1908.10001v1 [cs.LG] 27 Aug 2019

arxXiv

Real-world Conversational Al for Hotel Bookings

Bai Li Nanyi Jiang Joey Sham Henry Shi Hussein Fazal
University of Toronto SnapTravel SnapTravel SnapTravel SnapTravel
SnapTravel Toronto, Canada Toronto, Canada Toronto, Canada Toronto, Canada

Toronto, Canada
bai @cs.toronto.edu

Abstract—In this paper, we present a real-world conversational
Al system to search for and book hotels through text messaging.
Our architecture consists of a frame-based dialogue manage-
ment system, which calls machine learning models for intent
classification, named entity recognition, and information retrieval
subtasks. Our chatbot has been deployed on a commercial scale,
handling tens of thousands of hotel searches every day. We
describe the various opportunities and challenges of developing
a chatbot in the travel industry.

Index Terms—conversational Al task-oriented chatbot, named
entity recognition, information retrieval

I. INTRODUCTION

Task-oriented chatbots have recently been applied to many
areas in e-commerce. In this paper, we describe a task-oriented
chatbot system that provides hotel recommendations and
deals. Users access the chatbot through third-party messaging
platforms, such as Facebook Messenger (Figure [T), Amazon
Alexa, and WhatsApp. The chatbot elicits information, such
as travel dates and hotel preferences, through a conversation,
then recommends a set of suitable hotels that the user can
then book. Our system uses a dialogue manager that integrates
a combination of NLP models to handle the most frequent
scenarios, and defer to a human support agent for more
difficult situations.

The travel industry is an excellent target for e-commerce
chatbots for several reasons:

1) Typical online travel agencies provide a web interface
(such as buttons, dropdowns, and checkboxes) to enter
information and filter search results; this can be difficult
to navigate. In contrast, chatbot have a much gentler
learning curve, since users interact with the bot using
natural language. Additionally, chatbots are lightweight
as they are embedded in an instant messaging platform
that handles authentication. All of these factors con-
tribute to higher user convenience [1].

2) Many people book vacations using travel agents, so the
idea of booking travel through conversation is already
familiar. Thus, we emulate the role of a travel agent,
who talks to the customer while performing searches on
various supplier databases on his behalf.

3) Our chatbot has the advantage of a narrow focus, so that
every conversation is related to booking a hotel. This
constrains conversations to a limited set of situations,

leon@snaptravel.com joey @snaptravel.com henry @snaptravel.com hussein@snaptravel.com

L] |
wseec ROGERS LTE WFH 5:04 PM + O 85% -
SnapTravel - Hotel Deals
< Home 2 ’ Manage

Glad to help you with a new
search Gareth!

What's your travel city and
@ dates? #

New York. May 2-3. $350 max.

[

bwin Manhattan NYC-an Affinia hotel

Yotel N

Fig. 1. Screenshot of a typical conversation with our bot in Facebook
Messenger.

thus allowing us to develop specialized models to handle
hotel-related queries with very high accuracy.

The automated component of the chatbot is also closely
integrated with human support agents: when the NLP system
is unable to understand a customer’s intentions, customer
support agents are notified and take over the conversation. The
agents’ feedback is then used to improve the Al, providing
valuable training data (Figure [2). In this paper, we describe
our conversational Al systems, datasets, and models.

II. RELATED WORK

Numerous task-oriented chatbots have been developed for
commercial and recreational purposes. Most commercial chat-

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including

reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or

reuse of any copyrighted component of this work in other works.

User message

Message is labelled by agent
o and added to training data

oo}

Bot understands reply?
(intent model prediction is not unknown,
and confidence is above threshold)

Yes No

Human takes over _|

Bot responds X
conversation

Fig. 2. The intent model determines for each incoming message, whether the
bot can respond adequately. If the message cannot be recognized as one of
our intent classes, then the conversation is handed to a human agent, and is
added to our training data.

bots today use a frame-based dialogue system, which was first
proposed in 1977 for a flight booking task [2]. Such a system
uses a finite-state automaton to direct the conversation, which
fills a set of slots with user-given values before an action
can be taken. Modern frame-based systems often use machine
learning for the slot-filling subtask [3]].

