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Abstract—Many production processes are characterized by
numerous and complex cause-and-effect relationships. Since they
are only partially known they pose a challenge to effective process
control. In this work we present how Structural Equation Models
can be used for deriving cause-and-effect relationships from
the combination of prior knowledge and process data in the
manufacturing domain. Compared to existing applications, we
do not assume linear relationships leading to more informative
results.

Index Terms—Causal Discovery, Bayesian Networks, Industry
4.0

I. INTRODUCTION

To be published in the Proceedings of IEEE AI4I 2022.
Complex manufacturing processes as, e.g. for battery cells
show high scrap rates and thus high production costs and
large environmental footprints. One of the driving factors is
the missing knowledge on the interdependencies between the
process parameters, intermediate product properties and the
quality characteristics [1]. Together we call this the cause-
and-effect relationships (CERs). CERs can be visualized as a
network with the process and product characteristics as nodes
and the CERs as directed edges [1], [2]. It is the goal of our
paper to unify expert knowledge and process data to derive
such a network, which allows the visual identification of

• root-causes of erroneous products,
• relevant parameters for process control during successive

production steps and
• important characteristics to predict the quality of the final

product.

In complex manufacturing domains, CERs form a linked mesh
of hundreds of involved factors [1]. Typically, CERs are
derived by running Designs of Experiments (DOEs). However,
DOEs can be time-demanding and the production line has to be
stopped in the meantime leading to prohibitively high costs.
Moreover, if there are many potential CERs, the number of
experiments can become infeasible.
At the same time, the Internet of Things (IoT) allows data pro-
cessing and storage along the whole production line, leading
to a vast amount of accessible information. It is thus desirable

to derive the CERs from the existing observational (or non-
experimental) data. For this purpose, Bayesian Networks can
be used to unify expert knowledge and data. From these, CERs
can be derived under the assumption of causal sufficiency [3].
This approach is called causal discovery or structure learning.
The most common example in the manufacturing domain [4]–
[6], is the PC algorithm [3]. This algorithm relies on the
assumption of faithfulness and on efficient statistical tests
for conditional independence. In principle the PC algorithm
can be applied with any test for conditional independence.
However, existing nonparametric tests do not scale well [7],
[8]. Most of the applications of the PC algorithm either
discretize the measurements, or researchers approximate the
joint distribution of the variables by a multivariate normal
distribution. For discrete data and normally distributed data
fast tests for conditional independence exist. However, the
former leads to a loss of information, while the latter requires
a linear dependency between the variables to be exact. In case
of manufacturing data this is most likely a misspecification
[9]. Simulation studies show, that the performance of the PC
algorithm can be poor in case of non-linearity [10]. This
questions the application of the PC algorithm for large or high-
dimensional manufacturing data.
In recent years, Structural Equation Models (SEM), which can
incorporate arbitrary functional relationships, were increas-
ingly proposed to derive Causal Bayesian Networks. They
replace the assumption on faithfulness by a functional form
of the conditional distributions (see Equation (1)). While the
PC algorithm returns a set of graphs, methods based on SEMs
often derive a single graph. To the best of our knowledge, we
are the first to apply SEMs to derive such graphical models
in the manufacturing domain.
The paper is structured as follows. In Section II we present
potential prior knowledge and available data in manufacturing
domains. We continue in Section III by reviewing Bayesian
Networks and SEMs and explain Causal Additive Models
(CAM). In Section IV we present an extension of CAM, called
TCAM, which efficiently incorporates prior knowledge. We
apply our method in Section V to process data of the assembly
of battery modules at BMW. We conclude in Section VI.
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II. DATA AND CHALLENGES IN COMPLEX
MANUFACTURING DOMAINS

In this section we describe the data sources and propose a
preprocessing of the data. Then, we explain the broad prior
knowledge in manufacturing domains. Finally, we mention
common challenges with production data.

A. Data Sources along the Production Line

The assembly of products consists of production lines,
which again contain several stations, which are passed in a
fixed order and where process steps are carried out. During
those process steps the piece is transformed or it is combined
with other parts in order to achieve a predefined outcome.
All involved parts are assigned to unique identifiers. Data of
different types is collected along the production process:
• Process data: the stations take measurements of the

involved parts (e.g. thickness of the piece) and the pa-
rameters of the machine (e.g. weight of applied glue).

