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Abstract—High energy density physics (HEDP) experiments com-
monly involve a dynamic wave-front propagating inside a low-
density foam. This effect affects its density and hence, its trans-
parency. A common problem in foam production is the creation
of defective foams. Accurate information on their dimension and
homogeneity is required to classify the foams’ quality. Therefore,
those parameters are being characterized using a 3D-measuring
laser confocal microscope. For each foam, five images are taken:
two 2D images representing the top and bottom surface foam
planes and three images of side cross-sections from 3D scannings.
An expert has to do the complicated, harsh, and exhausting
work of manually classifying the foam’s quality through the
image set and only then determine whether the foam can be
used in experiments or not. Currently, quality has two binary
levels of normal vs. defective. At the same time, experts are
commonly required to classify a sub-class of normal-defective,
i.e., foams that are defective but might be sufficient for the needed
experiment. This sub-class is problematic due to inconclusive
judgment that is primarily intuitive. In this work, we present
a novel state-of-the-art multi-view deep learning classification
model that mimics the physicist’s perspective by automatically
determining the foams’ quality classification and thus aids the
expert. Our model achieved 86% accuracy on upper and lower
surface foam planes and 82% on the entire set, suggesting
interesting heuristics to the problem. A significant added value
in this work is the ability to regress the foam quality instead of
binary deduction and even explain the decision visually.
The source code used in this work, as well as other relevant
sources, are available at: https://github.com/Scientific-Computi
ng-Lab-NRCN/Multi-View-Foams.git.

Index Terms—HEDP, Low-Density Foams, Aerogel, Multi-View
Classification, Deep Learning, LIME.

I. INTRODUCTION

A. HEDP Foams and Aerogels

High energy density physics (HEDP) experiments [1]–[5]
commonly involve a dynamic wave-front propagating inside a
low-density foam. This effect affects its density and hence, its
transparency. The analysis of the experimental measurements
required accurate information on the dimension and homogeny
of the foam. Therefore, a dimension and homogeny charac-
terization of the foam using a 3D-measuring laser confocal
microscope is needed. For each foam, five images were taken:

two 2D images representing the upper surface foam plane
(henceforth, ’top’ and ’bottom’ images) and three other images
of side cross-sections from 3D-scanning images (henceforth,
’profiles’ images) (Fig. 1, 2).
The foam used in the HEDP experiments is commonly aerogel.
Aerogels are a large family of materials, generally defined as
extremely low-density solids (more than 90% porosity, less
than 200mg/cm3 density) [6], [7]. Aerogels can be composed
of metals or dielectric materials and can be produced in pure,
hybrid, and doped forms. For these reasons, aerogels can
exhibit a diverse range of properties (chemical and physi-
cal) that could also be tailored for a specific application.
Aerogels are signified by their unique properties, especially
low density and high specific surface area (commonly above
∼600m2/g), resulting in an excellent insulating material for
heat, electric and acoustic. Therefore, their applications range
from thermal insulators [8]–[11], acoustic insulation [12], [13],
catalyst supports, electrode materials and fuel cell [14]–[16],
random lasers matrices [17], space micrometeorites collec-
tors [18], bio-medical [19], drug-delivery [20]–[22], cosmetic,
lightweight magnetic actuator [23], Cherenkov radiators [24],
[25] and HEDP measurements [2], [4].

Fig. 1: Illustration of the acquired microscope’s images (left)
from a given foam (right).

ar
X

iv
:2

20
8.

07
19

6v
1 

 [
cs

.C
V

] 
 1

0 
A

ug
 2

02
2

https://github.com/Scientific-Computing-Lab-NRCN/Multi-View-Foams.git
https://github.com/Scientific-Computing-Lab-NRCN/Multi-View-Foams.git


Fig. 2: Five images of an original example from the data set.
From left to right: top and bottom views and three profiles.

