
Tunneling-based CMOS Floating Gate Synapse for
Low Power Spike Timing Dependent Plasticity

Michele Mastella1,2, IEEE Student Member, Fabio Toso1, Giuseppe Sciortino1,
Enrico Prati3, Giorgio Ferrari1, IEEE Member

Abstract—We propose a CMOS architecture for spiking neural
networks with permanent memory and online learning. It uses
a three-transistors synapse with a floating node that stores the
synaptic weight, programmed by using only Fowler-Nordheim
tunneling current in the pA range for ultra-low power operation.
A neuron with a conditioning circuit programs the floating gate
synapse following the spike timing dependent plasticity rule.
Simulations using a standard 150 nm CMOS process show the
online learning capabilities of the architecture.

Index Terms—VLSI, floating gate, STDP, spiking, synapse

I. INTRODUCTION

Several hardware approaches are being implemented for ma-
chine learning, ranging from rate neurons on Von Neumann-
Zuse computer architecture [1], [2], FPGA [3] and ASICs
[4] from one side, to alternative approaches such as neu-
romorphic hardware [5]–[7] and quantum computers [8] for
quantum machine learning [9], on the other side. Among the
most promising for what concerns applications requiring low
power consumption or readiness for brain-machine interface,
circuits of spiking neurons [10] occupy a prominent role. A
spiking neural network (SNN) transmits information along
with the network, through spikes in place of finite digits.
This coding method mimics that of biological neurons, with
great efficiency in energy management [11]. In the past, low
power consumption has been addressed by designing essential
neurons or synapses [12]–[15] or by elaborating complex
networks [16], [17]. We achieved such target by designing
a circuit fully compatible with commercial CMOS technology
and able to store multiple weights. The device has been
designed to store permanently the inter-neuron connections
and yet modifying them during its lifetime with learning
algorithms, in our case as the Spike Time Dependent Plasticity
(STDP). The latter is a famous method used to modify the
strength of synapses depending on the relative times of spiking
of the involved neurons [18]. The memory element is a floating
gate that stores quasi-permanently a charge and it is one of the
main candidates for neuromorphic circuits [19]–[21] thanks
to the full compatibility with the current CMOS technology.
Differently from previously reported floating gate synapses
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[14], [20]–[22], the stored charge is modified through Fowler-
Nordheim tunneling effect [23] avoiding the large current
required by hot-carrier injection [24]. In the following, the
architecture of the neuron, the synapse and the conditioning
circuits are discussed and simulations are shown to validate
the design.

II. NEURON

The schematic of the compact and biologically plausible
neuron is shown in Fig. 1. The structure was first reported
by Sourikopoulos et al. [25] and here is modified to be
used with the chosen technology and to add a refractory
period, as required by our implementation of the STDP rule.
The membrane capacitor Cmem is charged by the synaptic
current Isyn and by a positive feedback current from the
sodium channel implemented by MNa and discharged by a
negative feedback current from the potassium channel (MK).
The positive feedback, triggered by the commutation of the
first inverter (Mn1,Mp1), creates a spike by clamping the
voltage Vmem to Vdd. The negative feedback, triggered by
the second inverter (Mn2,Mp2), brings Vmem to ground for
a refractory period of tens of milliseconds. Transistors were
sized to operate the neuron with the very low supply voltage
of Vdd = 0.4V. This gives us the possibility to embrace low
currents from the synapses (Isyn ≈ 100 fA − 10 pA) since
the voltage threshold of the first inverter is low. The transistor
MST has been added to define a refractory period longer than
the time required by the update of the synaptic weight, in order
to avoid a spurious injection of charge in Cmem, as will be
discussed later.
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Fig. 1. Schematic of the CMOS neuron based on two inverters that control
the positive and the negative feedback with different commutation times.
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Fig. 2. Scheme of the synaptic architecture. The PRE and POST neurons are
connected to the three-transistors synapse with a low voltage path (LV-PRE
and Vmem−POST ) for the reading of the synaptic weight and a high voltage
path (HV-PRE, HV-POST) for programming the synaptic weight.

