
Real-Time Application Processing for FPGA-Based
Resilient Embedded Systems in Harsh Environments

Sangeet Saha1, Shoaib Ehsan1, Adrian Stoica2, Rustam Stolkin3, Klaus McDonald-Maier1

1Embedded and Intelligent Systems Lab, University of Essex
2Jet Propulsion Laboratory, California Institute of Technology

3Extreme Robotics Lab (ERL), University of Birmingham
{ 1sangeet.saha, 1sehsan, 1kdm }@essex.ac.uk, 2 adrian.stoica@jpl.nasa.gov, 3 r.stolkin@cs.bham.ac.uk

Abstract—Real-time embedded systems nowadays get em-
ployed in harsh environments such as space, nuclear sites to
carry out critical operations. Along with the traditional software
based (CPU) execution, FPGAs are now also emerging as a
bright prospect to accomplish such routines. However, these
platforms are often get plagued by faults generated due to the
high radiations in such environments. As a result, the real-time
applications running on the platform could also get jeopardized.
Thus, efficient execution of a set of hard real-time applications
on reconfigurable systems with anomaly detection and recovery
mechanism is inevitable. This work aims at tackling such problem
with a “healing” approach for extreme environments. Initially,
the applications are intelligently partitioned for hardware and
software execution, then attempts have been made to schedule
hardware applications with intermittent preemption point. Upon
detecting any abnormality on such distinct points, our approach
orchestrates a healing mechanism to remediate the scenario
without hampering the pre-determined schedule. Experimental
validation of our proposed method reveals its effectiveness.

Index Terms—FPGA, Real-time Scheduling, Harsh Environ-
ments, SEUs, Healing mechanisms, Resilient Systems

I. INTRODUCTION

In the present application specific computing era, embedded
system plays a crucial role by executing a set of dedicated
functions as per user requirements. Many such embedded
systems also exhibit “real-time” characteristics where, the
correctness of the system not only depends upon the logical
results being produced but also on the “time” at which the
output is generated. In such systems, output delivered after
the stipulated time-span (commonly known as “deadline”) may
cause a catastrophe and thus, requires to be handled through
sophisticated applications management mechanisms.

Such embedded systems may also be part of complex
robotic systems. A complex robotic system deals with the
management of persistent periodic applications where such
application repeatedly arrives at a certain interval [1]. These
persistent applications may arise from events such as constant
environmental data capture from thermal sensors, navigation
and collision avoidance through camera and even the speed
control through motion sensors. Moreover, such applications
also impose real-time constraints and thus, a well defined
scheduling methodology is indeed required. Execution of such

This work is supported by the UK Engineering and Physical Sciences
Research Council through grants EP/R02572X/1 and EP/P017487/1.

applications can be carried out through a software based
execution (CPU) or through a complete hardware based ex-
ecution (FPGA). To a large extent, the answer for choosing
a correct execution platform would depend upon the type of
processing that needs to be performed. However, the hardware
based execution offers an ideal resource for implementing
applications inherently parallel in nature

Thus, FPGAs are becoming an inescapable paradigm of
real-time embedded systems. Therefore, applications ranging
from automotive systems to nuclear reactors etc. [2], have
initiated to employ FPGA. Reconfigurable architecture has
also secured its position in synthetic vision, object tracking [3],
cryptography [4] etc.

In recent past, research community has focused on de-
veloping seamless periodic application scheduling strategy
for reconfigurable systems [5], [6]. Most of the proposed
algorithms dealt with the problem of efficient placement of
tasks on the FPGA to minimize the fragmentation and the
intertask communication delay [6], [7]. Due to the involved en-
gineering challenges to implement hardware context switching
in FPGAs, most of the existing scheduling strategies [6], [8]
confined themselves into non- preemptive scheduling strate-
gies. However, in order to achieve higher resource utilization,
preemptive scheduling schemes are essential. Authors in [5],
proposed a preemptive scheduling strategy based on “Dead-
lined Partitioned Fair (DP-Fair)” [9] technique and achieved
high resource utilization.

Concern looms over the performance of such system in
harsh conditions. In some extreme environments, these sys-
tems may have to perform in the presence of high radia-
tions [10]. It is worth mentioning that FPGAs are susceptible
to faults in such conditions [11]. As a result, the applications
tend to malfunction and thus, it can jeopardize the scheduling
and hinder real-time applications to complete their execution
within the deadline. Such a scenario may be catastrophic .

