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Abstract— Vibration compensation is important for many
domains. For the machine tool industry it translates to higher
machining precision and longer component lifetime. Current
methods for vibration damping have their shortcomings (e.g.
need for accurate dynamic models). In this paper we present
a reinforcement learning based approach to vibration com-
pensation applied to a machine tool axis. The work describes
the problem formulation, the solution, the implementation and
experiments using industrial machine tool hardware and control
system.

I. INTRODUCTION

The compensation of mechanical and structural vibration
has significant applications in manufacturing, infrastructure
engineering and other domains. In automotive or aerospace
applications, vibration reduces component lifetime and the
associated acoustic noise can produce discomfort. In machine
tools residual vibrations degrade the position accuracy and
produce material fatigue.

The compensation of such mechanical vibrations is a large
and important field of research. Various methods have been
applied to provide solutions for this challenging problem.

In this paper we briefly review the state of the art in
the field of vibration compensation of dynamic feed drive
systems (the main sources of motion in machine tools) and
describe drawbacks in the solutions provided in the state
of the art. We propose a novel approach based on deep
reinforcement learning to compensate vibrations in dynamic
drive systems with a priori unknown system parameters. The
proposed method is experimentally validated using a linear
direct drive and control hard- and software customary in the
machine tool industry.

II. STATE OF THE ART

The research in the field of vibration compensation can
roughly be broken into three categories: hardware de-
sign, command shaping, and feedback control. The above-
mentioned research areas are illustrated in the followings.

A. Hardware Design

In hardware design approaches, vibration compensation is
achieved by using additional mechanical systems. The damp-
ing of the system is increased by mass dampers and vibration
absorbers. The advantage of these systems resides in their
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simple construction and cost-effective implementation. The
major drawback in hardware design approaches is the low
flexibility [1] since hardware (e.g. passive dampers [2]) is
used to overcome an application specific problem.

B. Command Shaping

Command shaping methods are altering the reference
motion trajectory in order to filter out specific frequencies.
Thus the suppression of vibrations is done in a preemptive
way. The major downside of command shaping methods
is that a dynamic model of the system or at least its
natural frequencies and damping behavior has to be known
beforehand with sufficient accuracy. The dynamic model
has to be re-evaluated when the system parameters vary.
One of the earliest publications on command shaping is
[3]. Smith et al. proposed a method, known as posicast
control, that processes a baseline command and delay a part
of the command before transferring it to the system. The
delayed portion of the command canceles out the vibration
induced by the undelayed part of the motion command.
A key advancement in command shaping was the concept
of robustness commands can be designed to work well,
even when large modeling errors exist. Singer and Seer-
ing presented an input-shaping method [4] that increases
the robustness of the input-shaping process. They used an
additional constraint to enforce the derivative of the residual
vibration, with respect to the frequency, to equal zero:

∂

∂(ω)
V (ω, ξ) = 0. (1)

Where ω is the natural frequency, and ξ is the damping
ratio. When V (ω, ξ) = 0 is satisfied, the result is a Zero
Vibration and Derivative (ZVD) shaper containing three
impulses.

C. Feedback Control

Vibration compensation using feedback control, also
known as active vibration control, incorporates sensors to
measure the mechanical disturbance, a controller to compute
an appropriate counter-vibration and control an actuator
accordingly. Destructive interference from additional move-
ments generated by the controller reduces or neutralizes the
effects of the disturbance on the structure [5]. The scheme
of feedback control is depicted in Figure (1) . The feedback
signal e = r − y is computed from the comparison of the
output y of the system and the input r. The error signal is
passed into a compensator h(s) and applied to the system
g(s). The controller is designed with the aim of determining
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an appropriate transfer function of the compensator h(s), to
induce the sought-after performance while maintaining the
system stability.

Fig. 1: Feedback control [5].

The objective of active damping is to reduce resonant
peaks of the closed-loop control circuit

f(s) =
y(s)

r(s)
=

g(s)h(s)

1 + g(s)h(s)
. (2)

Active damping can be achieved without modelling the
system dynamics, but is only effective near resonance peaks.
Moreover the stability can only be guaranteed when the
sensors and actors are collocated. Model based methods
attenuate all disturbance within the control bandwidth, but
require an accurate model of the system. Such methods
generally have limited bandwidths and cope with control and
observation spillover [6].