III. SYNAPSE

For every chain of two neurons, we can identify the one that
is sending the spike, called PRE, and the one that is receiving
it, called POST. The synapse is the element responsible for
connecting two neurons through a programmable weight, as
shown in Figure 2. The design of the synapse followed the
optimization of power consumption and area footprint, aiming
to replicate the device many times in the neural network. The
floating gate, used to store the synaptic weight, is obtained by
keeping electrically insulated the polysilicon gate of standard
MOS transistors. The Fowler-Nordheim tunneling effect [23]
is used for injecting and removing the charge in the floating
node. Figure 2 shows the proposed STDP-compatible synapse
designed using LFoundry 150 nm CMOS technology that pro-
vides transistors operating at 1.8V, 3.3V, 5V along with high
voltage LDMOS transistors. The synapse uses four elements:

• A thick oxide P-type 3.3V transistor Mtun in a capacitor
configuration. It is designed to achieve tunneling between
the substrate (N-well) and the gate, allowing the modi-
fication of the charge in the floating node. The need for
long time retention prevented the use of a 1.8V transistor,
since its thin oxide (< 3 nm) has a significant tunneling
rate even at low voltages.

• A MIM capacitor Cin that connects the floating node to
the previous PRE neuron.

• A thick oxide P-type 3.3V transistor Mbias. It converts
the charge of the floating node into a current injected in
the POST neuron.

• A P-type 1.8V transistor Mread used as a switch to
connect the synapse at the POST neuron only during the
reading phase.

The synapse has two operation modes. The first one is the
reading phase of the synaptic weight. When a PRE neuron’s
spike arrives, the node LV-PRE signal is decreased from
0.4V to 0V for one millisecond, switching on the transistor
Mread and leading to an injection of a current Isyn into the
POST neuron. The current value, i.e. the synaptic weight, is
controlled by Mbias that is biased by the floating gate node.
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Fig. 3. Tunneling current between gate and bulk of a 3.3V device in 150nm
CMOS technology.

The second operation mode is the programming phase, used
for updating the synaptic weight accordingly to the STDP rule.
Once a neuron’s spike is sensed, a high voltage signal is sent
to all the synapses connected to the neuron. The synapses
connected at the input of the neuron receive the high voltage
signal at the substrate terminal of the Mtun transistor (HV-
POST in Fig. 2). On the contrary, the synapses at the output of
the neuron receive the same high voltage signal at the capacitor
Cin (HV-PRE). In this way, each synapse receives two high
voltages, one coming from the neuron PRE and one from the
neuron POST, whose temporal combination allows a positive
or a negative tunneling through the gate oxide of Mtun.

IV. STDP CIRCUITS

Figure 3 shows the experimental tunneling current of a 3.3V
pMOS transistor. Data are well fitted by the empirical model
reported in [24] and suggest a voltage higher than 8V to
achieve a significant current in the floating gate node. Around
6V the data vary from the model because of stray currents in
the setup.

In order to obtain the STDP learning rule, we generate the
HV voltages with a negative and a positive swing of ±4.5V, as
shown in Fig. 4. The time separation between the HV-PRE and
HV-POST signals defines the behavior of the synapse. If the
two neurons spike far in time (≥ 8ms), the maximum voltage
across the oxide of Mtun is ±4.5V resulting in a negligible
tunneling current. When the PRE neuron’s spike arrives less
than 8ms after the PRE neuron’s spike (Fig. 4, left), the overall
voltage across Mtun, given by difference between HV-PRE
and HV-POST, reaches 9V triggering a tunneling current that
reduces the voltage of the floating node and increases the
synaptic weight. On the contrary, if the PRE neuron’s spike
comes less than 8ms after the POST neuron’s one (Fig. 4,
right), the voltage across the Mtun reaches −9V producing a
tunneling current that reduces the synaptic weight.

