of the situation. 

In this work, we set out to develop a system of 

categorizing the interest value of detected features. This 



system is intended to assign interest values to categories of 

detected features based on an information-theoretically based 

shape-matching technique that will provide the most likely fit 

for the detected object and a natural modifier that can change 

the weight given to the shape based on the quality of the 

match to the figure. 

For the task of identifying interesting shapes, we first 

develop techniques to assemble a library of interesting shapes.  

One promising method for generation of these interesting 

shapes is using the Superformula developed by Gielis [5].  It is 

a simple formula that allows for the generation of complex, 

asymmetric shapes that can mimic the shapes of a wide variety 

of natural, organic, and man-made objects using only a small 

handful of inputs. The simplest form of the equation is: 
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Its coefficients can be modified to produce different 

shapes taking a number of very different forms.  These include 

the geometric, organic looking, as well as strange, asymmetric 

shapes that are difficult to describe.   Some examples of three-

dimensional shapes generated using the Superformula is 

shown in Fig. 2.  The Superformula has found a niche in 

gaming.  In particular, games such as “No Man’s Sky” are 

thought to use Superformula-like algorithms to dynamically 

generate natural/near natural looking objects in a computer 

generated universe.   

 

   

Fig. 2. Example shapes of generated using the Superformula [5]. 

This computer generated universe is expansive, yet has 

significant microscopic detail, with rocks, trees, animals and 

other object described using a Superformula like algorithm 

(Fig. 3). 

III. ALGORITHM 

 In this section, we describe the shape matching algorithm 
used to detect and classify shapes of objects founds against a 
library of desirable shapes.  Fig. 4 shows the major steps in the 
algorithm.  This shape matching process starts with detection 
of a rock sample and conversion of the outlines of the sample 
into polar coordinates.  Once the base shape generation process 
is completed, the information measuring is started. The first 
component of this process is the generation of a probability 
distribution. For this work,  a normal distribution was selected 
because it is the simplest kind of probability distribution to 
work with and not an unreasonable approximation of the error 
profile of many sensors.  

 
Fig. 3. Screenshot from the video game, “No Man’s Sky” released in 2016.  

This space exploration game consists of a procedurally generated artificial 

universe with objects including rocks, plants and animals generated using 

Superformula-like algorithms. 

The default value of standard deviation for this distribution was 
chosen to be 0.1. Using the calculated normal distribution, the 
process generates the probability components. The first is 
created by generating a series of one-dimensional rays of 
length 1/unit corresponding to every angle used in the re-
generation of the shapes. These rays are then divided into 
sections, with each section being the length of a unit of 
resolution. The cumulative distribution function of the 
previously generated normal distribution is then used to 
calculate the probability of an obstruction existing with each 
section. This probability is calculated based on the assumption 

that the points should exist on a circle of radius 0.5√2 centered 
in the middle of the analysis map.  

These probability values are then converted into information 
units using Shannon's source information equation: 

𝐻(𝑟, 𝜃) = 𝑝(𝑟, 𝜃) ∗ log2 (
1

𝑝(𝑟, 𝜃)
) 

where p(r,θ) is the probability of an obstruction existing in 

section r of ray θ. While any information unit should be 

functional for this process, Shannon's bits were selected for 

the purposes of this work. 

After this process is complete, a separate set of 

probabilities is generated. These values are to be used to 

modify the probability vectors generated in the previous 

process. These probabilities are generated using the same rays 

as the first set of probability values. However, instead of 

calculating their probability value relative to the radius of 

some circle, the points are calculated from a normal 

distribution centered on the radii of one of the generated 

shapes. The information values calculated in the previous 

section are then multiplied by this value to produce a unique 

projection of each shape. 

Once these values have been calculated, they are plotted 

onto a grid map. This is the final result that is processed 

through the matching algorithm. The following examples are a 

few of these shapes and the Superformula shapes that they 

have been generated from. The logic behind this process is 

fairly simple. It is assumed that if there is an obstruction point 

than it is part of some larger object. The sensor scanning this 

object will have a corresponding error. The equation used 



assumes that all obstructions will take the shape of a circle and 

calculates the information value of finding a point anywhere 

on the map based on that circle and the sensor standard 

deviation. The choice of a circle is arbitrary and any shape 

could be substituted, a circle was selected primarily for the 

sake of simplicity. The specific equation used is the one 

Shannon used to determine the information value of an 

information source. 
 

 

Fig. 4. The shape matching algorithm. 

The values are distributed instead of summed. Initially it 

seemed that generating information values directly from the 

shape would not work. Realizing that the eigenfaces algorithm 

is an image matching technique, a work-around was created 

implementing the circle based technique with the modifiers. 