Merits are immense when healing approach is incorporated
within the system design to make it resilient. Bitstream scrub-
bing or Triple Modular Redundancy (TMR) [12] are classical
approaches to deal with such faults. However, designing
strategy of a resilient system with real-time applications on
reconfigurable platforms is merely a handful. This work deals
with a newly proposed periodic real-time scheduling strategy

for fully reconfigurable systems, entitled “DPSFR” [5]. The
strategy is briefly described and then we illustrate how such
an effective real time scheduling strategy can be jeopardized
at runtime by radiation induced fault in extreme environments.
It is quite obvious that effects of such disruption can be fatal.
Hence, incorporation of healing approach is essential. At first
we propose our offline software-hardware partitioning strategy.
Once, we select the applications for hardware execution,
our scheduling approach generates the schedule for those
applications. At runtime, our strategy is capable of detecting
and mitigating any kind of faulty activity without hampering
the schedule. Simulation based experiments on benchmark task
sets reveal the efficacy of our approach.

The main contributions of the present work can be summa-
rized as follows:

• Analyzing the extreme environment scenario where pre-
determined scheduling strategy could be jeopardized at
runtime due to the effect of radiation at the platform.

• Proposing an on-board healing approach which possesses
the ability to take remedial action in order to bring the
system back to normalcy.

The rest of the paper is organized as follows. Section II,
gives a brief background of the DPSFR strategy. The offline
partition and scheduling strategy is discussed in Section III
with an illustrative example. Section IV, illustrates perfor-
mance of the scheduling approach under extreme conditions.
The proposed healing mechanism is presented in Section V.
Section VI, discusses on experimental outcomes followed by
a discussion on the same. Finally, the paper concludes with
Section VII.

II. BACKGROUND

A. Deadline Partitioning Schedular for Fully Reconfigurable
Systems (DPSFR)

DPSFR schedules existing real-time periodic applications
by employing deadline partitioning approach on a Fully re-
configurable FPGA. At first, time slice is represented as tsr
(rth time slice) to denote the interval between the (r−1)th and
rth application’s deadlines. Let us assume that at the beginning
of a particular time slice tsr, there are q periodic ready ap-
plications T1, T2, . . . Tq to be scheduled on m partitions (pre-
defined) (V1, V2, ..., Vm) on an FPGA. Application Ti has the
execution requirements Fpi time units and period / deadline,
di time units. The “weight” (wthi) of each application can
be defined as : Fpi

di
. The time-slice length can be calculated

by finding the difference between two consecutive deadlines
(say, dr, dr−1) among applications. Hence, the length of a rth

time-slice will be:

tsr = dr − dr−1 (1)

Deadline partitioning approach maintains proportional fair-
ness among the rates of execution of the applications in time
slices demarcated by allocating a “work-share” denoted as
WShri(= Fpi/di× tsr) to be completed by each application

within the time slice tsr. However, when the processing ele-
ments are m equal sized partitions1 on a fully reconfigurable
FPGA, context switches have to be handled more carefully
as they may only be realized through full reconfigurations
of the FPGA. Thus, context switches on all the m partitions
must occur synchronously and each such system wide context
demands a full reconfiguration. For every context switch, each
of the m partitions will incur a full reconfiguration overhead.
Thus, the total scheduling overhead for a context switch
becomes, OFrg×m, where OFrg denotes the time required for
the full reconfiguration. This overhead is usually compensated
by the available system slack (if any) at time slice tsr, and
such a slack is given by:

tsr ×m− sumWShr (2)

sumWShr is sum of work-shares of all arrived applications.
Hence, the maximum number of possible context switches

CT within the interval tsr can be defined as:

CT = b tsr ×m− sumWShr

OFrg ×m
c (3)

Initially, one reconfiguration is required to allocate appli-
cations into the m partitions at the beginning of tsr. The
remaining will be used to allow “CT -1” context switches at
equal interval within tsr. Interval between any two consecutive
context switching is termed as a “time-frame”. An application
must be executed at a partition at least for the duration of
a single time-frame of length TF . So, the number of time-
frames required by an application Ti to complete its work-
share is: dWShri