• End-of-Line (EoL) tests take additional quality measure-
ments of the intermediate or final products.

• Station information: at some production steps the pieces
are spread out to identical stations, such that parts can be
processed in parallel and every piece is assigned to one
of the stations.

• Bill of Material (BoM): the BoM contains the information
which pieces were merged together and on which position
they have been worked in.

• Supplier data: suppliers transmit data on provided goods.
The preprocessing of the data, which is depicted in Figure 1,
consists of the following steps:

1) Collect the data for every intermediate product.
2) Iteratively merge the data of all subcomponents of a final

product.
Measurements of identical subcomponents, which are placed
in the same position, can be found in the same column.
Eventually, the final tabular data set contains all measurements
that can be associated with a final product.

B. Prior Knowledge

As the stations are passed in a fixed order, we know that
CERs across different stations can only act forward in time.
Additonally, in many manufacturing organizations, tools as the
Failure Mode and Effect Analysis (FMEA) [11] are imple-
mented to extract expert knowledge on CERs in the production
process and to provide the information in a structured form.

C. Challenges of Data Analysis in Manufacturing

Often, similar information is recorded multiple times along
the production line, leading to multicollinearity [4]. Also,
sensors might deliver non-informative data by recording im-
plausible values. Industrial data is also reported to be drifting
over time. However, even in shorter time intervals, data of
a series production contains thousands of observations. This
distinguishes the manufacturing domain from other applica-
tions of causal discovery as medicine, genetics or the social
sciences.

III. STRUCTURE LEARNING OF GRAPHICAL MODELS

A. Some Preliminaries on Graphical Models

Let G = (V,E) be a directed acyclic graph (DAG) [12,
Chapter 6] with nodes V = (V1, . . . , Vp) and edges E. The
node Vi is called a parent of Vj if the edge Vi → Vj is in
E. We denote the set of all parents of Vj as pa(Vj). A tuple
of nodes (Vj1 , . . . , Vj`), such that Vjk is a parent of Vjk+1

for
all k = 1, . . . , (` − 1), is called a directed path. Nodes that
can be reached from Xj through a directed path are called the
descendants of Xj .
In the following we denote random vectors with bold letters
as Z and random variables as Z. Let X = (X1, . . . , Xp) be a
random vector representing the data generating process. For a
graph G with nodes X1, . . . , Xp, we call (X, G) a Bayesian
network if the local Markov property holds, i.e.

Xi ⊥ Xj |pa(Xi)

for any Xj that is not a descendant of Xi in G. Here, X ⊥ Y |Z
denotes the conditional independence of X and Y given Z. In
that case, we can deduce additional conditional independencies
for X from the graph G using the concept of d-separation [12].
For a Bayesian Network (X, G), it then holds that Xi ⊥ Xj |S
if Xi and Xj are d-separated by S in G. On the other hand,
if there is a graph G, such that Xi ⊥ Xj |S implies that Xi

and Xj are d-separated given S in G, then X is called faithful
with respect to G. As multiple graphs can contain the same
d-separations, this graph G is in general not unique.
To promote the intuition, assume that X has a joint density f .
Then Xi ⊥ Xj |S can be characterized by

f (xi|Xj = xj ,S = s) = f (xi|S = s) ,

where f (xi|Z = z) denotes the conditional density function
of Xi given Z = z. Thus, if we already know S, then Xj does
not provide additional information on Xi. Assume that we are
interested which variable in {Xj ,XS} causes the variable Xi

to be out of the specification limits. Then we know, that the
root causes can be found within S.