B. Determinning HEDP Foams’ Quality: Current Status

Aerogels are commonly prepared from Si-alkoxide precursors
through sol-gel chemistry [26]–[29]. The gel formed is made
of a few nanometers thick of fragile walls in a random struc-
ture surrounded by meso-sized pores. To dry these delicate
materials, supercritical drying is necessary. Transferring the
pore fluid to the supercritical phase makes it possible to vent
it out with no capillary forces [30]. Thus, supercritical drying
is essential to achieve dry material without a collapse of the
fine porous structure. A significant limitation of dry aerogels
is mechanical fragility and tending to suffer from cracks [31]–
[33]. Therefore, it is required to characterize each sample for
its quality as a foam. The expert searches for characteristics
such as scratches, dirt, and dark stains in the top and bottom
views images, implying a deep hole inside the foam. As a
complementary, the profile images help confirm or refute the
initial assumptions. This complicated, harsh, and exhausting
work of manually classifying the foams’ quality through the
image set is mandatory to decide whether said foams can
be used in experiments (such as HEDP). Currently, quality
has binary levels of normal vs. defective. Experts are also
commonly required to classify a sub-class of normal-defective,
i.e., foams that are defective in some way but might be
sufficient for a given experiment. This sub-class is problematic
due to inconclusive judgment that is primarily intuitive. Thus,
the need to devise a new, precise, explainable, consistent, and
objective classification of said foams’ quality is essential.

C. Suggested New Approach: Multi-View Classification

In order to mimic the physicist’s intuitive perspective and
automatically determine the foams’ quality even in borderline
cases, there is a need to devise either an intelligent or even
a learned model, which will be able to self-conclude the
desired classification [34], [35]. Moreover, as the image set,
in this case, is diverse – both in 3D perspective (top and
bottom views) and in acquisition technology (optics vs. x-
ray), standard classification methodologies that do not consider
perspective and domain heterogeneity will fail. Thus, the
recently novel multi-view approach [36]–[38] was chosen to
solve this problem correctly.
Multi-view classification models are designed for cases when
the final decision depends on different features in different
images [39]. Multi-view approach suggests looking over an
object from several points of view (both spatially and visually),
which is technically achieved by extracting unique features of
the object from all the viewpoints, concatenating them into
one vector, and making the decision on it. The idea has two
implementation approaches: (1) Classical feature extractions

and machine learning algorithms [40], [41]. (2) Deep multi-
view adjusted convolutional neural networks [39], [42]. In this
work, we examined both of the methods as our data set is
comparably small for initial learning.

1) Features Extraction and Machine Learning: Before the
age of deep learning, there was a need to ”manually” extract
features from given images [43]. This technique aims to
numerically distinguish and represent unique features of the
image [43]. Several feature extractor algorithms were devised
over the years for different tasks. Some of the famous ones
are SIFT (Scale Invariant Feature Transform) and SURF
(Speeded-Up Robust Features) [44]. The main focus of these
feature extractors is extracting unique features such as scale,
illumination, rotation, distortion, etc. Most feature extractors
collect key points of interest in the image and produce a
descriptor for each. The descriptors are usually numerical
vectors with constant size.
In the multi-view approach, the descriptors are collected from
the different images and grouped into centroids [40], [41]
using an unsupervised model such as K-Means [45]. These
centroids are like a ”vocabulary of visual words” [46]. The
next stage is finding visual words for each image and a vector
creation that counts the number of features belonging to each
centroid of visual words. The result is a (1,K) properties
vector representing an image, and using this process on all
the images in the data set yields a (N,K) matrix while
N represents the number of images and K represents the
vocabulary size. Afterward, classification is done on the matrix
using a machine learning algorithm such as logistic regression,
supported vector machine (SVM) [41], etc. Finally, solution
adaptation into multi-view is done by creating a feature vector
for all images in one example, using a feature extractor, and
counting the visual words for all images (Fig. 3 A).
Nevertheless, in this work, no learning or understanding could
be achieved using this method, suggesting either not enough
data was collected for the data set or no sufficient learning
was made. As such, there was a need for a comprehensive
deep-learning approach.