TF e.
At the beginning of each time-frame within tsr, m appli-

cations having highest remaining shares are selected and get
assigned on the m available partitions for TF duration. Thus,
all applications will be able to complete their work-shares
within the time slice provided equation 4 is satisfied.

q∑
i=1

dWShri
TF

e ≤ CT ×m (4)

III. PARTITION AND SCHEDULING STRATEGY

Being an embedded system, it is possible to know the initial
distribution of the applications which will periodically arrive
for execution at runtime. Thus, the offline Partitioning and
Scheduling strategy will attempt to partition and then schedule
the applications from entire application set N (consists of n
applications) where, N = {T1, T2,, Tn}. Among these ap-
plications, our partition strategy will chose which application
will be suitable for the execution on the fully reconfigurable
FPGAs or CPUs, respectively.

A. Hardware-Software Partitioning

Let us assume that the application Ti exhibits execution
time Cpi and Fpi while it executes on the CPU and FPGA,
respectively. Ti also has a common deadline di. Hence, the
resource demand of an application from the perspective of

1It is assumed that any tasks can be accommodated in any partition.

software execution can be denoted as: < Cpi, di >. When Ti
is executed on the FPGA, it has a spatial resource demand
(i.e. width (wi) and height (hi); consumed in the FPGA floor)
and temporal resource demand (Fpi). Thus, resource demand
of an application from the perspective of hardware (FPGA)
execution can be denoted as: < Fpi, di, wi, hi >.

However at runtime, Ti will execute either on the CPU or
on the FPGA. Thus, we define a variable χi where χi = 1
while Ti executes on the CPU and χi = 0 while Ti executes
on the FPGA. Hence, execution time (Ei) for Ti becomes

Ei = χi × Cpi + (1− χi)× Fpi (5)

The total execution time (say, E) for all applications in the
application set i.e (∀ Ti ∈ N) becomes:

E =

n∑
i=1

Ei =

n∑
i

{χi × Cpi + (1− χi)× Fpi} (6)

Eventually, the equation 6 can be transformed into:

E =
n∑
i=1

{χi × (Cpi − Fpi) + Fpi} (7)

In equation 7, the term (Cpi − Fpi) can be termed as
”Decision Parameter (DP)” . This DP shall be calculated for
each application Ti as:

DPi = (Cpi − Fpi) (8)

This DP will be used to evaluate whether an application is
suitable for the software (CPU) or hardware (FPGA) execu-
tion. The next question would arise that how many number of
applications we will select for hardware execution. In order
to address this issue, we have defined a new parameter α and
termed it as ”Hardware Application Accomodate Capacity”
(HAAC). This α will deliver an upper limit on the number of
applications which we can chose for hardware execution. To
estimate α, we have initially assumed a number of partitions
in FPGA and denoted asM. However,M is not a big integer2

and will not represent the actual number of partitions of our
system. In the next section, we have defined the actual number
of partitions. We shall select α numbers of application in a way
so that the following condition get satisfied.

α∑
i=1

Fpi
di

=

α∑
i=1

wthi ≤M (9)

Applications are real-time and periodic thus, the above con-
dition is a quick check to keep the load of the applications
under the total system capacity. The partitioning strategy is
described in algorithm 1.

B. Hardware Application Scheduling

Having these set of persistent periodic applications (τh) to
be scheduled on hardware, our scheduling approach will take
the aid of the DPSFR to generate the time-slice wise offline
schedule for all applications till the hyper-period (H) 3. In

2We have empirically chosen M to lie between 4 to 6, in experiments.
3LCM of the deadlines of all applications

Algorithm 1: S/W, H/W Application Partitioning Strat-
egy

Input:
1. N : set of n applications
2. Cpi: CPU execution time of the application Ti
3.Fpi: FPGA execution time of the application Ti
4. M : Initial number of partition
Output:
1. τs: Task set selected for s/w execution
2. τh: Task set selected for h/w execution
Initialize: τs=τh=NULL; . Both the task set is initialized as

NULL
for each application Ti ∈ N do

Calculate DPi using equation 8
if DPi < 0 then

τs = τs ∪ Ti
else

Sort the applications in decreasing order based on
DPi;

Select the first α numbers of application such that
condition 9 get satisified;