B. Graph Learning with Structural Equation Models

While the PC algorithm is the classic approach for deriving
a Causal Bayesian Network, recent research focused on identi-
fying it using acyclic SEMs [10], [13]–[15]. They assume that
there exists a permutation Π0(1, . . . , p) =

(
π0(1), . . . , π0(p)

)
and functions {f`, ` = 1, . . . , p}, such that

X` = f`(X`1 , . . . , X`v , ε`), ` = 1, . . . , p, (1)

where π0(`k) < π0(`) for all k = 1, . . . , v and ε1, . . . , εp are
i.i.d. noise terms. As the estimation of f` in Equation (1) is
difficult in high dimensions, one typically restricts the function
class and the distribution of the noise terms. In this work, we
assume that the functions follow the additive form

f`(X`1 , . . . , X`v , ε`) = c` +
∑

k:π0(k)<π0(`)

fk,`(Xk) + ε`, (2)

where ε` ∼ N (0, σ`) and c` ∈ R. To ensure the uniqueness
of the fk,` and without loss of generality, we set E (X`) = 0



Variable Value
Char_1  0.27
Char_2 -0.36
… ...
Char_V -1.16

Variable Value
Char_1 -0.16
Char_2  2.47
… ...
Char_V  2.53

Variable Value
Char_R  1.23
Char_(R+1)  3.92
… ...
Char_(R+K) -1.67

Child Mother Position
Piece 1 M 1
Piece 2 M 2
… … ...
Piece L M L

Bill Of Material 
(BoM)

Char_1_Pos_1| Char_2_Pos_1|     …     | Char_V_Pos_1 |    …     | Char_1_Pos_L |     …     |Char_V_Pos_L | Char_R|     …      | Char_(K+R)
       0.27   |         -0.36         |     …     |        -1.16        |    …     |          -0.16     |     ...    |     2.53               | 1.23     |     …      |       -1.67

combined to final data set:

placed at

Position 1 Position L...

...

...

...
Mother 
Piece M

Piece 1 Piece L

Fig. 1. Visualization of the data preparation described in Section II. The same measurements are collected for piece 1 to piece L. Then they are placed in their
mother piece with identifier M . Finally, the resulting data set consists of all measurements of M and those from piece 1 to piece L, where the positioning
of the measurements of the child pieces within the data frame depends on their placement according to the BoM. This step is carried out repeatedly, if M
itself is positioned in another mother piece.

and E (fk,`(Xk)) = 0, for all ` = 1, . . . , p, π0(k) < π0(`).
From Equations (1) and (2) we derive that

X` ⊥ Xk|
(
Xv1 , . . . , Xvj

)
,

with π0(k) < π0(`), π0(v1) < π0(`), . . . , π0(vj) < π0(`) if
and only if fk,` = 0. Let G0 be the graph on X1, . . . , Xp,
that contains the edge Xi → Xj if and only if fi,j 6= 0 for
π0(i) < π0(j). Then (X, G0) is a Bayesian network, as it is
fulfilling the Markov property.
If we assume that the functions fk,` in Equation (2) are non-
linear and smooth, then [15] show that G0 is identifiable from
observational data. This is in contrast to the PC algorithm,
which typically returns a class of graphs. Note that we do not
presume that the distribution is faithful to some DAG, which
is a central assumption of the PC algorithm. We emphasize
that for the PC algorithm non-linearity is an obstacle as
efficient conditional independence testing is just feasible for
multivariate normal data. In contrast, we can utilize the non-
linearity for identifying SEMs to receive more informative
results (under the assumption of Equation (2)).
An example of a learning algorithm for SEMs is the Causal
Additive Model (CAM, [10]). We will focus on CAM due to
its applicability to high-dimensional data, its ability to capture
non-linearity and due to the theoretical justification that G0

can be identified, if the functions on the right-hand side of
Equation 2 are nonlinear and smooth. [10] propose to find G0

with the following steps:
1) Find the underlying node ordering Π0 of X1, . . . , Xp.
2) Identify the influential functions fk,` with feature selec-

tion methods.
To make things more precise, consider N observations
(xi1, . . . , xip) , i = 1, . . . , N from X and call the data matrix
D ∈ RN×p.

1) Finding the node ordering: [10] show that if
• the functions fk,` are smooth and non-linear and can be

approximated well and

• the derivatives of fk,` and the fourth moments of
fk,`(Xk) and Xk are bounded.

then the following estimator for Π0 is consistent as N →∞:

Π̂ = argmin
Π

p∑
`=1

||x` −
∑

π(k)<π(`)

f̂k,`(xk)||22,N (3)

Here, we define ||xk||22,N := 1
N

∑N
k=1 x

2
k` and f̂k,` is found

by running an additive model regression [16] of X` on
{Xk : π(k) < π(`)}.
For large p, [10] propose a greedy method to find Π̂. Let G
be a DAG on X with edges E(G). For simplicity we denote
the edge Xk → X` by (k, `). A score for G is defined by

S(G) =

p∑
`=1

||x` −
∑

(k,l)∈E(G)

f̂k,`(xk)||22,N .

