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Abstract

Traditional approaches based on finite element analyses have been successfully used
to predict the macro-scale behavior of heterogeneous materials (composites, multicom-
ponent alloys, and polycrystals) widely used in industrial applications. However, this
necessitates the mesh size to be smaller than the characteristic length scale of the mi-
crostructural heterogeneities in the material leading to computationally expensive and
time-consuming calculations. The recent advances in deep learning based image super-
resolution (SR) algorithms open up a promising avenue to tackle this computational
challenge by enabling researchers to enhance the spatio-temporal resolution of data
obtained from coarse mesh simulations. However, technical challenges still remain in
developing a high-fidelity SR model for application to computational solid mechanics,
especially for materials undergoing large deformation. This work aims at developing a
physics-informed deep learning based super-resolution framework (PhySRNet) which
enables reconstruction of high-resolution deformation fields (displacement and stress)
from their low-resolution counterparts without requiring high-resolution labeled data.
We design a synthetic case study to illustrate the effectiveness of the proposed frame-
work and demonstrate that the super-resolved fields match the accuracy of an advanced
numerical solver running at 400 times the coarse mesh resolution while simultaneously
satisfying the (highly nonlinear) governing laws. The approach opens the door to ap-
plying machine learning and traditional numerical approaches in tandem to reduce
computational complexity accelerate scientific discovery and engineering design.

Impact Statement

Accurate modeling of macroscale behavior of complex heterogeneous materials is impor-
tant for industrial applications but is also computationally expensive. The physics-informed
deep-learning based super-resolution (PhySRNet) framework we introduce in this paper is
aimed at overcoming this computational challenge. PhySRNet enables researchers to run
their numerical simulations on a coarse mesh and allows them to successfully reconstruct
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super-resolved (400 times coarse mesh resolution) solution fields from the low-resolution
coarse mesh simulation results while achieving great accuracy. We believe the proposed
framework provides possibilities for guiding future subgrid-scale models for modeling com-
plex phenomena occurring at small spatial and temporal scales. This machine learning
accelerated approach to material modeling will enable computationally efficient modeling
and fast discovery of improved materials that exhibit desired combination of mechanical and
thermal properties which would have a large impact on industries as diverse as biomedical,
automotive, infrastructure, and electronics.

1 Introduction

Numerical methods such as Finite element method [Hugl2], Isogeomteric analysis [CHB09],
and mesh-free methods [LLJZ95, BLG94| are few of the conventional approaches employed in
solving the Partial Differential Equations (PDEs) involved in computational solid mechanics
problems. However, the ever-increasing sophistication of material models by incorporating
more complex physics, such as modeling size-effect [FMAH94, AA20b] or dislocation den-
sity evolution [AZA20, Arol9, AA20a, AAA22, JABG20], or advanced materials such as
composites and multicomponent alloys with spatially-varying material properties (hetero-
geneity) and direction dependent behavior (anisotropy) is bringing these numerical solvers
to their limits. Hence, it is becoming a formidable task to perform simulations that can
resolve the complex physical phenomena occurring at small spatial and temporal scales and
accurately predict the macro-scale behavior of materials. Therefore, a cost-effective physics-
based surrogate model that allows the researchers to perform simulations on a coarse mesh
without sacrificing accuracy will be highly beneficial for many reasons. First, researchers
can choose to run their simulations at a lower resolution (online stage) and later reconstruct
the solution back to the target resolution (offline stage). This will significantly reduce the
computational expense during the online stage, thus accelerating the process of scientific
investigation and discovery. Second, the surrogate model based on data super-resolution can
also be used to enhance outputs from experimental techniques for full-field displacement and
strain measurement such as Digital Image Correlation (DIC) which would allow researchers
to generate and store a small fraction of data.

Recent advances in Deep Learning (DL) and Physics-Informed Neural Networks (PINN)
[RPK17, RPK19] make it a promising tool to tackle this computational challenge. Sev-
eral applications of PINNs can be found in the literature ranging from modeling of fluid
flows and Navier Stokes equations [SGPW20, RSL20, JCLK21], cardiovascular systems
[KYH*20, SCYP*20], and material modeling [FTJ20, AKDC22, SLDN22, ZLY21], among
others. More recently, inspired by the growing success of image super-resolution techniques
in the field of computer vision [DLHT14, LHAY17, HSU19, ZTK™ 18], researchers have ex-
plored the possibility of using deep learning based super-resolution (SR) technique to recon-
struct high-resolution (HR) fluid flow fields from low-resolution (LR) (possibly noisy) data
[FFT21, FFT19, DHLK19, BGL*19, XFCT18, EAK™20, SWB*20, SW20, GSW21]. In a
proof of concept, Arora [Aro21] investigated the application of physics-informed SR for a
linear elasticity problem. However, technical challenges still remain in developing a physics-



informed DL based model for super-resolution in computational solid mechanics in label-free
scenario, especially for materials undergoing large deformation.