Insert those applicatios in the set τh;

order to do so, it will be necessary to define the number of
partitions inside the FPGA. However in this paper, we have
not adopted a pre-defined static partition (like DPSFR). The
number of partitions inside the FPGA shall be determined
based on spatial demand of the applications which have been
selected for hardware execution and we have termed it as
”Spatial Degree of Parallelism (SDP)” and denoted as β. Each
partition will be created in such a way so that any task can get
accommodated inside a partition. In order to define the SDP
(eventually means the number of partitions inside the FPGA)
(β), the following calculation has to be conducted:

β = b W

wmin
c × b H

hmin
c (10)

In the above equation, wmin = min(wj) ∀Tj ∈ τh, hmin =
min(hj) ∀Tj ∈ τh. Here, τh denotes the set of applications
selected for hardware execution. Our scheduling strategy has
been shown in algorithm 2. Now we will depict our proposed
strategy through an example.
Example 1: Let us assume eight real-time periodic appli-
cations {T1, T2,..., T8} have to be executed in our system.
Now each of these applications has its software execution
requirement (Cpi) and corresponding hardware execution re-
quirement (Fpi). Both the versions of application share a
common deadline (di). We assumed that the initial number of
partitions (M) is 5. The software version of all applications are
as follows: {28/60, 28/60, 28/90, 38/60, 48/60, 48/90, 52/60,
74/90} and similarly the hardware versions are as follows:
{34/60, 15/60, 36/90, 45/60, 40/60, 36/90, 45/60, 66/90}.
Based upon the “Decision Parameters (DP)”, the application
which will suitable for hardware execution are: {T2, T5, T6,
T7, T8}. If we take sum of the weights of this application then
it can be found that the condition stated in equation 9 also
gets satisfied. Hence, these set of applications get selected for
hardware execution according to our algorithm 1.

Algorithm 2: Hardware Applications Scheduling
strategy

Input:
1.τh: Task set selected for h/w execution
2. β: The SDP i.e no. of partitions
3. Fpi: The hardware execution time
4. di: Deadline of an application
5. OFrg: Full Reconfiguartion Overhead
Output:
1. Generate schedule for the application
begin

Calculate possible times-slices considering all
applications using equation 1;

for each time-slice tsr ∈ H do
Calculate the number of context switches (CT)

using equation 3 where m = β ; . The number of
CT is equal to the number of time-frame

for Each time-frame within the time-slice do
Check the Scheduling Criteria in equation 4

using m = β;
if Equation 4 gets satisfied then

Generate schedule by assigning applications
into partitions for the time-frame;

else
Reduce the number of applications till

equation 4 get satisfied;
Migrate those non-selected applications to

anothe FPGA resource;

Let us assume a small hypothetical FPGA of size 52 × 72
4 and minimum spatial resource demand among the selected
hardware applications is 22 × 36. Hence according to equa-
tion 10, the SDP (β) becomes 4 and four will be the actual
number of partitions in the FPGA. The full reconfiguration
overhead (OFrg) is 5 time units. The minimum deadline
among all the applications is 60. Hence, the length of first
time-slice ts1 will become 60 and second time slice ts2
becomes 90-60=30. However, we have shown the scheduling
strategy for the first time slice throughout all the examples.
According to our hardware application scheduling strategy as
stated in algorithm 2, we will generate the schedule and it is
pictorially shown in figure 1.

Fig. 1: H/W Application Scheduling

4Experiments have been conducted with practical FPGA size and hardware
circuit (application) sizes, see Section VI

IV. PERFORMANCE OF HARDWARE SCHEDULING UNDER
EXTREME ENVIRONMENT

Based on the schedule generated offline, we attempt to
process our real-time applications in our embedded system
in extreme environments. Recent literatures (such as [12],
[13]) shows that such radiation causes Single Event Upset
(SEU) faults and even Multiple Event Upset (MEU) in the
FPGA configuration memory. This SEU can cause an alter-
ation in the register contents as well as it may affect the
CLBs (Configurable Logic Blocks) by changing the value
of LUT (Look up Tables). As a result it will change the
“context” of any running hardware application. Subsequently,
it will jeopardize the scheduling strategy which is primarily
preemptive in nature and depends upon “Context Switching”.
The context switch can be viewed as an amalgamation of two
distinct components, saving the state of a partly accomplished
application and restoring saved states to resume the execution.
State-holding element like Flip-flops and LUT-RAMs of CLB
are responsible for storing the “contexts” of a hardware
application and in an extreme environment such state-holding
elements get affected.

