
ETH Library

Evolvable Hyperdimensional
Computing: Unsupervised
Regeneration of Associative
Memory to Recover Faulty
Components

Conference Paper

Author(s):
Hersche, Michael ; Sangalli, Sara; Benini, Luca ; Rahimi, Abbas 

Publication date:
2020

Permanent link:
https://doi.org/10.3929/ethz-b-000387115

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
https://doi.org/10.1109/AICAS48895.2020.9073871

Funding acknowledgement:
780215 - Computation-in-memory architecture based on resistive devices (EC)

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://orcid.org/0000-0003-3065-7639
https://orcid.org/0000-0001-8068-3806
https://orcid.org/0000-0003-3141-4970
https://doi.org/10.3929/ethz-b-000387115
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1109/AICAS48895.2020.9073871
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Evolvable Hyperdimensional Computing:
Unsupervised Regeneration of Associative Memory

to Recover Faulty Components
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Abstract—This paper proposes evolvable hyperdimensional
(HD) computing to maintain high classification accuracy as
permanent faults occur in emerging non-volatile memory fabrics.
Our proposed HD architecture can detect, localize, and isolate
faulty PCM blocks in discriminative classifiers, followed by
unsupervised regeneration of new blocks to compensate accuracy
loss. We demonstrate its application on a language recognition
task: it is able to quickly relearn and fully recover the accuracy
from 90.48% to 96.86% at fault rates as high as 42% by using
solely 4.2 MB of text for regeneration. The new evolved model is
still 285× more compact than state-of-the-art fastText.

Index Terms—Evolvable hardware, HD computing, PCM.

I. INTRODUCTION

Emerging memory technologies such as phase-change mem-
ory (PCM), resistive RAM (RRAM) with monolithic 3D
integration can provide efficient computing fabrics for AI by
naturally implementing neurons, or synapses, and by eliminat-
ing the von Neumann memory-wall bottleneck [1]–[3]. These
computing fabrics however face challenges such as permanent
failures, defects, variations, and noise. Novel computational
paradigms that are inherently robust, distributed, and modular
with fast learning capabilities could come to rescue.

One viable option is to exploit hyperdimensional (HD) com-
puting [4] that is inspired by very size of the brain’s circuits
to model neural activity patterns with points of an HD space,
that is, with high-dimensional vectors. These vectors can be
manipulated using well-defined vector space operations inside
an encoder, and can be compared by an associative memory
(AM) using Hamming distance to solve cognitive [5]–[7] and
classification [8]–[11] tasks. When the dimensionality is in the
thousands, operations on these vectors create a computational
behavior with unique features in terms of robustness and
simplicity of operations paving the way for efficient realization
in low SNR nanoscalable fabrics [12]. For instance, in the EU
language recognition task [8], HD computing degrades very
gracefully in the presence of faults in memory compared to
a k-nearest neighbors classifier: by injecting the intermittent
errors in both classifiers, HD computing tolerates 8.8× higher
probability of failure per individual memory cells [9]; con-
sidering the permanent hard errors in RRAMs, HD computing
tolerates 60× higher probability of failures [13]. Further, using
760,000 PCM devices in large cross-bar arrays to implement
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the same recognition task, HD computing tolerates the spatial
and temporal variabilities of PCM devices reaching to com-
parable accuracies to software [3].

This graceful degradation under variability is due to inherent
robustness of vector representation and related operations.
Representation with vectors begins with independent and iden-
tically distributed (i.i.d.) components and when combined with
the vector space operations, the resulting vectors also appear as
identically distributed random vectors, and the independence
of the individual components is mostly preserved [9], [12].
Hence, a faulty component of a vector is not contagious,
and the rest of error-free components can provide a useful
representation below a certain fault rate. For instance, when
the number of faulty RRAM components in AM goes above
10%, the language accuracy starts to decline [13]. In this
paper, we aim to go beyond this robustness, by isolating those
components and regenerating new components without any
supervision: enabling HD architecture to regrow its lost parts.

