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Abstract—Simultaneous Localization and Mapping, commonly 

known as SLAM, has been an active research area in the field of 

Robotics over the past three decades. For solving the SLAM 

problem, every robot is equipped with either a single sensor or a 

combination of similar/different sensors. This paper attempts to 

review, discuss, evaluate and compare these sensors. Keeping an 

eye on future, this paper also assesses the characteristics of these 

sensors against factors critical to the long-term autonomy 

challenge.  
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I. INTRODUCTION  

Ranging from healthcare to agriculture, mining sector to 
self-driving vehicles, planetary expeditions to nuclear 
environments, robots have found application in almost every 
aspect of life today [1]. For operating autonomously, a robot 
needs to understand its environment and should be able to 
localize itself within it. This problem is generally known as 
Simultaneous Localization and Mapping (SLAM). The core 
research goals in SLAM have been efficient mapping topologies 
[2], feature extraction and matching [3,4,5], location estimation 
[6,7] and loop closure techniques [8]. Interestingly, research in 
each of these areas has mostly been fuelled by the underlying 
sensor technology–the focus of this paper.  

The early SLAM systems used range sensors like acoustic 
sensors and LIDAR [9]. These sensors provide accurate depth 
information but are not rich in features. The later systems mostly 
used vision (monocular cameras and Omni-directional cameras) 
as the primary source of feature-abundant information but 
lacked depth estimates [9]. Some of these sensors have been 
introduced in [10]. More recently, we have seen sensors capable 
of both ranging and vision in the form of RGB-D sensors and 
stereo-cameras [11]. After the 1st International Workshop on 
Event based vision at ICRA’17, a new research avenue opened 
for Event Cameras based Visual-SLAM Systems. This paper 
attempts to not only review all these sensors but also evaluate 
them for their deployment practicality based on their power 
consumption, range, price, accuracy and physical constraints. 
The paper also gauges these sensors against factors like lifetime, 
field-operability, ease-of-replacement and environmental 
suitability, which are critical for long-term autonomy 
applications.  

The paper is organised as follows. Section II discusses the 
different types of sensors used in SLAM and their attributes. 
Section III assesses these sensors against factors that are critical 

for long-term autonomy. Finally, conclusions are presented in 
Section IV.  

II. SENSORS 

This section discusses all the different sensors used in SLAM 
and their attributes. A summary of different sensor attributes is 
given in Table 1.  

Table 1: Summary of Sensor Attributes 

Sensor Type Power 

Consumption 

(W) 

Depth 

Range 

(m) 

Price 

($) 

Dimensions 

Acoustic 0.01-1 2-5 10-

500  

Very 

Compact 

LIDAR 50-200 50-300 5k-

100k 

Bulky 

Monocular 

Camera 

0.01-10 NA 100-

5k 

Very 

Compact 

RGB-D 2-5 3-5 150-

400 

Compact 

Stereo 

Camera 

2-15 5-20 500-

5k 

Compact 

Event 

Camera 

0.15-1 NA 3k-5k  Compact 

Omni-

directional 

Camera 

1-20 NA 100-

1k 

Very 

Compact 

A. Acoustic Sensors  

Acoustic sensors have been widely used in solving the 
SLAM problem. An early implementation of this is [12]. In [13], 
the authors show an implementation of Acoustic-SLAM using 
moving microphone array and surrounding speakers. Assuming 
an Omni-directional acoustic sensor and receiver, [14] presents 
Echo-SLAM with a co-located microphone and acoustic source. 
Using landmarks as nodes of a sensor network, authors in [15] 
have shown a range-only SLAM system working in conjunction 
with sensor networks. 

Acoustic sensors are basically Sound Navigation and 
Ranging (SONAR) sensors. They locate objects from the echo 
of a signal that is bounced off the object. Ultrasonic sensor, 
which is a sub-category of SONARs, is widely utilised for robots 
[16]. They use sound waves in the ultrasonic range (above 
20kHz) which are not audible for human beings. These sensors 
report their range measurements based on the “Time-of-Flight” 
principle, which is the total time taken by the wave from 
emission to reception upon reflection.  