In our scheduling strategy, the radiation can upset the
context and with such affected contexts (CLB’s contents) our
hardware scheduling scheme will malfunction. This is because,
the execution of the applications may halt in between and
such situation will also affect the resumption of hardware
application after the preemption. Context switch in a fully
reconfigurable FPGA can only be realized through a full
reconfigurations. At the end of a time-frame, through the
“bit-stream readback” procedure the contexts of the running
applications can be retrieved. These contexts will reveal the
present state of execution of the applications. By retrieving the
execution status, we will attempt to derive a metric which will
quantitatively estimate the effect on our scheduling scheme.

A. Measurement of Performance Degradation

At runtime, the retrieved context from the extracted bit-
stream will reveal whether each application is able to complete
their previous allotted set of program-steps (instruction) in
hazardous situation. We have considered that our scheduling
strategy will employ application Tη to execute Pj number
of program-steps at a jth time-frame (refer, section II-A).
However, it may so happen that due to the upset of the internal
CLB, the Tη will only be able to complete P ′j number of steps.
Having this information, our strategy will attempt to derive a
”Performance Degradation” parameter (”Degradation Metric
(DM)”) for an application as:

DMη = Pj − P ′
j ∀Tη ∈ τh (11)

At the end of each time-frame, this DM will be calculated for
each application to measure its performance. However, it may
happen that all the running applications may not be hampered
by the upset of CLB’s contents. Thus, it can be inferred that
applications which will exhibit ”Degradation Metric” DMη >
0 are affected and require remedial action.

V. HEALING APPROACH FOR DEGRADED APPLICATIONS

To tackle the degraded application processing, the remedial
action will be carried out through the following mechanisms:
• Modified Bitsream Loading: Once an application exhibits

degraded performance, the next course of action will be
to load the updated (new) bistream file (.bit file) of the
application for the next consequent time-frames. This
updated bistream is created with different architecture
(containing different number of CLB and LUTs) and has
to be loaded in another partition of FPGA. It will be
less probable that the particular application will get again
affected in the other partition with new bitstream. It may
also happen that any other application may not get af-
fected (with different internal CLB, memory architecture)
in the previously “affected” partition.

• Check and Speed up: This mechanism attempts to com-
pensate the degraded performance. Execution of any
affected application (Tη) is degraded by DMη amount
which has to be completed along with pre-allocated
program steps (pj) by the end of upcoming time-frame
5. In order to do so, we will speed-up the execution of
the application by increasing the clock frequency. The
frequency will be increased by a factor defined as Speed-
up Factor (SF) :

SF =
TFj

DMη + Pj
(12)

NOTE: The clock frequency will be increased by enhanc-
ing the clock period from Dynamic Clock Management
(DCM) system for that particular partition only where the
affected application is supposed to execute. 6

We will now demonstrate the whole healing approach through
the same example application set as shown in example 1.
Example 2: Let us assume that at the end of first time-
frame, through bitstream read-back it is found that T8 was
able to complete only 10 program steps instead of alloted 15
program steps as shown in figure 2. As we have assumed that
if the length of time-frame is 15 then each application has to
execute 15 program steps. Thus, the “Degradation Metric” for
T8 becomes: DM8= 5 (refer, equation 11).

However, it is found that other applications are able to
complete their executions. So, in order to bring the normal
operation of the system such that T8 completes the allocated
work share, we have loaded an updated bitsream to new
partition V1 and also we have to speed up the execution T8
such that it can able to finish its pre-alloted 15 program steps
at second time-frame along with the 5 steps which are pending
from first time-frame. The procedure is shown in figure 3.

VI. EXPERIMENTS AND RESULTS

We have measured the performance of our strategy through
software simulation. We have chosen all the parameters from

5Inside a time-slice, length of all time-frames are same and so does the
required program-steps

6In case, “Degradation Metric” (DM) found in last time-frame of a time-
slice tsr , the healing approach shall be taken at the first time-frame of next
time slice tsr+1.