While the data-driven approaches for reconstructing HR flow fields have also shown
promising results, these approaches require large amount of computationally expensive HR
labeled data for training. Moreover, the output solution fields may fail to satisfy the gov-
erning laws of the system (PDEs and initial/boundary conditions) since these models lack
any physics-based constraints.

In this paper, we propose a physics-informed deep learning based super-resolution frame-
work (PhySRNet) mechanics without requiring any HR labeled data. In particular, we
explore and demonstrate the effectiveness of PhySRNet for resolving the LR displacement
and stress fields in the body undergoing hyperelastic deformation in the absence of any HR
data. The LR input data is obtained by running simulations on a coarse mesh which is
400 times coarser than the target resolution. Furthermore, the chosen material model also
presents a special scenario wherein the model initialization plays an important role in guiding
its convergence which makes the application to nonlinear solids significantly distinguishing
from prior works involving super-resolution of fluid flow.

The layout of the rest of this paper is as follows: In Sec. 2, a brief review of the governing
equations for modeling hyperelastic deformation in solids is presented. Model architecture
and construction of physics-based loss function are discussed in sections 3.1 and 3.2, re-
spectively. The simulation setup for generating LR displacement and stress field data, to
be used as input, for training and evaluating the machine learning framework is presented
in Sec. 4.1. Sec. 4 presents the results that demonstrate the effectiveness of the proposed
framework in super-resolving the stress and displacement fields for the example problem
considered. Conclusions and future opportunities are presented in Sec. 5.

2 Background

This section presents the governing equations for modeling the hyperelastic behavior in solids.

2.1 Governing equations for hyper-elastic modeling

We briefly recall the governing equations for modeling the behavior of hyperelastic solids.
The reader is referred to standard textbooks [GFA10] for a detailed discussion on the ther-
modynamics and mechanics of continuous media. We use the mixed-variable formulation,
i.e., displacement vector and stress tensor fields (u, P) as unknowns in this work. This for-
mulation is shown to be of crucial importance to ensure greater numerical accuracy of the
solution and avoiding convergence issues for linear [RSL21] and nonlinear [AKDC22] cases
during model training. The governing equations, in the absence of inertial forces, are given
as follows:

DivP+b=0, in 0,

1
PN =t,. on 0f2y and uw = uy. on Of2p. (1)
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Figure 1: The schematic of physics-informed super-resolution framework.

In the above, P denotes the first Piola-Kirchhoff stress, and b denotes the body force per
unit volume of the undeformed (reference) configuration {2 of the material. Div denotes
the divergence operator in the configuration 2. t,. and wu,. denote the known traction
and displacement vectors on the (non-overlapping) parts of the boundary 02y and 02p,
respectively. IN denotes the unit outward normal to the external boundary 0f2.

In this work, the material is assumed to behave as a compressible analog of Neo-Hookean
material whose stored energy density and constitutive relationship are given as

= (trace(B) =3)—plnJ ; J=det(F), (2)
P=u(B-1), (3)

where p denotes the shear modulus of the material, and I denotes the second order identity
tensor. B = FFT denotes the left Cauchy—Green tensor and F = I +Vu denotes the defor-
mation gradient. We emphasize that finite deformation material modeling requires special
consideration during the initialization of the model’s weights (discussed in section 3.2) since
the constraint J(X,Y’) > 0 has to be strictly satisfied at every point (X, Y") in the undeformed
configuration. Under two-dimensional plane-strain conditions, the unknown components for
displacement vector u and stress tensor P are (u,, u,) and (Pm, P, P, P,,), respectively.

3 Methodology

This section discusses the architecture of PhySRNet followed by the discussion on construc-
tion of the loss function for the training of the model.

3.1 Model Architecture

The composite architecture of the physics-informed super-resolution network (PhySRNet)
proposed in this work is shown in Fig. 1. We use a separate neural network to resolve each
solution field individually as this composite learning structure with decoupled sub-networks
has been shown to be effective in enhancing the learning performance for multivariate re-
gression problems [GYH"20]. This approach also allows the trainable network parameters
to be decoupled for each solution field with varying magnitudes and spatial distribution.