Accordingly, we propose an evolvable HD computing archi-
tecture to detect, localize, isolate, and recover (by means of re-
generation) from faulty PCM hardware blocks—all together in
an unsupervised manner: 1) The presence of faults is detected
non-intrusively in a discriminative HD classifier by analyzing
the standard deviation of the Hamming distances between
different classes. 2) Partial Hamming distances are computed
on a block that help localizing and isolating erroneous blocks
via K-means clustering (K=2) of relative sum of Hamming
distances. 3) Finally, new HD blocks are regenerated by
replicating encoder blocks, and by retraining the contents of
AM to compensate for isolated faulty blocks. We demonstrate
its application on the 21 EU language recognition task using
a simulated PCM architecture [3]. Experimental results show
that the classification accuracy can be fully recovered from
90.48% to 96.86% at fault rates of up to 42% in AM.
Moreover, at highest fault rate of 48.5% the accuracy of
the faulty hardware is recovered from 75.50% to 95.05%.
This overall maintains HD as a compact model (285× fewer
trainable parameters than fastText [14]) with ability to quickly
relearn and recover from faults without any supervision.

II. HD COMPUTING FOR LEARNING AND CLASSIFICATION

Here, we briefly describe how HD computing can be used in
learning and classification tasks. We focus on HD architecture
for widely-used language recognition task [2], [3], [8], [9],
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Fig. 1: Architecture for three class language classification consisting of encoding of text letter into binary text vectors and
AM [9]. Query vector Q is divided into 20 sub-query vectors Q1,Q2, ...,Q20, which are fed to their corresponding partition
block. Encoder and AM can be extended with additional partition blocks (dashed) in presence of faults.

[13]; this architecture with our method can be applied to
other applications [12] such as news [10], or embedded
biosignal [11] classifications.

Encoding and AM are the two main modules. The encoding
module embeds an input text, composed of a stream of letters,
to a HD binary vector (10,000-bit). This module includes an
item memory that holds a random, binary vector for each letter
of the Latin alphabet and the space. The encoder computes a
vector for every three consecutive letters (i.e., trigram) as the
text streams in. A trigram vector is created by successively
permuting the letter vectors based on their order and binding
them together, which creates a unique representation for each
trigram. The trigram vectors are superposed (i.e., added and
then thresholded) over the input text to generate a binary text
vector as the output of encoder (see Fig. 1). This text vector
is sent to AM for training, or testing. During training, AM
uses the text vector to store a set of language vectors based
on provided labels. For instance, AM includes 21 language
vectors, each stored in its own row in AM, when trained with
the 21 EU languages dataset. During testing, the language of
an unknown text is determined by comparing its text vector,
called query vector, to all language vectors. The comparison
between prototypes and query vector is done using AM search
with Hamming distance. Finally, AM returns the label of
language that has minimum Hamming distance to query [9].

Overall, the encoder embeds the input sentence into a HD
vector, followed by the AM to integrate and store these vectors
during learning, and make comparison during inference. This
architecture is somewhat similar to fastText [14] where the
input sentence is hashed to a large feature vector (600,000-d),
followed by a fully connected hidden layer (100-d) and the
final classification layer (21-d). fastText is an efficient baseline
for text classification, on par with deep learning in accuracy,
but many orders of magnitude faster for training [14].

III. EVOLVABLE HD COMPUTING

This section presents the main contribution of this paper by
proposing an evolvable algorithm, exploiting the features of
HD computing, to detect, localize, isolate, and recover faulty
components without any supervision. Fig. 1 shows the overall
architecture composed of the encoding and AM for classifying
a text. For sake of simplicity, we show an example of only
three languages (A,B,C); the extension to the 21 languages is
straight forward. As discussed, the encoder encodes a text to a
text vector, or query (Q) by superposing all trigram vectors of
the text. For classification in AM, the query vector is divided
into 20 tiles and fed to the corresponding partition block,
which stores a tile of every language prototype vector. Every
partition block i computes the Hamming distance between
the tile of the query vector and all prototypes, giving dAi ,dBi ,
and dCi . Finally, the partial Hamming distances from every
language are summed up to dA,dB , and dC ; the selected
language is the one with smallest Hamming distance. These
partial Hamming distances are the only observations that
our algorithm requires which is aligned with the nature of
computing Hamming distance in a distributed fashion among
multiple HD processors [15].