The functions f̂k,` are estimated by running an additive model
regression of X` on its parents in G. Intuitively, S(G) indicates
how much variation of D is captured by G. The edges that
can be added to G without causing cycles are denoted by

A(G) := {(i, j) ∈ {1, . . . , p} × {1, . . . , p} :

(X, E(G) ∪ {(i, j)}) is DAG}.
Starting with the empty graph G0, [10] iteratively add the edge
(k0, `0) = argmax(k′,`′)∈A(Gt)Mt(k

′, `′), where

Mt(k
′, `′) = ||x` −

∑
(k,`)∈E(Gt)

f̂k,`(xk)||22,N

− ||x` −
∑

(k,l)∈E(Gt)∪{(k′,`′)}

f̃k,`(xk)||22,N .
(4)

The functions f̂k,` are found by regressing X` on its
parents in Gt, while f̃k,` are found by regressing X` on
its parents in G′ = (X, E(Gt) ∪ {(k′, `′)}). Thus, the edge
(k0, `0) maximally reduces the unexplained variance. We set
Gt+1 = (X, E(Gt)∪{(k0, `0)}) and continue until we obtain



a complete DAG, which implies the node ordering.
This greedy method is still computationally intense for
large p. Thus, [10] propose to take advantage of sparse
structures, where p is large but the number of edges in the
graph is assumed to be small: to this end they start by a
preliminary neighborhood selection (PNS) step. Here, initially
for every ` ∈ {1, . . . , p} a superset of neighbors of X` in
G0 is identified. In the subsequent node ordering step, one
only considers the superset of the neighbors, when greedily
adding new edges. This reduces the computation time of
the algorithm significantly, if the sizes of the supersets are
considerably smaller than p.

2) Identifying edges: After the node ordering is set, we
need to identify the influential characteristics for every X`

among those Xk for which π̂(k) < π̂(`). The idea is to detect
those fk,` which are not 0, using feature selection methods
[16], [17]. For those k, a change in Xk has an effect on X`.
For a comparison of CAM and the PC algorithm based on
simulated data sets with known ground truth, see [10].

IV. METHODOLOGY

The goal of this section is to derive a method that combines
the current results on structure learning of SEMs with the
features of the manufacturing domain in Section II.

A. Recap of Common Prior Knowledge

Compared to other applications of causal discovery, it is
typical for the manufacturing domain, that there exists prior
knowledge, see Section II. In particular, there is a partial and
transitive ordering of the variables implied by the stations’
ordering. Additionally, we include expertise on the absence of
edges. Both facets shall improve the algorithm’s runtime.

B. Adaptions to CAM

The data generating process behind manufacturing data sets
often leads to a low number of conditional independencies in
X, when compared to p. Thus, the Causal Bayesian Network
of X is not sparse. This poses a challenge to many structural
learning algorithms in higher dimensions. We show in this
subsection how prior knowledge on the node ordering and
the existence of edges can be incorporated so that structure
learning remains feasible. To formalize our prior knowledge,
let t : {1, . . . , p} → {1, . . . , T}, so that t(k) < t(`) means that
there can only be edges from Xk to X` but not vice versa.
Further, let F be a boolean matrix, where Fk,` = True if the
edge from Xk to X` is known to be absent.

1) Preliminary Neighborhood Selection: For every mea-
surement X`, we determine a set of possible parents among
those k, where Fk,` = False and t(k) ≤ t(`). Denote that set
for index ` by P`.

2) Node Ordering: We start by adding all potential edges
that go across stations and add them to the initial graph G0,
as those can not cause any cycle. The score of G0 hence is

S(G0) =

p∑
`=1

∑
k∈P`,t(k)<t(`)

||x` − f̂k,`(xk)||22,N . (5)

We continue by determining the node ordering as in Section
III-B. Note that we only need to determine the node ordering
for indices k, ` so that t(k) = t(`). The initial inclusion of
across-station-edges saves update steps of M (Equation 4).
This makes the algorithm feasible even for non-sparse high-
dimensional settings, if the number of tiers T or the number
of edges known to be absent is sufficiently large.