The architecture of individual sub-networks is built upon the Residual Dense Network
(RDN) proposed in [ZTK"18]. The RDN architecture comprises four parts: a) shallow
feature extraction net (SFENet), b) residual dense blocks (RDBs), ¢) dense feature fusion
(DFF), and d) up-sampling net (UPNet). The architecture has several unique advantages
when compared to other SR architectures [ZTK™ 18, sec. 4] including the property to extract
abundant local features via dense convolutional layers from LR input and the ability to
adaptively fuse the hierarchical features in a global way.

Each sub-net uses the following hyper-parameters: number of residual blocks: 2, number
of layers in each residual block: 4, growth rate: 32, and number of features: 32. The inputs to
the model consist of LR data (uy, uy, Py, Pyy, Py, Pys) obtained by running simulations on
a coarse mesh (see Fig. 2b) and then interpolating the solution (using FEM basis functions)
on a 32 x 32 structured grid. The outputs of the framework correspond to the HR data on
a 128 x 128 structured grid shown in Figure 2c.

3.2 Constructing the loss function

In the absence of any HR labeled data, the network’s total loss L is obtained from the physics-
based constraints of the system - governing PDEs, constitutive law, and boundary /initial
conditions. However, it has been well documented that presence of multiple components
in £ gives rise to competing effects amongst them leading to convergence issues during the
training of the model [BK21, WTP20, AKDC22]. Therefore, in this work, we choose to
impose the boundary conditions in a “hard” manner thus eliminating their contribution
from total loss L.

For each unknown field component, the boundary conditions are imposed in a hard manner
by using a composite scheme which consists of using a function F that satisfies the boundary
condition, a function G that is zero on the Dirichlet boundaries, and the output N of the
DL model. The final solution to the super-resolution problem for each output field @ €
{ug, wy, Poy, Pyy, Pyy, Py} is then given as follows:

B(X,Y) = Fo(X,Y) + Na(X,Y) - Go(X,Y) (4)

For complicated geometries and boundary conditions, the above strategy can be generalized
to obtain functions F and G as outputs of separate DL models as shown in [RSL21]. For
finite deformation material modeling, the physical constraint J(X,Y") > 0 has to be strictly
enforced as well. Since the boundary conditions are satisfied exactly, the total loss £ is given
as follows

L=\ L(DivP,0)+\ L(P, u(B—1))+ L, (5)
PBE Constit:;tive law J>0

where L(P, () measures the mean absolute error (MAE) for the prediction P and target
Q. The constraint loss £ is given as £; = || min(0, detF')||; where ||(-)||; denotes the L'
norm of the quantity (-). We utilize fourth order finite difference scheme to evaluate the
derivatives of the fields on the fine mesh.



The current work involving super-resolution to nonlinear solid mechanics problems has a
significantly distinguishing feature from its application to resolving fluid flow in that any tech-
nique for initialization of model weights would not satisfy the physical constraint J(X,Y) > 0
initially. This leads to nonconvergence during model training using any optimization strate-
gies such as the family of gradient descent methods. To remedy this, we first train the model
to satisfy the constraint exactly (£; = 0) by setting A\; = Ay = 0 during the few initial epochs
of the training. After that, we choose Ay = 1 and Ay = 10 based on the heuristics that the
equilibrium equation (1) also depends the derivatives of p for heterogeneous materials.

u, = Qsin(nX)

I

u, =0

P, =0

(b) ()

Figure 2: a) Schematic showing the geometry and the applied boundary conditions. b)
Coarse triangular mesh with 41 nodes. c¢) 128 x 128 fine mesh with 16384 nodes. The LR
data is refined by ~ 400 times.

The framework is implemented and trained using PyTorch framework [PGM™19]. The
network’s total loss £ is minimized by iteratively updating its trainable parameters. The
whole training process consists of two stages: i) Initial convergence using Adam optimizer
[KB15] with an initial learning rate n = 1073, and ii) use of L-BFGS optimizer until the
loss finally converges to a small value. While using Adam optimizer, the learning rate is
also adaptively reduced by using ReduceLROnPlateau scheduler with the patience set to
40. The source code for the proposed framework along with the dataset used in this research
can be found at https://github.com/sairajat/SuperResolutionFiniteDeformation/
upon acceptance of this paper.