The HV-PRE signal is generated after the reading phase
to avoid cross-talk between the programming and the reading
parts. However, a HV-POST signal could occur during the
reading phase causing a change of the synaptic current due to
the capacitive coupling of HV-POST and the floating node.
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Fig. 4. Timing waveforms of the membrane voltage of the PRE and POST
neurons and of the HV signals applied to the synapse in the case of a
potentiation (left) and in the case of a depression (right).

In order to prevent a spurious charging of the membrane
capacitor, the refractory period of the neuron is longer than
the duration of the HV-POST signal.

The high voltages involved require a conditioning circuit to
shift the 0.4V at the output of the neuron to ±4.5V. The
designed circuit, included in each neuron and shared by all
the synapses connected to it, is shown in Figure 5.

The first stage is a 0.8V digital circuit, responsible for
creating the right timing of the positive and negative signals
starting from the neuron’s spike that is detected by monitoring
the VNa voltage. A temporal overlap of these two signals
could result in a conductive path from the high voltage power
supply to ground in the HV output stage, causing strong power
dissipation. To avoid it, the timing circuit has been realized
with edge detectors that activate the second rectangular signal
only when the first one is in the falling edge.

The second stage shifts the 0.8V digital signals to voltages
high enough to control the HV-MOSFET of the output stage.
A standard digital voltage shifter [26] was implemented using
5V transistors.

Finally, the signals generated by the voltage shifters are
fed to the output stage. The HV voltage is obtained using
two LDMOS transistors, HV-PMOS and HV-NMOS, able to
stand up to 40V voltage difference between the drain and the
source. There are three different configurations of the output
stage controlled by the outputs of the voltage shifters (Fig. 5,
right):

• IDLE: When no spikes are sensed the floating gate
shouldn’t experience any change in the stored charge.
This is assured by an output voltage at 0V, obtained by
keeping the HV-NMOS conductive (GNMOS high) with
the source (SNMOS) at 0V;

• DW: After ≈ 100 µs from a spike, the HV output signal
is moved to −4.5V, half of the voltage needed for
tunneling, by forcing the source of HV-NMOS at −4.5V
and the gate-source voltage above the threshold voltage;

• UP: When the negative signal is terminated, the posi-
tive part is triggered. The HV-NMOS is switched off
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Fig. 5. Left: conditioning circuit to convert a low voltage spike in the high
voltage symmetric HV signal. Right: timing diagram of the signals used to
create the high voltage HV applied to the synapses.

(SNMOS = 0V and GNMOS = −3.3V) and the HV-
PMOS is switched on (GPMOS = 3.3V), shunting the
output to 4.5V.

The duration of the DW and UP signals is 4ms. They are
separated by a short IDLE phase (10 µs) to avoid a cross-
conduction current given by the simultaneous activation of
HV-PMOS and HV-NMOS.

V. SIMULATION RESULTS

The STDP learning mechanism was demonstrated by simu-
lations at transistor level of the simple chain neuron - synapse
- neuron shown in Fig. 2. To simulate the tunneling current
of Mtun, we developed a Verilog-A component based on the
model reported in [24] with the parameters extracted by the
experimental measurements in Fig. 3. To study the learning
behavior of the architecture, we stimulated the PRE and
POST neurons with two bias current, IinPRE and IinPOST

respectively, injected at the Vmem node. The simulation has
been carried for 0.2 s with IinPRE = 1pA from 20ms to
200ms and IinPOST = 1.5 pA from 70ms to 140ms. The
results of the simulation are reported in Fig. 6 where we
can identify four different conditions based on the values of
IinPRE and IinPOST .

In the first time slot, from 0 s to 20ms (called IDLE in
Figure 6) no input current is injected and no neurons spike.
As well no high voltage signals (PRE-HV and POST-HV in
Fig. 6b) are generated by the conditioning circuits. The voltage
of the floating gate node (Fig. 6c-d) is steady at a predefined
value. In this phase, negligible power is consumed.