Natural language processing has been applied to other
problems in the travel industry, for example, text mining
hotel information from user reviews for a recommendation
system [4], or determining the economic importance of various
hotel characteristics [5]]. Sentiment analysis techniques have
been applied to hotel reviews for classifying polarity [6] and
identifying common complaints to report to hotel management
(7].

III. CHATBOT ARCHITECTURE

Our chatbot system tries to find a desirable hotel for the
user, through an interactive dialogue. First, the bot asks a
series of questions, such as the dates of travel, the destination
city, and a budget range. After the necessary information has
been collected, the bot performs a search and sends a list of
matching hotels, sorted based on the users’ preferences; if the
user is satisfied with the results, he can complete the booking
within the chat client. Otherwise, the user may continue talking
to the bot to further narrow down his search criteria.

At any point in the conversation, the user may request to talk
to a customer support agent by clicking an “agent” or “help”
button. The bot also sends the conversation to an agent if the
user says something that the bot does not understand. Thus,
the bot handles the most common use cases, while humans
handle a long tail of specialized and less common requests.

The hotel search is backed by a database of approximately
100,000 cities and 300,000 hotels, populated using data from
our partners. Each database entry contains the name of the city
or hotel, geographic information (e.g., address, state, country),
and various metadata (e.g., review score, number of bookings).

TABLE I
SOME INTENT CLASSES PREDICTED BY OUR MODEL.

Intent Description

thanks User thanks the bot
cancel Request to cancel booking
stop Stop sending messages
search Hotel search query
unknown | Any other message

A. Dialogue management

Our dialog system can be described as a frame-based slot-
filling system, controlled by a finite-state automaton. At each
stage, the bot prompts the user to fill the next slot, but supports
filling a different slot, revising a previously filled slot, or filling
multiple slots at once. We use machine learning to assist with
this, extracting the relevant information from natural language
text (Section [[V). Additionally, the system allows universal
commands that can be said at any point in the conversation,
such as requesting a human agent or ending the conversation.

Figure [3| shows part of the state machine, invoked when
a user starts a new hotel search. Figure [] shows a typical
conversation between a user and the bot, annotated with
the corresponding state transitions and calls to our machine
learning models.

B. Data labelling

We collect labelled training data from two sources. First,
data for the intent model is extracted from conversations
between users and customer support agents. To save time,
the model suggests a pre-written response to the user, which
the agent either accepts by clicking a button, or composes a
response from scratch. This action is logged, and after being
checked by a professional annotator, is added to our training
data.

Second, we employ professional annotators to create train-
ing data for each of our models, using a custom-built interface.
A pool of relevant messages is selected from past user conver-
sations; each message is annotated once and checked again by
a different annotator to minimize errors. We use the PyBoss
framework to manage the annotation processes.

IV. MODELS

Our conversational AI uses machine learning for three
separate, cascading tasks: intent classification, named entity
recognition (NER), and information retrieval (IR). That is, the
intent model is run on all messages, NER is run on only a
subset of messages, and IR is run on a further subset of those.
In this section, we give an overview of each task’s model and
evaluation metrics.

A. Intent model

The intent model processes each incoming user message and
classifies it as one of several intents. The most common intents
are thanks, cancel, stop, search, and unknown (described in

Uhttps://pybossa.com

https://pybossa.com

Provides location

Request dates

Provides dates and location

Greetings

Request hotel

No specific hotel

Request budget

Send
recommendations

—

. Request location
Provides dates

Provides specific hotel

\l
’l

Repl

Any state

Thank you

ly with "You are welcome"

Fig. 3. Diagram showing part of the state machine, with relevant tra

Conversation

" details (i.e "Bellagio hotel in Las Vegas for
next weekend")

nsitions; this part is invoked when a user starts a new search for a hotel.

State Machine NLP Models

s

Hotel Search

User: looking for a hotel feb 1 - feb 3

Bot: What's your travel city?

i (CRequest location) <————

{checkin: "feb 1",

User: somewhere in NYC

Bot: Do you already have a hotel in mind?

User: not really

i Bot: Got it, for these dates, 3 star hotels
i are around $160 ~ $305/night and 4 star

NER
checkout: "feb 3"}

' ' : (\
. . Iq NER {location: "NYC"}
'] -
E ; : {city: "New York",
E ..Hequest hotel 4—‘—: ' “ state: "NY"}
: ! AN

Fig. 4. Example of a conversation with our bot, with corresponding state transitions and model logic. First, the user message is processed by the intent model,

which classifies the message into one of several intents (described in Table

EI). Depending on the intent and current conversation state, other models (NER

and IR) may need to be invoked. Then, a response is generated based on output of the models, and the conversation transitions to a different state.