4 Results & Discussion

4.1 Synthesis of low-resolution data

To illustrate the application of the proposed approach, an example problem is setup as fol-
lows: We consider an isotropic body deforming quasi-statically under plane strain conditions
subjected to the loading boundary conditions as shown in Fig. 2a. The body force vector
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Figure 3: The color contours of displacement vector and stress tensor components in two-
dimensional elastic deformation reconstructed with physics-informed super-resolution frame-
works. Values below the plots indicate the error e. In both the blocks, the LR input data,
HR ground truth data, bicubic interpolation, and the RDN output are plotted from the left
to right.

b = (by, b,) is given as

by = pts (977 cos(2r X)) sin(7Y) — 7 cos(7 X)QY?]

by = pis [—6sin(7X)QY? + 21 sin(2mX) cos(Y) 4+ 0.257% sin(7X)QY™]
where pu; is taken to be 0.50. The shear modulus u(X,Y’) of the material is taken to be

= ’“; 3+ sin(2rkX) sin(27kY)]; k = 5, (6)
to represent a body with heterogeneous material properties. The scalar @ € [0.02,0.20]
directly affects the magnitudes of boundary conditions (see Fig. 2a) and the body force b.
In this work, we use the following analytical forms of the functions F and G that ensure

satisfaction of the boundary conditions

Gp,=X(1-X); G,=Y(1-Y); G, =XY(1-X)1-Y).



The ground truth data is generated by solving the system of equations (1) on a coarse mesh
(shown in Fig. 2) using Finite Element Method in Fenics [ABH™15] for 100 regularly sampled
values of (). The data is then randomly split in a 80 : 20 ratio for training and test purposes.

4.2 Application to hyperelasticity

We now demonstrate the effectiveness of PhySRNet by applying it to reconstruct the HR
displacement and stress fields for the problem setup discussed in section 4.1. The framework
takes the coarse mesh solution fields interpolated to a 32 x 32 grid as inputs and outputs the
solution fields on a 128 x 128 structured grid which is approximately 400 times finer than
the coarse mesh. We note that the framework presented herein can be generalized to work
with non-rectangular domains by utilizing elliptic coordinate transformation as outlined in

[GSW20].

Figure 3 presents the results for the reconstructed displacement and stress fields obtained
from PhySRNet for 2 different values of ). A simple bicubic interpolation of the solution
fields and the HR reference data are plotted for comparison. We note that the HR reference
data is used only for the comparison with the model outputs. The figure clearly show that
the reconstructed solutions fields are in great agreement with the HR reference data. The
model is successfully able to resolve the spatial variation in the output fields even though
the LR inputs lacked such variation. To quantitatively measure the accuracy, we define an
error measure e as .

HIHR _ IHRHL2
P

(7)

where Z#2 denotes the framework predictions. The value of e is reported underneath the
reconstructed fields obtained using the PhySRNet and the bicubic interpolation. As can be
seen from figure 3, the error e is larger for data obtained from bicubic interpolation method
since the outputs may not faithfully satisfy the governing laws of the system. The small
values of e for the model predictions signify that the reconstructed HR outputs obtained
from PhySRNet almost match the accuracy of an advanced numerical solver running at 400
times the coarse mesh resolution. Therefore, we can conclude that PhySRNet successfully
enhanced the spatial resolution of the solution fields while ensuring that they satisfy the
governing laws of the system.

5 Conclusion & future work

In summary, we successfully trained and evaluated a physics-informed deep learning based
super-resolution framework (PhySRNet) to reconstruct the deformation fields in a hetero-
geneous body undergoing hyperelastic deformation without requiring any HR labeled data.
The approach is successfully able to learn high-resolution spatial variation of displacement
and stress fields from their low-resolution counterparts for the example problem discussed.
We show that the outputs from the PhySRNet match the accuracy of an advanced nu-
merical solver running at 400 times the coarse mesh resolution (see Figs. 2b and 2c¢). This



approach exemplifies how machine-learning can be leveraged alongside numerical simulations
to reduce the computational complexity and accelerate scientific discovery and engineering
design without sacrificing accuracy.

While the current work focuses on nonlinear quasi-static problems, the future work aims
to extend the framework for both spatial and temporal super-resolution of (unsteady) elas-
todynamics problems in two and three dimensions. Moreover, we also aim to modify the
architecture of the PhySRNet to explore if a sequence of low-resolution data inputs could
help to further improve the quality of the reconstruction.
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