2) Deep Multi-View Adjusted Convolutional Neural Networks:
Following the success of convolutional neural networks in
computer vision problems [47], there was an attempt to adjust
these networks to multi-view classification [48]. One approach
is to take the feature map of every view and stack them. For
example, if every feature map is in size K · K · C, a union
of the five maps is executed along the channels’ dimensions,
and one matrix of K ·K · 5C of feature maps is created. This
approach assumes there is an order of orientation between
the different views. The other approach is pooling the feature
maps (view pooling), which is the chosen approach for the
given problem (although orientation exists, the images do not
naturally precept a single object from different angles). This
approach unites all the views’ features without assuming an
order (Fig. 3 B).
In computer vision, when there are merely several examples
similar to the given problem, as in our case, transfer learning,
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Fig. 3: (A) The multi-view concept, (B) the chosen multi-view deep learning implementation approach, and (C) represents the
modified Resnet in each CNN block that was intentionally reduced to prevent overfit due to a lack of data.

which uses prior knowledge accumulated from another model
trained on another data set, is usually used [49]. ResNet is the
selected pre-trained model for the given problem [50], trained
on the ImageNet data set [51], which contains millions of high-
resolution labeled images and 22 thousand different classes.
This model is designed for object detection tasks using feature
extraction, and with an addition of neuron layers at the end of
the network, one can finetune for a given task.

II. DATA SET CREATION

While many data sets are created with strict rules and repeat-
able methods for an adequate examination, our data set was
created solely for an expert’s classification purpose. In the
absence of reproducible settings for the 3D laser microscope
and an arranged process of collecting the data, a considerable
amount of pre-processing is required to fit the data set into a
machine learning model. Furthermore, since only experts can
label these examples, the labeled data is rare, and there is
no real option to reach extensive labeled data. Consequently,
our goal in this work was to develop an end-to-end model
with the constraint of a severe shortage in data. Iteratively, we
added batches of new labeled images when they were ready
while designing the model as a few-shot model. This iterative
process results in a data set with 95 labeled examples, each
consisting of 5 images, i.e., 475 images in total.
We notice that the normal-defective labels are given when an
example does not have an obvious decision for its quality.
Without significant model learning, which can be achieved
using lots of normal and defective examples, one can not
expect to classify samples even an expert could not. Therefore,
we refer to the normal-defective labels as defective labels
under the strict assumption of ”if there is a doubt, there is
no doubt.” This assumption is necessary for the given problem
because we can not afford to ignore examples due to their tiny
amount. However, the severe assumption above is not always
correct, leading to a trade-off between the measured metrics;

accuracy and AUC (Section IV). Thus, we check our model
on different learning configurations (Fig. 6).

III. PRE-LEARNING PROCESS

An initial running of the multi-view deep convolutional neural
networks on the data set has been done, and a quickly evolved
overfit been observed. There are two common reasons for
overfitting: a few training examples and an over-complicated
model [52]. Therefore, solutions such as data augmentation,
reduction, and pre-processing (Table I, Fig. 4) are done to over-
come the few physics-guided examples issue while preserving
the original and relevant properties for decision.

Original Pre-Proccesed
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TABLE I: Data set images before and after pre-processing.

A. Data Augmentation

Orientation conservation is easily destroyed when creating new
examples with augmentation. Nonetheless, since training deep
learning models require lots of examples, an augmentation
approach has been attempted. Classical augmentations such
as brightness, contrast adjustments, and rotations contribute to
the robustness and generalization of the model and, therefore,
decrease overfit. Several rotations permutations have been
chosen: -10◦ to 10◦ with a 5◦ jump for the profiles and 0◦ to



270◦ with a 90◦ jump for the top and bottom views images.
This wide range is possible due to the symmetry of the images
(circles). In addition, gaussian noise, brightness, and contrast
adjustments have been performed (Fig. 4).