3) Pruning: The pruning step is identical to CAM.
In the manufacturing industry, the prior knowledge on t(k) <
t(l) is often given by the temporal nature of the production
process. We therefore call our adaption TCAM (Temporal
Causal Additive Models). It is sketched in Algorithm 1.

Algorithm 1: TCAM Algorithm
Input: D, F , t as in Section IV-B
Result: DAG G
// Preliminary Neighborhood Selection

(PNS)
SupersetNeighbors = list();
for ` = 1, . . . , p do

I = {k s.t. t(k) ≤ t(`) & F (k, `) = False};
SupersetNeighbors[`] = PNS (X`,XI);
// Other edges are now forbidden
for k = 1, . . . , p do

if k /∈ SupersetNeighbors[`] then
F (k, `) = True;

end
end

end
// Add across-tier edges
Set G as empty graph on X1, . . . , Xp;
for k, ` = 1, . . . , p do

if k ∈ SupersetNeighbors[`] & t(k) < t(`) then
Append (k, `) to edges of G;

end
end
M(k, `) = right-hand side of (5) ;
for k, ` = 1, . . . , p do

if ((t(k) > t(`)) | (F (k, `) = True)) then
M(k, `) = −∞;

end
end
// Add within-tier edges
while max(M) > −∞ do

Find (k0, `0) = argmax(k,`)∈A(G)M(k, `);
Append (k0, `0) to edges of G;
M(k0, `0) = −∞;
Update M(·, `0);
Set M(k, `) = −∞ for all
{1, . . . , p} × {1, . . . , p} 3 (k, `) /∈ A(G);

end
// Pruning like CAM (details omitted)
return G



V. APPLICATION

The energy storage of electric vehicles is called a battery
pack which is composed of battery modules, which in turn
contain a fixed number of battery cells. A battery module
connects the battery cells in series or parallel and it protects
those cells against shock, vibration and heat. Thus, the battery
module is a key component for the safety of battery-electric
vehicles. We apply TCAM to data collected at the assembly at
BMW. The data set under investigation contains 7254 battery
modules with 738 variables each.

A. Data Preparation

As the missing values rate is low (around 2.4%) we apply
naive mean imputation instead of more sophisticated method
as [18]–[20]. We then continue by removing features that have
only one distinct value and hence provide no information.
As this data set also shows multicollinearity, we apply an
expert-based approach. We asked experts to identify clusters
of variables containing similar information and to define
representatives for them. For a purely data-driven approach
in manufacturing, see [5]. Those steps reduced the number of
characteristics from 738 to 491. Finally, we standardize the
data so the variables’ empirical mean and standard deviation
is 0 and 1 respectively.
Beyond the temporal ordering of the stations, it is reasonable
that the production measurements of identical intermediate
products as depicted in Figure 1 are independent. Thus, it
is possible to restrict the potential edges that have to be
considered. Additionally, we assume that some of the recorded
measurements as the facility temperature and the selection
of the stations are not affected by other measurements. We
can mark those values as root nodes, meaning that they have
no incoming edges. This further restricts the number and
orientation of possible edges.

B. Choice of Software and Hyperparameters

1) Preliminary Neighborhood Selection: For our applica-
tion of TCAM, we find supersets of the neighbors by applying
the LASSO. For ` ∈ {1, . . . , p}, we run a regression of X` on
those components of X, which are possible parents accord-
ing to our prior knowledge. Going forward we mark those
variables as potential parents of X`, where the corresponding
regression coefficient is above 10−2. The penalty parameter
λ is chosen via cross-validation. Let λmin be the penalty
parameter that minimizes the mean squared cross-validation
error. Then we choose the maximal λ such that the mean
cross-validation error is within one standard deviation of the
minimum λmin.

2) Node Ordering and Pruning: For the node ordering we
employ the package mgcv by [16]. Let us call the graph
after node ordering GNO. In the pruning step we run a
sparse additive regressions of X` on its parents in GNO for
` = 1, . . . , p. This step returns p-values for the parents of X`

in GNO. We follow [10] and set the regressands as parents of
X` in the final graph, whose p-values are below the threshold
of 10−3.