Table [I); these intents were chosen for automation based on
volume, ease of classification, and business impact. The result
of the intent model is used to determine the bot’s response,
what further processing is necessary (in the case of search
intent), and whether to direct the conversation to a human
agent (in the case of unknown intent).

We use a two-stage model; the first stage is a set of keyword-
matching rules that cover some unambiguous words. The
second stage is a neural classification model. We use ELMo
[8]] to generate a sequence of 1024-dimensional embeddings
from the text message; these embeddings are then processed
with a bi-LSTM with 100-dimensional hidden layer. The
hidden states produced by the bi-LSTM are then fed into a
feedforward neural network, followed by a final softmax to
generate a distribution over all possible output classes. If the
confidence of the best prediction is below a threshold, then
the message is classified as unknown. The preprocessing and
training is implemented using AllenNLP [9].

TABLE II
REsuLTS OF NER MODEL

Entity Type Precision | Recall | F1
Hotel 0.84 0.53 0.65
Location 0.85 0.89 0.87

[Hotel + Location | 0.94 [099 1096]

We evaluate our methods using per-category precision,
recall, and F1 scores. These are more informative metrics than
accuracy because of the class imbalance, and also because
some intent classes are easier to classify than others. In
particular, it is especially important to accurately classify the
search intent, because more downstream models depend on
this output.

B. Named entity recognition

For queries identified as search intent, we perform named
entity recognition (NER) to extract spans from the query

Relevance [0, 1]

. [&]

ﬁ_

(=) (5

Sentence 2:
Hotel name

Sentence 1:
Query after NER

Fig. 5. BERT model for IR. The inputs are tokens for the user query
(after NER) and the official hotel name, separated by a [SEP] token. The
model learns to predict a relevance score between 0 and 1 (i.e., the pointwise
approach to the learning-to-rank problem). Figure adapted from [13]].

representing names of hotels and cities. Recently, neural
architectures have shown to be successful for NER [10], [11].
Typically, they are trained on the CoNLL-2003 Shared Task
[12] which features four entity types (persons, organizations,
locations, and miscellaneous).

Our NER model instead identifies hotel and location names,
for example:

o “double room in the cosmopolitan, las vegas for Aug 11-
167,

o “looking for a resort in Playa del carmen near the
beach”.

We use SpaC to train custom NER models. The model
initialized with SpaCy’s English NER model, then fine-tuned
using our data, consisting of 21K messages labelled with hotel
and location entities. Our first model treats hotels and locations
as separate entities, while our second model merges them and
considers both hotels and locations as a single combined entity
type. All models are evaluated by their precision, recall, and
F1 scores for each entity type. The results are shown in Table
I

The combined NER model achieves the best accuracy,
significantly better than the model with separate entity types.
This is expected, since it only needs to identify entities as
either hotel or location, without needing to distinguish them.
The model is ineffective at differentiating between hotel and
location names, likely because this is not always possible
using syntactic properties alone; sometimes, world knowledge
is required that is not available to the model.

C. Information retrieval

The information retrieval (IR) system takes a user search
query and matches it with the best location or hotel entry

Zhttps://spacy.io

TABLE III
RESULTS OF IR MODELS

Model Top-1 Recall | Top-3 Recall
Unigram matching baseline 0.473 -
Averaged GloVe + feedforward 0.680 0.869
BERT + fine-tuning 0.895 0.961

in our database. It is invoked when the intent model detects
a search intent, and the NER model recognizes a hotel or
location named entity. This is a non-trivial problem because
the official name of a hotel often differs significantly from
what a user typically searches. For example, a user looking
for the hotel “Hyatt Regency Atlanta Downtown” might search
for “hyatt hotel atlanta”.

We first apply NER to extract the relevant parts of the
query. Then, we use ElasticSearc to quickly retrieve a list of
potentially relevant matches from our large database of cities
and hotels, using tf-idf weighted n-gram matching. Finally,
we train a neural network to rank the ElasticSearch results for
relevancy, given the user query and the official hotel name.