These sensors are immune to colour and transparency, 
making them suitable for dark environments. Although these 
sensors work well under dust, dirt and high moisture content but 
heavy build-up of these can effect sensor’s readings [18]. In 
addition, since the sound waves require a medium for traversal, 
the ultrasonic sensors do not work in vacuum. They are also 
effected by soft materials which tend to absorb longitudinal 
waves instead of reflecting them [18].  

 

Figure 1: HC-SR04 Ultrasonic Sensor [19] 

Acoustic sensors are generally very compact and come in 
packages of a few inch3. The dimensions of HC-SRO4 (a 
commonly used ultrasonic sensor shown in Figure 1) are 0.814 
inch3 [20]. In addition, power requirement for most acoustic 
sensors used in robots varies from a few milli-watts to a few 
watts. For example, the power consumption of HC-SR04 is 75 
mW [20]. They have a maximum depth range of a few meters. 
For most industrial applications, acoustic sensors provide an 
accuracy of 1% to 3% of maximum depth. For example, the 
depth range of HC-SR04 is 4m with an accuracy of up to 3mm 
in ideal conditions [21]. The accuracies and range of acoustic 
sensors change with environment’s temperature, moisture level 
and air pressure for which compensation techniques are usually 
employed [22]. Acoustic sensors, especially ultrasonic sensors, 
are usually very cost-effective and can be purchased from a few 
USD to a few hundred USD depending upon the sensor range, 
depth accuracy and additional features like self-cleansing etc. 
For example, HC-SR04 has a current price of $1.5.  

B. LIDAR 

LIDAR has driven a lot of research in range-based SLAM 
systems. An early work utilizing LIDAR in conjunction with 
Rao-Blackwellized particle filters is presented in [23]. Authors 
in [24] present an approach for finding interest regions in the 
data coming from Laser Sensors. Using occupancy grid-maps 
for mapping, [25] shows a scalable SLAM system with full-
estimation of 3D pose. In [26], real-time loop-closure is 
achieved with a LIDAR. 

 
Figure 2: Velodyne HDL-64E [27] 

 
LIDAR is an acronym for Light Detection and Ranging. The 

underlying technology for LIDAR has been around since 1960s. 
The working of LIDAR is like acoustic sensors. Instead of using 
sound waves, LIDAR employs electromagnetic waves (light) as 
a mean of radiation. By firing up to 1,000,000 pulses per second 
a LIDAR generates a 3D Visualization of its surroundings 
known as the ‘Point Cloud’. LIDARs can provide 360 degrees 
of visibility and are very accurate (~ ±2 cm) in calculating the 

depth information. A commonly used LiDAR for self-driving 
cars is the Velodyne HDL-64E (shown in Figure 2). 

LIDARs are usually bulky sensors but light-weight compact 
variants have been introduced recently as well. For example, 
HDL-64E weighs around 13Kg and has dimensions of 8 inches 
× 8 inches × 11 inches. However, VLP-16 and HDL-32 are 
much lighter and compact. In general, LIDARs are usually 
power-hungry sensors. The power usually ranges between a few 
watts to a few hundred watts depending upon the sensor range 
and features. For example, the power requirement of Velodyne 
HDL-64E is 80 Watts [28]. LIDARs have the most depth range 
of all the sensors employed for SLAM. This range usually varies 
from 50 meters to a few hundred meters depending upon the 
manufacturer and selected product. They are also accurate with 
an angular resolution of 0.1 to 1 degree and depth accuracy of a 
few centimetres. For example, Velodyne HDL-64E has a range 
of 120 m and a depth accuracy of ±2 cm. These sensors are 
usually expensive. The high-end HDL-64E costs about $75,000 
whereas VLP-16 costs about $8,000 [29]. Recently, price of 
VLP-16 was cut by half [30]. 

C. Monocular Camera 

A popular sensor used for SLAM is a monocular camera. For 
example, a real-time SLAM system based on a single camera is 
presented in [31] and [32]. A SLAM system resulting from the 
fusion of monocular cameras and inertial sensors is proposed in 
[33]. A comparison of monocular SLAM and Stereo SLAM is 
presented by authors in [34]. A semantic SLAM system for a 
monocular camera is proposed in [35].  