Fig. 2. Resulting graph of TCAM where the nodes correspond to charac-
teristics of the product and edges correspond to detected CERs. The node
coloring is according to the station, where the variable was measured. Edge
colors are according to respective source node’s color. The blue box highlights
the detected relationship between the choice of the stations (green nodes) and
the product quality (blue nodes). The red box depicts the similarities between
structures of identical subcomponents.

C. Results

The resulting graph is depicted in Figure 2 and contains
491 nodes and 859 edges. We observe that there are a few
nodes that have a large number of neighbors. In general this
poses a difficulty for most structure learning algorithms and
CAM did not finish in reasonable time. For details on the
runtime for a low-dimensional special case, see Section V-D.
With TCAM and the inclusion of prior knowledge we were
able to overcome those obstacles.
Further, substructures of identical parts show similar patterns.
The red box in Figure 2, highlights patterns consisting of two
linked clusters, where one cluster consists of four nodes, while
the other one consists of three nodes. Together with process
experts we could further verify that many CERs detected by
TCAM are plausible.
This application is confidential, but we would still like to share
one of the insights. TCAM discovered a CER between one
station that processed the part and the part’s quality. Experts
derived that the maintenance of that station was overdue and
the CER can be used to find better maintenance intervals. This
is one example how graphical models can contribute to an
effective and proactive process control.

D. Evaluation against Expert Knowledge

For the characteristics of one of the subcomponents, we
derived an expert-based graph, which is depicted in Figure 3.
Here, the blue CERs potentially exist, while green CERs surely



Fig. 3. Expert-based graph on measurements for subcomponents. The green
edges are known to exist, while the blue edges potentially exist. Edges beyond
the ones depicted are known to be absent. The darker the node, the later the
corresponding variable is measured in the production process.

aSHD sd(aSHD) #edges sd(#edges) time (s)
CAM 3.496 1.442 9.464 0.948 1.342

TCAM 1.120 0.343 8.084 0.778 1.000
TPC 1.108 0.866 7.463 1.623 0.013

TABLE I
THE AVERAGE ASHD (ASHD), THE STANDARD DEVIATION OF THE ASHD

(SD(ASHD)), THE AVERAGE NUMBER OF EDGES (#EDGES) AND THE
STANDARD DEVIATION OF THE NUMBER OF EDGES (SD(#EDGES)) FOR ALL

THREE METHODS OF SECTION V-D AND FOR 500 REPLICATIONS.

exist. Other CERs can be ruled out. We compare the estimated
graphs and runtimes of TCAM, CAM and a variant of the
PC algorithm called TPC [21], which allows the inclusion of
temporal background knowledge. The significance level is set
to 0.01. We run 500 experiments, where we randomly draw
500 subcomponents, while each of them appears in at most
one of the runs. We define an adapted Structural Hamming
Distance (aSHD) [22] between an estimated graph Gest and
the one in Figure 3 by the sum over the number of green edges
that are not in Gest and the number of edges Gest that do not
appear in Figure 3. The results are depicted in Table I. TPC and
TCAM perform better than CAM, which shows the advantage
of the inclusion of prior knowledge. Additionally, even in this
low-dimensional setting the average runtime for TCAM is
smaller than for CAM. Further, we observe that the aSHD
of TCAM and TPC is on average quite similar. However, the
standard deviation of the aSHD and the standard deviation
of the number of edges is smaller for TCAM. This indicates
that TCAM delivers more stable and informative results in the
manufacturing domain. The original PC algorithm performed
worse than TPC and is omitted.

VI. CONCLUSION

We have presented a method to derive the graphical
representation of CERs of manufacturing processes based
on SEMs. While existing approaches for causal discovery
in the manufacturing domain assumed linear relationships
between the process characteristics, we applied CAM to find
arbitrary additive functional relationships in data. We showed
how existing prior domain knowledge can be included and
improves the computational burden of CAM. A case study
on manufacturing data reveals that the learned graph detects
unknown root-causes, delivers more informative results and

paves the way to an efficient and proactive process control.
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