The ENFORCE phase starts when IinPRE = 1pA is fed
to the first neuron. The latter starts to spike and, since it
is connected with the second neuron through the synapse, it
also begins to charge the membrane capacitance increasing the
voltage Vmem,POST . When a spike of the PRE neuron is able
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to induce a spike of the POST neuron, the floating gate bias
voltage is correctly updated to a lower voltage. This causes
a strengthen in the connection between the two neurons so
that for each spike of the PRE neuron, we observe a spike
of the POST neuron and a further decrease of the floating
gate voltage. Starting from t = 70ms the POST neuron is
stimulated with a constant current of IinPOST = 1.5 pA. Due
to this current, the POST neuron has additional spikes uncor-
related with the the spikes of the PRE neuron. In agreement
with the STDP rule, the floating gate voltage increases and the
connections between the two neurons are weakened. Finally, at
t = 140ms the IinPOST is removed. Because of the previous
weaken phase, the second neuron initially cannot follow the
first neuron. However, the system learns again the connection.

VI. CONCLUSIONS

A VLSI solution for an efficient spiking neural network with
permanent memory and STDP is proposed by using a floating
gate device obtained in a standard CMOS process. The charge
of the floating node is modified by using Fowler-Nordheim tun-
neling only.The energy consumption for each writing (E/Event

TABLE I
COMPARISON BETWEEN FG IMPLEMENTATIONS

[17] (0.35 µm) [27] (65nm) This (0.15 µm)

E/Spike N 10pJ 290 fJ(est.) 21 fJ(N),
20pJ(HV)

E/Ev. Sread 10pJ 40 fJ (est.) 30 fJ
E/Ev. Swrite 4.5pJ (volatile) 4 fJ
CMOS-ready Yes Yes Yes

Area (µm2) n.a. (N),
133(S)

n.a. (N),
49(S)

168(N),
1240(HV), 27(S)

Swrite) and reading (E/Event Sread) is reduced, as shown in
Table I, thanks to the removal of hot carrier injection processes
and the introduction of a new architecture, respectively. The
low synaptic current provides also the opportunity to improve
the consumption of the neuron itself (E/spike N). The need
for high voltage is handled through a conditioning circuit
that currently is limiting the energy consumption and the area
footprint performances. However, the conditioning circuit is
shared by all the synapses linked to the same neuron reducing
the overall consumption in highly connected neural networks.



REFERENCES

[1] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. A. Riedmiller, “Playing atari with deep
reinforcement learning,” CoRR, vol. abs/1312.5602, 2013. [Online].
Available: http://arxiv.org/abs/1312.5602

[2] R. Porotti, D. Tamascelli, M. Restelli, and E. Prati, “Coherent transport
of quantum states by deep reinforcement learning,” Communications
Physics, vol. 2, no. 1, p. 61, 2019.

[3] C. Farabet, Y. LeCun, K. Kavukcuoglu, E. Culurciello, B. Martini, P. Ak-
selrod, and S. Talay, “Large-scale fpga-based convolutional networks,”
Scaling up Machine Learning: Parallel and Distributed Approaches, pp.
399–419, 2011.

[4] E. Nurvitadhi, D. Sheffield, J. Sim, A. Mishra, G. Venkatesh, and
D. Marr, “Accelerating binarized neural networks: Comparison of
fpga, cpu, gpu, and asic,” in 2016 International Conference on Field-
Programmable Technology (FPT). IEEE, 2016, pp. 77–84.

[5] N. Zheng and P. Mazumder, “Hardware-friendly actor-critic reinforce-
ment learning through modulation of spike-timing-dependent plasticity,”
IEEE Transactions on Computers, vol. 66, no. 2, pp. 299–311, 2016.

[6] E. Prati, “Atomic scale nanoelectronics for quantum neuromorphic
devices: comparing different materials,” International Journal of Nan-
otechnology, vol. 13, no. 7, pp. 509–523, 2016.

[7] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[8] D. Rotta, F. Sebastiano, E. Charbon, and E. Prati, “Quantum information
density scaling and qubit operation time constraints of cmos silicon-
based quantum computer architectures,” npj Quantum Information,
vol. 3, no. 1, p. 26, 2017.
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