Coordinate Coupling Control (CCC) is an energy-based
method to eliminate the transient vibration of an oscillatory
system [7]. The technique was later extended to compensate
steady-state vibrations [8].

Robust control approaches focus the trade off between
performance and stability in the presence of system model
uncertainties. The H∞-controller is designed to address
the uncertainties systematically. H∞-methods formulate the
control problem as a mathematical optimization problem and
solve it. The resulting H∞-controller is then optimal with
respect to the prescribed cost function. Application of the
H∞ method in the vibration control of flexible structures
can be found in [9], [10].

Optimal control theory applied in vibration control aims to
reduce the vibration of the mechanical system to the greatest
possible extent. The method seeks to compute the feedback
gain by minimizing a cost function or a performance index,
which is correlated to the required measure of the system
response. Popular approaches are [11], [12].

There are attempts in the state of the art for reducing vibra-
tions using machine learning. However, these in contrast to
our proposed approach are not using reinforcement learning,
like the neurofuzzy approach in [13] or use reinforcement
learning in simulation for active automotive suspension in
simulation [14] and not for machine tools on industrial
hardware.

The main shortcomings of the state of the art methods are
the following problem statements:
• Complex modelling of the underlying system dynamics.
• Learn from past performance to improve future actions.
• Automatic adaption of the vibration compensation be-

havior to changes in the structure/system.

III. PRELIMINARIES

A. Reinforcement Learning and Policy Optimization

Further we define the Reinforcement Learning (RL) prob-
lem and introduce the notation that we use throughout the
paper. In this paper a finite-horizon, discounted Markov
Decision Process (MDP) is regarded. At each timestep t,
the RL-agent observes the current state st ∈ S, performs an
action at ∈ A, and then receives a reward rt+1 ∈ R. After
that the resulting state st+1 will be observed, determined by
the unknown dynamics of the environment p(st+1|at, st). An
episode has a pre-defined length T time steps. The goal of
the agent is to find a parameter θ of a policy πθ(a|s) that
maximizes the expected cumulated reward J over a trajectory

J(πθ) = Eτ∼πθ
[ T∑
t=0

π(at|st)
T∑
k=t

γk−trk+1

]
, (3)

where γ ∈ [0, 1] is the discount factor.
RL methods solve a MDP by interacting with the system

and accumulating the obtained reward. We consider several
model-free policy gradient algorithms with open source im-
plementations which appear frequently in the literature, e.g.
Soft Actor-Critic approaches [15], Deep Deterministic Policy
Gradient (DDPG) [16], and Proximal Policy Optimization
(PPO) [17]. The major advantage for the use of the PPO
algorithm is that it allows to incorporate a Long Short-
Term Memory (LSTM) [18] effortlessly [19]. A LSTM
is a specific recurrent neural network (RNN) architecture
that was designed to model temporal sequences and their
long-range dependencies more accurately than conventional
RNNs [20]. The use of a LSTM significantly increases the
model quality of the system dynamics (e.g. determining the
actual vibrations from subsequent deflection observations).
Therefore we use the PPO algorithm [17] for the training of
the agent.

Generally, PPO maximizes (3) using a robust version of
the policy gradient theorem

∇θJ(πθ) = Eτ∼πθ
[ T∑
t=0

∇θ log π(at|st)
T∑
k=t

γk−trk+1

]
(4)

and performing gradient ascent steps

θk+1 = θk + α∇θJ(πθ). (5)

Fig. 2: System Architecture illustrated as MDP.
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Fig. 3: Results of a training process plotted over all time steps(a): Illustrates the development of the episode-reward. (b)
shows the actual deflection of the vibration. (c): Depicts the velocity commands determined by the agent. (d): Represents
the entropy loss.

IV. VIBRATION COMPENSATION USING RL

A. Problem Formulation

We consider vibration compensated movement commands
that can be described as moving to a target position goal
and compensating vibrations along the way. Let xt and yt =
ŷ sin (ωt) denote the actual position and the actual vibration,
respectively, at time t and let ẋt denote the control command
(velocity) applied to the system at that time. A movement
command sg = (xg, yg) is described by a target position
xg and a desired vibration yg . To compensate occurring
vibrations yg is set to 0. Given the movement command sg ,
an initial system state s0 = (x0, y0), and a time horizon T
our vibration compensation problem is formulated as

min
ẋ0,...,ẋT

l(sT , sg), (6)

st+1 = f(st, ẋt), t ∈ 0, ..., T. (7)

Where f describes the unknown dynamics of the system and
l the loss function defined by the summed squared distance

l(sT , sg) =
∑
t

||st − sg||2. (8)

Generally, policy optimization approaches seek for the pa-
rameters θ of a reactive, fully parametrized policy πθ(ẋt|st)
such that selecting actions according to π minimizes the loss
in (6) [17].