Fig. 4: Five images of an original example from the data set
after pre-process and data augmentation stages. From left to
right: top and bottom views and three profiles.

B. Data Reduction and Pre-Processing

Pre-process helps focus the model on relevant features for clas-
sification. An automatic physics-guided pre-processing tool
has been developed to create a proper data reduction that
preserves the original and relevant properties of the foam with
the following actions:

1) RGB to grayscale conversion: classification of the foams
is independent of their color; therefore, the conversion
prevents the model from learning irrelevant features.

2) Intensity quantization: a division of the pixels’ values
(which range from 0 to 255) to 10 bins. In many images,
the black background is not an absolute black but a
collection of values near zero. The model might search
for a reason around these pixels’ variance, and bins
division prevents it.

3) Circle extraction: only the central circle is relevant for
classification. Extracting this circle1 and masking the
ring and other outliers helps the model focus on relevant
features (Fig. 5).

4) Circles bounding: minimizing the black background
solves the problem of variance in the circles’ position
and conserves homogeneity between the images.

5) Profiles centering and padding: padding black pixels for
the background of profiles if necessary and centering
the profiles. These operations conserve homogeneity
and constant size between the profiles. Further manual
cropping has been done to keep only the relevant scope.

IV. THE LEARNING PROCESS AND ITS RESULTS

In cases of a shortage of data, transfer learning is usually
a decent solution. However, as mentioned above, an over-
complicated model prunes to overfit. Thus, we applied the
following methods to the model to overcome the problem:

1) Simplify the model by cutting some of its last layers
(Fig. 3 C). The 18 last convolutional layers have been

1In order to focus the model on relevant features, an automatic algorithm for
circle extraction in the top and bottom views images is required. Canny edge
detection [53] using erosion and dilation is not enough to effectively mask
the circles. Hence, a designated algorithm has been developed. The algorithm
uses permutations of circles in different radii and locations around the center
to find the circle with minimal bright pixels and maximal dark pixels (Fig.
5). The algorithm assumes that the background will always be brighter than
the circle. Pixel’s definition of bright or dark is changeable.

Fig. 5: Automatic circle extractor algorithm. Choosing the
circle with minimal bright pixels and maximal dark pixels.

cut, and the network’s last layer has been reduced to 128
neurons.

2) Changing input dimension for 1x244x244 instead of
3x224x224 – since ResNet has been trained on a colored
data set – differently from our input examples which are
in grayscale – the dimensional change decreases lots of
unnecessary weights.

Overall, there are 1,341,890 learnable parameters instead of
21,799,674 – about 6% of the original network.
Searching for the optimal performance, we survey 6 model
configurations (Fig. 6). Specifically, three one-view models
with solely top view, bottom view, and a combination of both;
three multi-view models with both top and bottom views; all
three profiles; and a full group of five images. Each of the
6 models was trained on the above-stated data set with and
without normal-defective examples (marked in Table II and
Table III as ND – normal-defected).

Fig. 6: Six learning configurations based on the different types
of models and image sets.

We hereby elaborate on the relevant performance metrics
(IV-A), the effect of data additions on the model performances
(IV-B), the yielded experimental results (IV-C) and the possi-
bility for explainability (IV-D).

A. Performance Metrics

Two metrics have been used for measuring the models’ per-
formance. The first is the model’s accuracy in the epoch with
the minimum loss (Table II). This measurement indicates the
model’s performance on the particular test set. Another metric
that has been used is the area under curve (AUC) [54] (Table



ACCURACY One-view One-view-ND Multi-view Multi-view-ND

Top 72 78 – –
Bottom 79 84 – –

Top-Bottom 77 73 86 78
Profiles – – 79 73

Full Group – – 82 78

TABLE II: Accuracy for each purposed model.