The logic of it, relating back to information theory, is that this 

will correspond to a measure of the information gained by 

knowing a point exists at a location relative to both the 

assumed circle and the shape it is theorized to be a component 

of. 

A second variant of the technique makes the comparison 

not against a circle but against a defined shape. Instead of 

using the probability of an obstruction existing at a point 

relative if the object is assumed to be a circle, it is the 

probability that an obstruction exists at that point if the object 

is scanned is one of the Superformula generated shapes.   

 

Otherwise, it is generated using the elements as the 

implemented equation. The logic of this process with relation 

to Information Theory is much clearer. Using this technique, if 

one were to trace a shape in a circle around the center of the 

map and collect one of the values at each angle it would be a 

representation of the amount of information gained by 

discovering that that was the actual shape rather than the 

Superformula shape it is assumed to be. Naturally, as this 

value decreases, the actual shape becomes increasingly similar 

to the Superformula shape it is being matched against. The 

following shape is generated using this technique (Fig. 5). 

   

 

Fig. 5. Family of rounded-triangles generated using the Superformula. 

The lighter areas represent higher values and the darker ones 

represent lower values. The high values are generally on the 

order of 10-4 and the lowest non-zero values are usually on the 

order of 10-12. These values can vary by the shape used. 

 

A. Matching 

The next important step in the process is to match the given 
shape against a library of interesting shapes.  We first generate 
a set of eigenfaces of the information weighted set of points of 
each shape according to the process outlined in [4].  Examples 
of the information weighted points of sample shapes are shown 
in Fig.  6. Using the eigenfaces algorithm it is then possible to 
decompose the shape to classify into a linear combination of 
eigenfaces.  Here we describe how we develop the eigenfaces 
in further detail. The eigenfaces algorithm takes as its initial 
input a set of shape images, these are known as the training 
shapes (shapes of interest). These images are input as M × N 
grids. These images need not be square, but all images must be 
of the same dimension (M × N). The pixels in these images are 
then reduced to grayscale values and the grid itself is converted 
into a vector of length M·N. 



Fig. 6.  (Top Row) The shape matching algorithm determines relative information content of shapes compared to the circle.  The brightest contour shows 

regions of high information content that form ‘dinstinctive features,’ consisting of sharp and blunt edges/corners. (Bottom Row) Corresponding ‘base 

shapes’. 

 Once in this state, a mean shape vector is calculated by 
taking the average of all of the corresponding points on all of 
the face vectors. This mean face vector is subtracted from each 
face, to reduce the images into their differences from the mean, 
a process known as normalizing or normalization. These 
normalized vectors are then processed using principal 
component analysis to create a series of eigenvectors that best 
describe the distribution of the shapes in the training set, 
referred to in the Turk and Pentland paper as “face space” [4].  
Principal component analysis is used to find a smaller number 
of uncorrelated variables from a larger set of data. 

One of the key components of this process is the 

reduction in the size of the data set needed to compare after 

the principal component analysis from an M·N eigenvalues 

and eigenvectors to a number of vectors that is less than the 

total number of input images. This can be done because when 

there are fewer input images than there are data points, there 

will be a smaller number of useful vectors whose 

corresponding eigenvalues are non-zero than the total number 

of data points included in the calculation. By using only the 

vectors with non-zero eigenvalues, the process can be 

conducted accurately with significantly fewer calculations. 

The application of these eigenfaces to face or image 

recognition can be conducted after the generation of this base 

set. To do this, a new image is input to the system and put 

through the same process as the training images to reduce it to 

a normalized vector. This vector is then run through the 

following simple mathematical operation: 

 

𝜔𝑘 = 𝑢𝑘
𝑇(𝛤 − 𝛹) 

where, ωk, is the projection of the input face, Γ, into face 

space, uk is one of the generated eigenvectors, and Ψ is the 

mean eigenface. The vector composed of the values of ωk for 

all k is known as Ω. The Ω vectors can then be translated into 

a weighted score by calculating the Euclidian distance of the 

input face from a face class, Ωk. This is done using the 

equation: 

𝜀𝑘 = ∥∥(𝛺 − 𝛺𝑘)∥∥                                                               

 

where εk is the distance an input face is from a given face 

class, Ωk.  Because of its effectiveness, for Turk and Pentland 

and the simplicity of implementation, this is the method of 

weighting and categorizing shapes used in this work. Once 

these weights are calculated, the best match is determined to 

be the image with the smallest value of εk not exceeding a set 

value θ known as the cutoff criteria. Using this eigenface 

algorithm output is a vector called outWeights that describe the 

closeness of the input to each of the library shapes.  Using the 

outWeights, it’s possible to determine quality of matching 

using the following equation: 

𝑀𝑠𝑐𝑜𝑟𝑒 =  
1 − min (𝑤𝑜𝑖)

∑ 𝑤𝑜𝑖/𝑛𝑛
𝑖

 

 

where MScore >   for it to be counted.  This ensures the 
matching is done with a high enough threshold in the 
MatchScore (abbreviated MScore). In the following section, we 



apply the algorithm to a several test cases both to analyze the 
capabilities and limitations of the algorithm. 