Deep learning has been applied to short text ranking, for
example, using LSTMs [14]], or CNN-based architectures [[15]],
[16]. We experiment with several neural architectures, which
take in the user query as one input and the hotel or city name as
the second input. The model is trained to classify the match as
relevant or irrelevant to the query. We compare the following
models:

1) Averaged GloVe + feedforward: We use 100-
dimensional, trainable GloVe embeddings [17] trained
on Common Crawl, and produce sentence embeddings
for each of the two inputs by averaging across all
tokens. The sentence embeddings are then given to a
feedforward neural network to predict the label.

2) BERT + fine-tuning: We follow the procedure for
BERT sentence pair classification. That is, we feed the
query as sentence A and the hotel name as sentence B
into BERT, separated by a [SEP] token, then take the
output corresponding to the [CLS] token into a final
linear layer to predict the label. We initialize the weights
with the pretrained checkpoint and fine-tune all layers
for 3 epochs (Figure [3).

The models are trained on 9K search messages, with up
to 10 results from ElasticSearch and annotations for which
results are valid matches. Each training row is expanded into
multiple message-result pairs, which are fed as instances to
the network. For the BERT model, we use the uncased BERT-
base, which requires significantly less memory than BERT-
large. All models are trained end-to-end and implemented
using AllenNLP [9].

For evaluation, the model predicts a relevance score for
each entry returned by FElasticSearch, which gives a ranking
of the results. Then, we evaluate the top-1 and top-3 recall:
the proportion of queries for which a correct result appears

3https://www.elastic.co

https://spacy.io
https://www.elastic.co

as the top-scoring match, or among the top three scoring
matches, respectively. The majority of our dataset has exactly
one correct match. We use these metrics because depending
on the confidence score, the chatbot either sends the top match
directly, or sends a set of three potential matches and asks the
user to disambiguate.

We also implement a rule-based unigram matching baseline,
which takes the entry with highest unigram overlap with the
query string to be the top match. This model only returns the
top match, so only top-1 recall is evaluated, and top-3 recall
is not applicable. Both neural models outperform the baseline,
but by far the best performing model is BERT with fine-tuning,
which retrieves the correct match for nearly 90% of queries

(Table [I).

D. External validation

Each of our three models is evaluated by internal cross-
validation using the metrics described above; however, the
conversational Al system as a whole is validated using external
metrics: agent handoff rate and booking completion rate. The
agent handoff rate is the proportion of conversations that
involve a customer support agent; the booking completion rate
is the proportion of conversations that lead to a completed
hotel booking. Both are updated on a daily basis.

External metrics serve as a proxy for our NLP system’s
performance, since users are more likely to request an agent
and less likely to complete their booking when the bot fails.
Thus, an improvement in these metrics after a model deploy-
ment validates that the model functions as intended in the real
world. However, both metrics are noisy and are affected by
factors unrelated to NLP, such as seasonality and changes in
the hotel supply chain.

V. CONCLUSION

In this paper, we give an overview of our conversational
Al and NLP system for hotel bookings, which is currently
deployed in the real world. We describe the various machine
learning models that we employ, and the unique opportunities
of developing an e-commerce chatbot in the travel industry.
Currently, we are building models to handle new types of
queries (e.g., a hotel question-answering system), and using
multi-task learning to combine our separate models. Another
ongoing challenge is improving the efficiency of our models in
production: since deep language models are memory-intensive,
it is important to share memory across different models. We
leave the detailed analysis of these systems to future work.

Our success demonstrates that our chatbot is a viable
alternative to traditional mobile and web applications for
commerce. Indeed, we believe that innovations in task-oriented
chatbot technology will have tremendous potential to improve
consumer experience and drive business growth in new and
unexplored channels.

VI. ACKNOWLEDGMENT

We thank Frank Rudzicz for his helpful suggestions to drafts
of this paper. We also thank the engineers at SnapTravel for

building our chatbot: the conversational Al is just one of the
many components.

REFERENCES

[1]1 L. C. Klopfenstein, S. Delpriori, S. Malatini, and A. Bogliolo, “The rise
of bots: A survey of conversational interfaces, patterns, and paradigms,”
in Proceedings of the 2017 Conference on Designing Interactive Sys-
tems. ACM, 2017, pp. 555-565.