 

Figure 3: GoPro Hero-4 [38] 

Monocular cameras are standard RGB cameras. A GoPro 
camera Hero-4 is shown in Figure 3. One of the main reasons 
for the usage of pure monocular SLAM is simple hardware [36]. 
For example, monocular SLAM is possible on mobile phones 
without the need for additional hardware. On the contrary, the 
algorithms needed for monocular SLAM are much more 
complex due to the inability to directly infer the depth 
information from a static image. 

Cameras are usually very compact and a typical camera has 
dimensions between 5 inch3 to 20 inch3. Since Cameras are 
passive sensors, their power consumption is low. The usual 
range of power consumption is within a few watts. A typical 
GoPro camera consumes power between few milli-watts to ~5 
watts depending on the resolution and mode settings [37]. There 
is an enormous amount of variety available for the selection of 
monocular cameras. Depending on the resolution, visual 
features, mounting, storage, power source, a camera costs from 
a few dollars to a few thousand dollars. For example, the GoPro 
Hero Series prices vary from $150 to $450 depending upon the 
model.   



D. RGB-D Sensors 

As RGB-D sensors possess the strengths of both Range-
based and Vision-based sensors, they draw a lot of interest from 
the robotics community. Authors in [39, 40, 41] present an 
evaluation of RGB-D SLAM. A real-time, large-scale dense 
SLAM system is developed in [42] using RGB-D sensors. The 
application of RGB-D SLAM to aerial systems is shown in [43]. 

RGB-D sensors are a combination of monocular camera, IR 
transmitters and IR receivers. They provide RGB detail of a 
scene along with the estimated depth of each pixel. Microsoft, 
in November 2010, released the Kinect RGB-D sensor shown in 
Figure 4. The Kinect, like other RGB-D sensors, provides colour 
information as well as the estimated depth for each pixel but is 
relatively inexpensive. 

 

Figure 4: Kinect RGB-D Sensor [44] 

There are two depth calculation techniques used in RGB-D 
sensors, Structured Light (SL) and Time-of-Flight (TOF). The 
SL technique, as in PrimeSense sensor, projects an infrared 
speckle pattern. The projected pattern is then captured by an 
infrared camera in the sensor, and compared part-by-part to 
reference patterns stored in the device. These patterns were 
captured previously at known depths. The sensor then estimates 
the per-pixel depth based on with which reference patterns the 
projected pattern matches [45]. The TOF technique is similar to 
that employed in LIDAR. The first version of Microsoft Kinect 
used SL as a depth calculation mechanism while the recent 
versions of Kinect use TOF. 

The original Kinect consumed power around 2.5 Watts, 
while the most recent Kinect Version 2 consumes about 15 
Watts. Power consumption for other RGB-D sensors like Asus 
Xtion also lies within this range [46]. There is an inverse 
relationship between the range and depth accuracy for RGB-D 
sensors. Kinect V1 and Asus Xtion have a maximum range of 
3.5m, while the Kinect V2 has a range of 4.5m [46]. The price 
range for RGB-D sensors is $150 to $400 depending on 
manufacturer and specifications. RGB-D sensors are relatively 
compact but have a wide base. The dimensions for Kinect, Xtion 
and others are usually ~10 inches × ~2.6 inches × ~2.6 inches. 

E. Stereo Cameras 

Stereo cameras have also driven a lot of research in the area 
of visual SLAM. Authors in [47], present an implementation of 
Stereo-SLAM using particle filters. To perform SLAM in large 
indoor and outdoor environments, [48] presents a 6-dof SLAM 
using hand-held stereo camera. Using iterative closest point 
algorithm, [49] shows a robust 3D stereo camera SLAM. In [50], 
the ability of stereo cameras to provide depth information in 
addition to the conventional multi-view disparity-based depth 
calculation is exploited 

Inspired from the human eye, stereo cameras use the 
disparity of two camera images looking at the same scene to 
calculate depth information. Unlike RGB-D cameras, stereo 
cameras are passive cameras. They do not suffer from the 

problem of scale-drift as found in monocular cameras [51]. 
Some popular stereo-cameras are Bumblebee 2 (shown in Figure 
5), Bumblebee XB3, Surveyor Stereo Vision System (SVS), 
Ensenso, Capella and Minoru 3D Webcam. 