IV. SIMULATION EXPERIMENTS 

In this section, we apply the algorithm and evaluate it 

under ideal and non-ideal conditions.  The shapes first 

compared are shown in Figure 7.  These three shapes already 

exist in the library of interesting shapes used for our 

experiments and hence we would like to analyze how well the 

algorithm matches to the correct shape under ideal conditions. 

 

 

Fig. 7. Shapes used for ideal comparison. 

 Table I summarizes the results.  As shown, all of the 
shapes are correctly matched as expected.  With this 
elementary example, we then introduce various forms of 
distortion to the shapes and those modified shapes are shown in 
Fig. 8, 9 and 10.  The parameters modified are shown in Table 
II, III and IV respectively.   

TABLE I.  MATCH PERFORMANCE FOR IDEAL SHAPES 

Shape MScore outWeight Nearest 

Match 

Average 

outWeight 

Correct 

Match 

Rounded Triangle 1 0 2.1e-3 3.5e-3 Yes 

3-Faced Blunt 1 0 2.3e-3 3.9e-3 Yes 

6-Pointed Star 1 0 2.8e-3 4.9e-3 Yes 

TABLE II.  PARAMETERS FOR NEAR ROUNDED TRIANGLE 

Near Rounded Triangle 

Base 

a = b = 1 

m1 = 3 

m2 = 3 

n1 = n2 = n3 = 1500 

Modified 

a = b = 1 

m1 = 3 

m2 = 3 

n1 = n2 = n3 = 1650 
 

 

Fig. 8. Near rounded triangle 

TABLE III.  PARAMETERS FOR NEAR 3-FACED BLUNT 

Near 3-Faced Blunt 

Base 

a = b = 1 

m1 = 6 

m2 = 6 

Modified 

a = b = 1 

m1 = 6 

m2 = 6 

n1 = 60 

n2 = 55 

n3 = 10 

n1 = 66 

n2 = 60.5 

n3 = 11 
 

 

Fig. 9. Near 3-faced blunt. 

TABLE IV.  PARAMETERS FOR NEAR 6-POINTED STAR 

Near 6-Pointed Star 

Base 

a = b = 1 

m1 = 6 

m2 = 6 

n1 = .2 

n2 = n3 = 1.7 

Modified 

a = b = 1 

m1 = 6 

m2 = 6 

n1 = .205 

n2 = n3 = 1.71 

 

 

Fig. 10. Near 6-pointed star.  

With these modifications, we find the algorithm can still 
correctly match to the correct shapes as shown in Table V.  The 
slight decrease in Matchscore is expected especially for shapes 
with many features such as the six-pointed star.  Any slight 
modifications to the shape parameters have larger impact than 
smoother, rounder shapes. 

TABLE V.  MATCH PEFORMANCE FOR SIMILLAR SHAPES 

Shape MScore outWeight Nearest 

Match 

Avg 

outWeight 

Correct 

Match 

Near Rounded 

Triangle 

1 8.9e-7 2.1e-3 3.5e-3 Yes 

Near 3-Faced 

Blunt 

1 1.1e-5 2.3e-3 3.9e-3 Yes 

Near 6-Pointed 

Star 

0.92 3.6e-4 2.6e-3 4.7e-3 Yes 

A. Effect of Sensor Error 

Applying random error to the positions of the points used 

to describe a shape rapidly decreases the matching capability 

of the algorithm (see Fig. 11). Using this selected shape, a 7% 

error makes it difficult to conclusively distinguish the input 

shape from any of the shapes in the library. Beyond this level 



of error, the effects of the random percentage error on the 

matching capability of the algorithm are dominated by the 

randomness of the applied error.  
 

 

Fig. 11. Example of noise applied to the rounded triangle. 

Fig. 12 shows the MatchScore against the applied standard 

error.  These figures show that, as expected, increasing the 

error applied decreases the quality of the matches in terms of 

the MatchScore.  

B. Effect of Rotation  

The effect of rotation on MatchScore (abbreviated 

Mscore) is shown in Fig. 13.  These results are somewhat 

better than expected. For all the included shapes the technique 

is resilient to slight rotations. Given that the deviation was 

small and almost identical for most of the shapes it is likely 

that this same trend would apply to most possible shapes. This 

resilience would allow for an approach to matching unknown 

shapes to the library regardless of their degree of rotation. 