[2] D. G. Bobrow, R. M. Kaplan, M. Kay, D. A. Norman, H. Thompson, and
T. Winograd, “Gus, a frame-driven dialog system,” Artificial intelligence,
vol. 8, no. 2, pp. 155-173, 1977.

[3] G. Mesnil, Y. Dauphin, K. Yao, Y. Bengio, L. Deng, D. Hakkani-
Tur, X. He, L. Heck, G. Tur, D. Yu et al., “Using recurrent neural
networks for slot filling in spoken language understanding,” IEEE/ACM
Transactions on Audio, Speech, and Language Processing, vol. 23, no. 3,
pp. 530-539, 2015.

[4] K. Zhang, K. Wang, X. Wang, C. Jin, and A. Zhou, “Hotel recommenda-
tion based on user preference analysis,” in 2015 31st IEEE International
Conference on Data Engineering Workshops (ICDEW). 1EEE, 2015,
pp. 134-138.

[5] A. Ghose, P. G. Ipeirotis, and B. Li, “Designing ranking systems for ho-
tels on travel search engines by mining user-generated and crowdsourced
content,” Marketing Science, vol. 31, no. 3, pp. 493-520, 2012.

[6] H.-X. Shi and X.-J. Li, “A sentiment analysis model for hotel reviews
based on supervised learning,” in 2011 International Conference on
Machine Learning and Cybernetics, vol. 3. 1EEE, 2011, pp. 950-954.

[71 W. Kasper and M. Vela, “Sentiment analysis for hotel reviews,” in
Computational linguistics-applications conference, vol. 231527, 2011,
pp. 45-52.

[8] M. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee,
and L. Zettlemoyer, “Deep contextualized word representations,” in
Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), vol. 1, 2018, pp. 2227-2237.

[9] M. Gardner, J. Grus, M. Neumann, O. Tafjord, P. Dasigi, N. F. Liu,

M. Peters, M. Schmitz, and L. Zettlemoyer, “AllenNLP: A deep semantic

natural language processing platform,” in Proceedings of Workshop for

NLP Open Source Software (NLP-OSS), 2018, pp. 1-6.

G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer,

“Neural architectures for named entity recognition,” in Proceedings of

NAACL-HLT, 2016, pp. 260-270.

M. Peters, W. Ammar, C. Bhagavatula, and R. Power, “Semi-supervised

sequence tagging with bidirectional language models,” in Proceedings

of the 55th Annual Meeting of the Association for Computational

Linguistics (Volume 1: Long Papers), vol. 1, 2017, pp. 1756-1765.

E. E T. K. Sang and F. De Meulder, “Introduction to the CoNLL-

2003 shared task: Language-independent named entity recognition,” in

Proceedings of the Seventh Conference on Natural Language Learning

at HLT-NAACL 2003, 2003.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-

training of deep bidirectional transformers for language understanding,”

in Proceedings of the 2019 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language

Technologies, Volume 1 (Long and Short Papers), 2019, pp. 4171-4186.

D. Wang and E. Nyberg, “A long short-term memory model for answer

sentence selection in question answering,” in Proceedings of the 53rd

Annual Meeting of the Association for Computational Linguistics and

the 7th International Joint Conference on Natural Language Processing

(Volume 2: Short Papers), vol. 2, 2015, pp. 707-712.

A. Severyn and A. Moschitti, “Learning to rank short text pairs with

convolutional deep neural networks,” in Proceedings of the 38th in-

ternational ACM SIGIR conference on research and development in

information retrieval. ACM, 2015, pp. 373-382.

H. He, K. Gimpel, and J. Lin, “Multi-perspective sentence similarity

modeling with convolutional neural networks,” in Proceedings of the

2015 Conference on Empirical Methods in Natural Language Process-

ing, 2015, pp. 1576-1586.

J. Pennington, R. Socher, and C. Manning, “GloVe: Global vectors

for word representation,” in Proceedings of the 2014 conference on

empirical methods in natural language processing (EMNLP), 2014, pp.

1532-1543.

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

	I Introduction
	II Related work
	III Chatbot architecture
	III-A Dialogue management
	III-B Data labelling

	IV Models
	IV-A Intent model
	IV-B Named entity recognition
	IV-C Information retrieval
	IV-D External validation

	V Conclusion
	VI Acknowledgment
	References