B. MDP Architecture

The flow of information of our method is shown in
figure 2. With respect to the introduced notation for the MDP
we define observations, actions, and rewards as follows:

Observation. A state st is described by the actual position
xt and velocity ẋt of the feed drive translator and the
current vibration. Note that an observation of the current
vibration solely incorporates the subsequent measurements of
the deflection, not the frequency. The agent has to determine
the actual frequency based on five preceeding measurements
of the deflection {ŷi}i=t−4,...,t.

Action. The agents action at is defined by a continuous
velocity command ẋg ∈ [−400mms , 400mms ].

Reward. The reward signal is described as follows

rt+1 =

{
0, (|xt−xgxg

|+ | ŷt−ŷgŷg
|) < 0.01

−1, otherwise
, (9)

Given the reward function in formula (9) a negative return is
received while the target position xg and/or the desired vibra-
tion is not reached. Otherwise the agent receives rt+1 = 0.

For the RL agent a vibration-compensated motion is an op-
posing goal: Dynamically moving a machine axis induces vi-
brations; compensating vibrations affects the desired motion.
This insight is used in the modelling of the reward function.
We want the agent to fulfill both mutually influencing goals
(xg and yg). Therefore we design the reward function based
on a sparse reward setting, treating positioning accuracy and
vibration suppression equally. To learn from sparse rewards,



effective exploration is crucial to find a set of successful
trajectories. To guarantee sufficient amount of exploration
we use the entropy coefficient as a regularizer. In a policy
optimization setting, a policy has maximum entropy when all
policies are equally likely and minimum when the one action
probability of the policy is dominant. The entropy coefficient
is multiplied by the maximum possible entropy and added
to the loss and therefore prevents premature convergence of
one action probability dominating the policy and preventing
exploration [17]. Further, to ensure a high generalization
performance of the agent, the target position is randomized
during the training process.

V. EXPERIMENTS

The experiments were done using a linear direct drive
depicted in figure 4 coupled to a TwinCAT control unit. The
RL Agent is deployed on a Ubuntu Xenial computer with
a ADS (Automation Device Specification) interconnection
to the control unit. Further, we use the Stable Baselines
[21] implementations of RL algorithms. For hyperparameter
tuning we apply a bayesian optimization approach provided
by the framework optuna [22]. To measure the mechanical
vibrations we utilize a vision system using OpenCV.

Fig. 4: Linear feed drive system.

Our experiment evaluates the cost function proposed in
Section IV-A. For this experiment, we want the linear feed
drive to reach various, random sampled target positions and
suppress vibrations along the way. Consequently we define
the goal state as sg = (pg ∼ U , 0) and the number of
time steps T . Figure (3) illustrates the results. The agent
solves the vibration compensation problem after 850.000
time steps, equalling 12 hours training on the real machine
tool axis (cf. Figure (4)). Figure (3, a) shows the episode
reword converging asymptotically towards zero after 850.000
time steps. Consequently the occurring vibrations (Figure 3,
b) also converge towards zero. Figure (3, d) illustrates the
entropy loss that regularizes when the learning rate decays
and attenuates when agents rewards converges.

VI. CONCLUSION

In this work a reinforcement learning based approach to
compensate mechanical vibrations applied to an industrial
machine tool axis is presented. We propose a problem
formulation describing the vibration compensation based on
a vibration cost optimization problem. We evaluate different
state of the art Reinforcement Learning algorithms to solve
the vibration compensation problem. We train the agent
directly on a real machine tool axis, without the use of a

simulation environment. To validate our method we perform
experiments on a real machine tool axis. The experiments
show that the proposed approach is capable of generating
vibration compensated movements using a feed drive system
with a priori unknowns system dynamics.

Further research could be conducted on the following top-
ics: Deploy the agent using a discrete action space (move left;
move right); investigate the generalization across varying
machine tool hardware, utilize better vibration measurement
system (more accurate and frequent observations).
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