AUC One-view One-view-ND Multi-view Multi-view-ND

Top 74 76 – –
Bottom 76 74 – –

Top-Bottom 69 78 71 64
Profiles – – 77 81

Full Group – – 84 75

TABLE III: AUC for each purposed model.
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TABLE IV: Learning curves (accuracy and loss) of all models. +ND and -ND stand for normal-defective and represent the
models’ training and testing with or without normal-defective examples. MV stands for a multi-view model and OV stands for
a one-view model. Best models’ cells are shadowed.



III). AUC measures the model’s generalization capabilities
and, therefore, its performance not only on a certain test set but
on many. An additional noteworthy parameter is the loss graph,
indicating if convergence and real learning have occurred.

B. Additional Data Effect

To understand the impact of the data set size on the resulted
model performances, a comparison between two train sets
has been performed: The train set mentioned above was
compared to itself with subtraction of 20 examples, while
the test set remains similar for both sets. This test has been
performed to determine unequivocally that there is a need for
continued expansion of the data set to achieve better results
and that the model truthfully learns from the data and does not
memorize it. The addition of 20 training examples has shown
an unambiguous improvement in the models’ performances –
an improvement of 8% for every model’s accuracy on average
and a 16.5% improvement for every model’s AUC on average.

C. Experimental Results

The data set split was a 70:30 train-to-test ratio while main-
taining a balanced ratio between classes to prevent the model
from learning from skewed data. Overall, there are 66 training
examples with 23, 21, and 22 normal, normal-defective, and
defective labeling correspondingly and 29 test examples with
10, 10, and 9 normal, normal-defective, and defective labeling
correspondingly. The models have run on 32GB Tesla V100
GPU, using Pytorch [55]. Accuracy and AUC measures are
shown in Table II and Table III, respectively. Loss and
accuracy trends are presented in Table IV. Conclusively, we
show that the multi-view model with top-bottom views has
the best accuracy – 86%, and the multi-view model with the
entire group has the best AUC – 84%.

D. Model Explainability

Physics-oriented models generally need to ensure that the
outcome predictions are based on actual, relevant features and
not on imaginary correlations. Thus, LIME [56] algorithm was
implemented on the model predictions to study the connections
between inputs and outputs. Specifically on the one-view top
model as it is more intuitive to comprehend. In LIME’s output,
contributing areas for normal or defective decisions are marked
as green or red, respectively. White stain is colored under the
red area while the green area is mostly clear – both truthfully
explaining the original rationale (Fig. 7).

V. CONCLUSIONS AND FUTURE WORK

While there is high accuracy for the multi-view model with
top-bottom views (86%), its AUC is relatively low (71%),
meaning the model managed to perform well on the test set,
but its generalization capability is incomplete. Nevertheless,
the loss graph shows a significant learning process without
any overfit. On the other hand, the multi-view model with the
entire group (full group) has the best AUC (84%), and its
accuracy is relatively high as well (82%). However, there is
an obvious overfit in the early epochs of the training.

Most of our multi-view models show better results with the
normal-defective examples in accuracy and AUC. A possible
explanation may lie in the nature of normal-defective exam-
ples. Those examples are similar to normal, however, still have
tiny defects. The action of labeling those examples as defective
may contribute to learning these nuances and improve the
classification.
For future work, we can name the apparent need for data
set expansion while maintaining class balance. Also, further
investigation of different pre-trained models for better transfer
learning can be helpful. For example, the Inception pre-trained
model [57], which has been trained on vast x-rays data set,
may be more fitted for extracting features from the profiles.
Finally, we suggest examining the possibility of concatenating
the views’ feature maps which preserves and assumes order,
similarly to the given problem, instead of max-pooling them.

Original LIME’s Output
Fig. 7: Model’s explainability using LIME. Contributing areas
for normal or defective decision are green and red, respec-
tively.
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