Fig. 2: H/W Application Scheduling affected by Extreme
Environment

Fig. 3: H/W Application Scheduling with healing mechanism

practical Virtex 4 FPGA and ITC99 benchmarks [14] for
generating the application sets.

A. Experimental Parameters:

We have chosen Virtex-4 (XC4VFX60) FPGA having a
floor area 52 × 128 [15]. In [16], authors have shown that
hardware application in virtex-4 FPGAs could have average
area requirements of 32×32. Thus we have chosen number of
partition (SDP, β=4). The data sets contain randomly generated
synthetic periodic applications whose weights (execution time
/ deadline) have been taken from normal distribution with
standard deviation σ=0.1 and mean µ =0.1. Similarly, dead-
lines (di) have also been generated from a normal distribution.
Given System Pressure (SP), (obtained as the sum weights
of the generated applications) and the SDP (β), the system
utilization Sysuti is defined as:

Sysuti =
SP

β
× 100 (13)

In ITC99 Benchmark, an application usually contain 100
to 1000 instructions. Without loss of generality, we have
also calculated the number of program steps from a normal
distribution with mean: 500 and standard. deviation 200.

B. Online Overhead Analysis

Our proposed strategy will first observe the execution status
of each application then it will measure the degraded perfor-
mance and finally, will attempt to heal the degradation. In
order to analyze the overall associated overhead, we will begin
with measuring the reconfiguration overhead (RO). RO is
characterized by three main factors i.e. i) Bitstream Size (Bits)

ii) Configuration clock frequency of the controller (Cclk) iii)
Data Bus Width of the controller (DBW). Thus:

RO =
Bits

Cclk ×DBW
(14)

In case of Xilinx Virtex-4 (XC4VFX60); Bits: 2.66 MB [17],
Cclk: 100MHz and DBW : 32 bit [15]. Putting these values
in equation 14, RO is obtained as ≈ 7ms. Due to recent
technical advancement [18], only 1/10th time of RO is
associated to extract any context of application. It is now
possible to read that portion of bitstream which contains
the register’s context instead of reading the whole bitstream.
Hence, the extraction time becomes (1

10 × 7 ms) = 0.7 ms.
Thus, we can judiciously consider the read-back time as 1 ms.
Degradation measurement and healing operation is performed
by the system’s Embedded Processing Resource (EPR). Thus,
measurement of ”Degradation Metric (DM)” and finding the
new bitstream can be performed in ≈ 2 ms with standard
EPR. Hence, the overall associated overhead can be quatified
as follows : 1 ms+2 ms+7 ms = 10 ms (Read-back + DM
calculation and Bitstream locate + New bitstream download).

C. Result and Analysis

We have defined Application Acceptance Rate (AAR) as
our performance metric. AAR is defined as the percentage of
the total number of applications accepted (ν) by the system
over the entire schedule length out of total number of arrived
applications (n). i.e.,

ARR = (ν/n)× 100 (15)

We have taken 20 different instances of each dataset type and
finally, generate the average over these 20 runs. The entire
schedule length is 10000 time slots. The fault occurrence rate
(λ) is considered as 0.02 which infers that there are two upsets
occur within 100 time slots for any arbitrary partition.

 50

 60

 70

 80

 90

 100

 40 50 60 70 80 90

A
p

p
lic

a
ti
o

n
 A

c
c
e

p
ta

n
c
e

 R
a

te
(%

)

System Utilization %

Application Acceptance Rate VS System Utilization

Normal scenario
Radiation scenario

Healing Scenario

Fig. 4: AAR Vs. Sysuti; β = 4

Figure 4 depicts the variation of ARR by our scheduling
strategy (having OFrg = 10ms) under varying system utiliza-
tion. It can be observed that in normal scenario, our system
can accept as high as 80% applications under high system
pressure (Sysuti = 90%). ARR decreases further when the
faults are injected. This is due to the fact that the presence
of event upset prevents the applications from completing the

required set of instructions. However, the healing mechanism
can bring the AAR close to normal scenario and it is able to
achieve 70% resource utilization with more than 75% AAR.