We only consider faults occurred during learning or infer-
ence in the AM because it is the common module in HD
architecture across all different applications [12], [15], and
grows rapidly with increasing number of items for classifica-
tion; further, it is updated incrementally while the encoder is a
fixed entity. Our algorithm can be deployed anytime after HD
training by using the following three main steps. Given a faulty
AM: 1) Our algorithm non-intrusively senses the presence of
faults through the analysis of the distribution of Hamming
distances; 2) It then localizes the erroneous blocks of AM
via K-means clustering and isolates them from execution;
3) Finally, it reproduces the architecture in a completely
unsupervised way to compensate for isolated faulty blocks.



This overall recovers the accuracy loss, and gets closer to the
non-faulty model.

A. Detection

The presence of faults in AM is sensed non-intrusively
by analyzing the standard deviation between the Hamming
distances

σ = std
(
dA, dB , dC

)
. (1)

Intuitively, a discriminative HD classifier separates different
classes well, i.e., the distance to the “true” class is significantly
lower than the distances to all remaining “wrong” classes. As a
result, the standard deviation σ of the discriminative classifier
is high. If the discriminability of the classifiers decreases, e.g.,
due to errors, the distance of the “true” class gets closer to the
remaining distances resulting in a lower standard deviation.
In our experiments, σ varied between 6.5 and 0.09 when
injecting errors with fault rates in the range of 0% and 49.5%.
Therefore, σ between Hamming distances is a useful measure
to estimate the reliability of HD architectures. Before making
a decision about the presence of faults, standard deviations
of multiple test texts are averaged to σ. The architecture is
considered faulty if σ < 4, corresponding to a fault rate higher
than 20%.

B. Localization of Faults

The next step is to localize and isolate faulty partitions in an
unsupervised way. Basically, we analyze the sum of Hamming
distance of every partition block i:

si = dAi + dBi + dCi . (2)

This sum represents the fraction of Hamming distance every
block contributes, independent of the class. The i.i.d. and holo-
graphic representation of query and prototype vectors ensure
that all partitions contribute equally to the total Hamming
distance. Formally speaking, in a non-faulty architecture all
relative sum of distances are similar:

ri =
si∑20

k=1 sk
≈ 1

20
i = 1, 2, ..., 20. (3)

As soon as one ore multiple partition blocks become faulty,
their relative distance changes. In order to discriminate faulty
partition blocks from non-faulty ones, the set of relative sum of
distances {r1, r2, ..., r20} are clustered using simple K-means
with K=2. Again, the relative distances are first averaged over
multiple test text samples to ri. Once localized, a faulty block
i is isolated by ignoring its Hamming distances dAi , dBi , dCi .

C. Regeneration

The localized faulty partition blocks are replaced by pro-
vided new blocks. Regeneration in the encoder is simply done
by replicating new blocks analogous to crossover operator
in the genetic algorithms: the item memory is randomly
initialized for the new block and the operations used in encoder
(permutation, binding, and superposition) are extended to work
on the new block. However, the regeneration of new blocks in
AM requires new contents to be written in those blocks: we
trained them unsupervised by only relying on current labels

estimated by the classifier. In this state, the faulty partition
blocks are already isolated. The encoder is then extended
by the dimension corresponding to isolated partition blocks.
A new partition block is trained on the extended dimension
by accumulating the query vector per class in accordance to
the estimated label from the remaining blocks. At the end
of regeneration, a threshold is applied on the accumulated
vectors to obtain binary prototype vectors. Finally, the “old”
kept blocks and the “new born” blocks of AM are assembled
together to form a crossbar AM with the same dimension as
the original one.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

Language recognition dataset. We evaluate our method
on the 21 EU languages using the Wortschatz Corpora [16]
for training, detection, localization, regeneration and validation
and the Europarl Parallel Corpus [17] for testing. Text samples
from the Wortschatz Corpora containing a total of 21 MB
are split up into initial training set (4.2 MB), detection and
localization set (1.05 MB), and regeneration task (4.2 MB).
The remaining text samples of the Wortschatz Corpora are
used as validation set for tuning hyperparameters of the model.
The Europarl Parallel Corpus consists of 21 MB texts which
are used for testing.

Architecture. Our architecture is based on an in-memory
HD computing architecture using PCM devices [3]. The
10, 000-bit vectors inside AM are mapped to a PCM cross-
bar for Hamming distance computation. As the vector com-
ponents are binary, a PCM device is programmed to the
maximum/minimum conductance level to represent a vector
component with logic-1/0. The AM crossbar is split into 20
partition blocks with vector dimension 500 each.