 

Figure 5: Bumblebee Stereo Camera [52] 

The power requirements for most stereo cameras range 
between 2 to 15 Watts. For example, the power requirement of 
Bumblebee 2 and Bumblebee XB3 are 2.5 Watts and 4 Watts 
respectively [53]. The typical maximum range of stereo cameras 
is between 5 to 20 meters at varying depth resolution. The depth 
accuracy usually varies from a few millimetres to ~5 centi-
meters at maximum depth. Depth range and accuracy are linked 
in [54]. The cost of stereo cameras varies from a few hundred 
USD to a few thousand USD depending on the camera 
resolution, range and other specifications. For example, the price 
of Bumblebee XB3 is $3500. The physical dimensions of stereo 
cameras usually depend on the baseline. Most cameras can be 
found in dimensions under 6 inches × 2 inches × 2 inches. 

F. Event Cameras 

Since the intrinsic nature of Event cameras is different from 
traditional cameras, a separate SLAM paradigm has opened-up. 
Parallel Tracking and Mapping (PTAM) is one of the major 
SLAM techniques and [55] shows an implementation of PTAM 
for event cameras. Although event cameras are an excellent 
choice for dynamic scenes but in static scenes, they give little-
to-no information. Thus, [56] combines event cameras and 
monocular cameras for an Ultimate SLAM. Authors in [57] 
present a complete continuous-time event-based SLAM system 
in conjunction with inertial measurements. An event-camera 
training dataset can be accessed through [58]. 

Event cameras, such as the Dynamic Vision Sensor 
(DVS128 in Figure 6), are bio-inspired vision sensors that 
output pixel-level brightness changes instead of standard 
intensity frames [59]. They offer significant advantages over 
standard cameras, including a very high dynamic range, no 
motion blur, and a latency in the order of microseconds [60]. 
Since, their output is composed of a sequence of asynchronous 
events rather than actual intensity images, traditional vision 
algorithms are not exactly applicable. So, new algorithms that 
exploit the high temporal resolution and asynchronous nature of 
the sensors have been proposed and researched. 

 

Figure 6: DVS128 Event Camera [61] 

Since event cameras by default don’t capture redundant 
information in scenes, they are very power-efficient. For 
example, the power consumption for DVS Cameras varies from 
150mW to 1 W [62]. Like monocular cameras, event cameras 



also do not provide any depth information, so the concept of 
range is not exactly applicable. However considerable work has 
been done on depth estimation and 3D reconstruction with 
multiple temporal views of similar objects using event cameras 
[63]. Event cameras at present are expensive and range between 
$3,000 to $5,000 depending on the latency, resolution and other 
specifications. These cameras usually come in compact 
packages. The smallest version from iniVation is the 0.7inches 
× 0.7inches × 0.3inches mini-eDVS, while the bulkiest is 3 
inches × 2 inches × 1 inch eDVS. 

G. Omni-directional Cameras 

An early implementation of SLAM with an Omni-
directional camera can be observed in [64]. Authors in [65] 
combine particle filters with a SIFT feature extractor for images 
obtained from Omni-directional camera. An extensive review of 
SLAM based on Omni-directional camera is presented in [66].  

Omni-directional cameras are RGB cameras with 360 
degrees field of view. In contrast to traditional computationally 
expensive stitching of images in panoramic photography, an 
omnidirectional camera can be used to create panoramic art in 
real-time, without the need for post processing, and typically 
gives much better quality. A Samsung Gear 360 utilizing two 
fish-eye lenses is shown in Figure 7. 