This process would be simple and could be applied in a 

number of ways. Regardless of the specific manner of 

application the curves show a clear pattern. As the shape is 

rotated its MatchScore deviates from and then returns to 1. 

This means that for a series of smooth rotations the slope of 

the MatchScore curve could be used to identify the degree and 

direction of rotation necessary to match the shape accurately. 

Or, if computational power is not an issue, a full rotation on 

the gathered data could be performed and the angle producing 

a minimum MatchScore could be taken to be the best 

matching angle. The applicability of this approach confirms 

the earlier assumption that this technique will allow matching 

of rotated shapes. Specifics of this technique will be outlined 

in the discussion section. 

 

C. Effect of Changing Shape Parameters 

Slight modifications to the shape parameters have 

significant impact on the overall shape. Changing the m value 

of the shape changes the number of degrees of rotational 

symmetry it has (Fig. 14). These alterations would have been 

applied asymmetrically; however, doing so produces very 

strange and inconsistent shapes that differ so significantly 

from the base shape that attempting to match them in the same 

category as the base shape does not make sense.  

 

 

Fig. 12. Effect of normal error in points position to Matchscore presuming 

circle as ideal shape. 

 

Fig. 13. Effect of Rotation on MScore for various base shapes. 

 

Fig. 14. Effect of varying M on MScore. 

 

Fig. 15. Effect of varying n1 on MScore. 

 

Fig. 16. Effect of varying n2=n3 on Mscore. 



Altering n1 adjusts the curvature of the shape (Fig. 15). 

Higher values produce straighter sides and lower values 

produce more rounded ones. Altering n2 and n3 symmetrically 

has a similar but more muted effect (Fig. 16). Altering them 

independently has the same affect but it is asymmetric. 

Finally, altering a and b symmetrically increases the size of 

the shape. This was not tested because it does not affect the 

shape only the size of the object.  Altering them 

asymmetrically produces discontinuities and was thus not 

tested. Once a sample shape is correctly sized, then it requires 

just modification of the 5 shape parameters and rotation angle 

to obtain a suitable match.  Pre-assembly of samples and 

categories can further speed-up the process of determining a 

match or not.  

V. DISCUSSION 

The shape matching approach presented here was shown 

to be accurate and resilient to a number of non-ideal 

conditions including error, rotation, and small changes in the 

shape of the object. The approach is shown to handle noise of 

up to 20% with a graduated degradation in performance. 

These are however early results. The tests were conducted on 

artificially generated shapes, rather than data collected using 

real equipment to extract location points. While the integration 

of the simulation and the technique used in that simulation 

does demonstrate that this technique is capable of extracting 

these values and matching them successfully.   

Currently the method does not ascribe a value to 

recognized objects based on observations of the object, but 

requires the robot to call one that is preassigned. However as 

we suggest in this work, the pre-assigning of interesting 

shapes can be done automatically, through extrapolation from 

families of interesting shapes using the Superformula. In 

addition to simply comparing all objects to a predefined 

library of possible shapes, shapes could be compared both to 

that library and a library created during the mission of 

observed shapes. Any detected obstruction that is processed 

through the matching component could be categorized and 

then added to the secondary library with an associated 

category after processing. New objects could then be 

compared against these to determine if it is significantly 

different from the previously observed objects. Such a metric 

of difference could serve as a quantification of the novelty as 

it would constitute a metric of how different a detected object 

is from other observed objects. This approach would be easy 

to implement, but determining the proper method of weighting 

these results would be a significant task. 

VI. CONCLUSIONS 

In this work, we propose a new approach to automating the 
process of identifying and categorizing interesting shaped-
objects.  This approach can enable automated geological 
exploration, enabling robots to find rock samples and objects 
of interest through their distinctive shape.  The method uses a 
Gaussian model to determine net information content of two-
dimensional objects in comparison to a circle.   An extension 
of the algorithm for use on three-dimensional objects is 
proposed. The information content identifies the relative 

‘importance’ of features of a shape automatically.  Using this 
approach, a shape sample is compared against a library of 
shapes using the eigenfaces approach.  The technique is 
successfully shown to match sample objects to a library.  An 
increase in sensor noise is shown to result in a graduated 
decrease in match performance.  For practical applications, it is 
found that the shapes may need to be analyzed in terms of 
multiple rotation angles to maximize match.  The general 
robustness to noise and shape parameters shows that the 
method is suitable for use with real sensors, including vision 
cameras and laser-ranger finders.  Work is underway in testing 
the algorithm with real rock samples and meteorites. 
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