Faults simulation. The PCM devices are programmed in a
single-shot, i.e., with a single reset/set pulse aiming for mini-
mum/maximum conductance levels (without iterative program-
and-verify) [3]. Further, these conductance values drift due to
spatial and temporal variabilities. Specifically, the variability
in cells programmed to logic-1 is higher making a 1-to-0 bit
flip more probable than a 0-to-1 bit flip. A 1-to-0 bit flip is
occurred when the conductance level of the cell falls under a
certain threshold. We injected such errors into the AM based
on the measured spatial conductance variability of 21×10, 000
PCM devices in a crossbar array [3]. In our fault simulations,
these conductance variabilities result in a fault rate (FR) from
8% to 50%.

B. Impact of Faults in HD and fastText

Fig. 3 shows the degradation in accuracy when introducing
faulty elements into both HD and fastText. In HD, we inject
the faults in AM, and in fastText in the fully connected
layers by setting weights to zero; we exclude HD encoder and
fastText hashing due to their fixed immutable nature. Before
fault simulations, both classifiers are either trained with initial
training set of 4.2 MB or the full Wortschatz Corpora with
21 MB text size.

We first compare the accuracy without injecting faults, i.e.,
at fault rate of 0%: fastText achieves 97.62% accuracy when
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Fig. 3: Classification accuracy of HD classifier and fast-
Text [14] depending on the fault rates. Classifiers are either
trained on full training set (21 MB) or on initial training set
(4.2 MB). At highest fault rate of 48.5%, HD accuracy is
75.50% (4.2 MB) and 79.00% (21 MB).

trained with the full training set, which is 0.39% higher than
HD with 97.23%. When reducing the training set size to
4.2 MB, HD shows its fast learning capabilities and remains
the accuracy at 97.00%, whereas fastText decreases by 4.58%
due to the large number of weights to be learned.

Both HD and fastText degrade similarly at fault rates up
to 42% with a loss of ≈6%. However, at highest fault rate
of 48.5%, the accuracy of HD decreases more rapidly with
18.20% loss compared to fastText with 10.24% loss when
using the full training set, and by 21.50% compared to 9.04%
loss using the reduced training set. This is due to massive
redundancy in fastText: its fully connected layers have 285×
larger number of trainable parameters than AM.

C. Regeneration of Associative Memory (AM)

HD provides a very compact model compared to fastText
but still exhibits graceful degradation under faults. Here, we
evaluate the impact of unsupervised AM regeneration that
enables HD to recover from high fault rates. Fig. 2 summa-
rizes the accuracy of all three main stages: 1) Accuracy of
the original non-faulty architecture trained on initial 4.2 MB
training set; 2) Accuracy under each faulty setup for fault
rates up to 48.5%; 3) The remaining 4.2 MB of training set
is used to regenerate new blocks for AM where we report
the accuracy of newly assembled architecture with different
amount of text used during regeneration. We have not tried
to retrain fastText because of its poor performance with small
size of training dataset (see Fig. 3), and the fact that its training
algorithm requires iterations that render it unsuitable for online
adaptation (time and memory required to pass over training
examples) as opposed to HD learning that is done by a single-
pass over data.

As mentioned earlier, HD accuracy decreases by 21.50% at
a fault rate of 48.5%. When regenerated with the full 4.2 MB,
the accuracy is recovered by 16.02% to 95.05%, which is only
2.18% lower than in initial non-faulty architecture. At lower
fault rates of 22%, 37%, and 42%, accuracy is fully recovered
to 96.86%.

V. CONCLUSIONS

We propose evolvable HD computing that can detect and
localize faults in PCM crossbar by analyzing statistics of
Hamming distances during operation. As soon as the faulty
parts are localized and isolated, new parts are regenerated in an
unsupervised way. Experimental results on classification task
of 21 EU languages show that HD classifier exhibits similar
graceful degradation as fastText while requiring 285× lower
number of parameters. Moreover, up to fault rates of 42%
(or, 48.5%), new HD hardware blocks can be regenerated to
recover the accuracy loss reaching to the same (or, 2% lower)
accuracy than the non-faulty architecture at the same size.
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