 

Figure 7: Samsung Gear 360 [67] 

Commercially, there are many variants of Omni-directional 
cameras. The parameters discussed here are based on some of 
the popular 360 cameras like GoPro Fusion, Ricoh Theta V, 
Detu Twin, Samsung Gear 360, LGR105 and Yi Technology 
360VR. Omni-directional cameras are highly compact. Their 
maximum dimensions are usually up to 4 inches × 2 inches × 2 
inches. The power requirement for 360 cameras usually varies 
from 1 to 20 Watts [68]. These cameras do not provide any depth 
information. Due to their wide field-of-view, they can easily 
capture objects in multiple directions which makes them very 
suitable for Visual-SLAM systems. The pixel resolution is 
unmatched and most provide 4K images and videos. Depending 
on the manufacturer and camera features, prices vary from $100 
to $1000. For example, Gear-360 costs $219. 

III. EVALUATION AGAINST LONG-TERM AUTONOMY 

This section assesses the sensors mentioned in Section II 
against factors, such as sensor life time, field operability, ease of 
replacement, and environmental suitability, which are critical to 
the long-term autonomy challenge. 

A. Acoustic Sensors 

In terms of sensor life time, acoustic sensors have shown 
excellent performance in the industry over the last few decades. 
For ceramic diaphragm-based sensors, performance decays 
logarithmically. i.e., the decay in performance over the first 10 
days is the same as the decay over the next 100 and subsequently 
1000 days [69]. Since ultrasonic sensors are usually used in 

industrial environments, their designs are rigid and show 
acceptable performance in varying weather conditions. Their 
working temperature range is -20 to +80 degrees Celsius for 
most sensors. Some are also water-proof and designed to 
withstand harsh environments; for example, ToughSonic line 
from Senix is IP68 / NEMA-4X / NEMA-6P rated [70]. 
However, noise caused by air nozzles, pneumatic valves or 
solenoids, and ultrasonic welders do affect the performance of 
these sensors. 

Regarding ease of replacement; due to their compactness and 
minimal pinout, they are usually plug-and-play and can be 
deployed as hot-swappable sensors. As per the UK’s 
independent advisory group’s report on Non-Ionizing radiation 
2010, the exposure limit for Sound Pressure Level on general 
public is set to 70 dB (at 20 kHz), and 100 dB (at 25 kHz and 
above). The SPL for ultrasonic sensors operating above 25KHz 
is in the safe range of ~100dB and follows the inverse distance 
(1/r) law [71]. However constructive interference of ultrasonic 
transmitters in multiple co-located systems may pose a 
challenge and needs to be investigated. 

B. LIDAR 

Due to the rotary nature of LIDAR, it is expected to suffer 
from wear-and-tear over a period of time. New technologies 
involving electronic handling of rotation instead of mechanical 
parts are also promising [72]. As the main target audience for 
LIDAR has been driverless cars and autonomous robots, their 
designs are rugged and suitable for harsh environments. The 
usual working temperature range is -50 to +80 degrees Celsius 
and they come in rugged housings [73]. However, owing to the 
dynamic nature of some variants of LIDAR, frequent servicing 
may be required. Due to bulkiness and heaviness, LIDARs need 
to be handled with care when replacing them. Lasers used in 
LIDAR are Class 1 Eye-Safe per IEC 6–825–1: 2007 & 2014. 
However, the risks of multiple lasers in constructive interference 
is yet to be analysed. Unlike cameras, they generally do not raise 
any privacy concerns. 

C. Monocular Camera 

The life time of cameras is usually calculated based on its 
shutter life. i.e., the number of shutter actuations before which 
the camera will go blind. Most cameras have a shutter life 
between 30,000 to 150,000 clicks [74]. Digital video-cameras, 
on the other hand, have a combination of mechanical and 
electronic shutters. The mechanical shutter actuation is 
performed at the start and end of capturing a video sequence. 
Although electronic shutters do not have any mechanical 
movement (thus no shutter life based on mechanical wear-and-
tear), however, long exposure to light can damage image sensors 
which is why additional mechanical shutter actuations are 
needed. While today’s shutter life appears very attractive for 
professional photography, evaluation for long-term vision-based 
SLAM systems needs to be performed.  