VII. CONCLUSION

Generating schedules for reconfigurable platforms is essen-
tial to ensure completion of a set of applications within a cer-
tain time interval. However, such schedules can be jeopardized
by faults induced by radiation in extreme environments. We
explore and illustrate such a scenario in the current context.
In addition to this, we also present a healing methodology
which attempts to mitigate vulnerable scenario for scheduling
periodic hard real-time applications on fully reconfigurable
platform. The proposed strategy detects the anomaly, deciphers
the cause and heals the scenario by speeding up application
processing and re-loading a fresh bitstream. We designed,
analyzed and validated the approach thorough simulation
framework and the outcomes are good.

REFERENCES

[1] L. T. Yang, E. Syukur, and S. W. Loke, Handbook on Mobile and
Ubiquitous Computing: Status and Perspective. CRC Press, 2012.

[2] T. Hayashi, A. Kojima, T. Miyazaki, and N. Oda, “Application of fpga
to nuclear power plant i&c systems,” in Prog. of Nuclear Safety for
Symbiosis and Sustainability. Springer, 2014, pp. 41–47.

[3] J. Jin, S. Lee, B. Jeon, T. T. Nguyen, and J. W. Jeon, “Real-time multiple
object centroid tracking for gesture recognition based on fpga,” in Proc.
of the 7th Intl. Conf. on Ubiquitous Info. Mgmt. and Comm.

[4] S. Bhasin, S. Guilley, A. Heuser, and J.-L. Danger, “From cryptogra-
phy to hardware: analyzing and protecting embedded xilinx bram for
cryptographic applications,” Journal of Crypto. Eng.13, vol. 3, no. 4.

[5] S. Saha, A. Sarkar, and A. Chakrabarti, “Scheduling dynamic hard real-
time task sets on fully and partially reconfigurable platforms,” Embedded
Syst. Letters, IEEE, vol. 7, no. 1, pp. 23–26, 2015.

[6] Q.-H. Khuat and D. Chillet, “Communication cost reduction for hard-
ware tasks placed on homogeneous reconfigurable resource,” in (DASIP),
2013, Oct 2013, pp. 265–270.

[7] S. Baruah, M. Bertogna, and G. Buttazzo, “Real-time scheduling upon
heterogeneous multiprocessors,” in Multiprocessor Scheduling for Real-
Time Systems. Springer, 2015, pp. 205–211.

[8] A. Eiche, D. Chillet, S. Pillement, and O. Sentieys, “Task placement for
dynamic and partial reconfigurable architecture,” in DASIP, 2010.

[9] G. Levin, S. Funk, C. Sadowski, I. Pye, and S. Brandt, “Dp-fair: A
simple model for understanding optimal multiprocessor scheduling,” in
ECRTS 2010, July 2010, pp. 3–13.

[10] M. Finckenor and K. de Groh, Space Environmental Effects, ser. A
researcher’s guide to. NASA ISS Program Science Office, 2015.

[11] P. S. Ostler, M. P. Caffrey, D. S. Gibelyou, P. S. Graham, K. S.
Morgan, B. H. Pratt, H. M. Quinn, and M. J. Wirthlin, “Sram fpga
reliability analysis for harsh radiation environments,” IEEE Transactions
on Nuclear Science, vol. 56, no. 6, pp. 3519–3526, 2009.

[12] J. Ranta, “The current state of fpga technology in the nuclear domain,”
VTT Technical Research Centre of Finland, Tech. Rep., 2012.

[13] L. Sterpone, S. Azimi, B. Du, D. M. Codinachs, and R. Grimoldi,
“Effective mitigation of radiation-induced single event transient on flash-
based fpgas,” in Proceedings of the on Great Lakes Symposium on VLSI
2017. ACM, 2017, pp. 203–208.

[14] F. Corno, M. S. Reorda, and G. Squillero, “Rt-level itc’99 benchmarks
and first atpg results,” IEEE Design & Test of computers, vol. 17, no. 3,
pp. 44–53, 2000.

[15] I. Xilinx, “Virtex-4 family overview,” Tech. Doc. DS112, 2010.
[16] Y. Lu, “Realistic online resource management for partially reconfig-

urable systems,” Ph.D. dissertation, 2011.
[17] Xilinx, “Virtex-4 fpga configuration user guide, xilinx,” June, 2009.
[18] K. Jozwik, H. Tomiyama, M. Edahiro, S. Honda, and H. Takada,

“Comparison of preemption schemes for partially reconfigurable fpgas,”
IEEE ESL, vol. 4, no. 2, pp. 45–48, 2012.