Cameras have been widely used in field before, and some 
show excellent performance. Most adventure and monitoring 
cameras are water-proof, heat-resistant and resilient. Due to their 
compactness, light-weight, serial communication lines, and ease 
of mounting; they are easy to replace. Since Cameras are only 
passive elements they don’t pose any threat to the environment 
other than their contribution to e-waste like any other 



electronics. However, wide-spread use of cameras on mobile 
robots can raise privacy concerns which needs to be addressed. 

D. RGB-D Sensors 

In terms of life time, most RGB-D sensors have shown 
promising performance over the years. However, rigorous use in 
extreme environments is an area where Kinect and other RGB-
D sensors need to be tested for longer periods. Primarily, RGB-
D sensors were developed as user-interfaces and not for mobile 
platforms in real world. Although the intrinsic nature of these 
sensors is the same as cameras, their compatibility with harsh 
environments needs to be investigated. Due to their compactness 
and serial interface, they are easy to replace in field.  

Regarding environmental suitability, the IR laser in Kinect 
is 780nm (visible light ending at 760 nm, thus making the Kinect 
laser very short wave IR, or SWIR). Furthermore, in order to 
cover a wide area the radiation pattern is diffused. It is rated as 
a Class 1 laser device [75] and complies with IEC 60825-1: 
2007-3. However, wide spread usage of RGB-D cameras, may 
raise the same privacy concerns as for standard cameras. 

E. Stereo Camera 

The underlying hardware for stereo cameras is the same as 
monocular cameras and thus they also show acceptable 
performance over the years depending upon shutter life. 
However, evaluation for long-term vision-based SLAM needs to 
be performed. Stereo cameras have been used in fields on 
various static and dynamic platforms. Recently many versions 
of drones utilized stereo cameras as well. However, since the 
performance of stereo cameras is highly dependent upon 
environment and scenes, their multi-terrain usefulness needs to 
be investigated. Most Stereo cameras come with different 
mounting styles and have serial interface. Due to their 
compactness, they are easy to replace. Stereo cameras, being 
passive sensors, do not emit any sort of energy. They do 
contribute to electronic waste and pose challenges of privacy. 

F. Event Cameras 

Since event cameras have recently emerged, their lifetime is 
yet to be evaluated. However, based on our correspondence with 
manufacturers, they have tested these cameras and expect these 
to show excellent performance over a period of 6-7 years. The 
DVS event cameras are designed specifically for the task of 
robot navigation. They have strong mounting, low power-
consumption but evaluation in extreme weathers should be 
performed. These cameras are compact, serially interfaced and 
have different mounting options, making them easy-to-replace. 
These are passive sensors and do not rely on any emissions for 
mapping the environment.    

G. Omni-directional Cameras 

Due to their profound use in tourism, these cameras are 
designed to last for years, similar to other standard cameras 
based on their shutter life. However, that evaluation is for 
occasional image/video capturing and not applicable to long-
term autonomous robots. Most of the 360 cameras are designed 
for rugged use in harsh environments and some are water-proof. 
This provides great benefits for field operations. Due to their 
highly compact sizes and serial interface they can be easily 
replaced. Being passive sensors, they do not pose any radiation 

threats. However, like standard cameras they can also raise 
privacy concerns when used in conjunction with autonomous 
robots. 

IV. CONCLUSIONS 

It can be concluded that research in the area of SLAM is 
highly dependent on the sensing technologies and much 
innovation is yet to come. Acoustic sensors lack feature rich 
representation of environment. LIDARs are expensive, bulky 
and pose computational challenges. Monocular, omni-
directional and event cameras lack depth information. 
Additionally, event cameras fail in static scenes. Although 
RGB-D cameras provide depth information, they have limited 
range. A sensor with the dynamic response of event cameras, 
static feature-rich scans of omni-directional cameras and range-
prowess of LIDARs, may achieve the ultimate SLAM system. 
And yet after that, it needs to be reasonably priced, power-
efficient, compact, lifelong and environment-friendly to realize 
long-term autonomy. 
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