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Abstract— Autism Spectrum Disorder (ASD) is the most 
prevalent child neurological and developmental disorder 
causing cognitive and behavioral impairments. The early 
diagnosis is an urgent need for the treatment and rehabilitation 
of ASD patients. This work presents electroencephalogram 
(EEG) based ASD classification processor implementation that 
targets a patch-form factor sensor for long time monitoring in 
a wearable device. A patient is classified as ASD or typically 
developing using scalp EEG. The selection of frontal and 
parietal lobe electrodes causes minimum uneasiness to the 
children. The proposed and implemented algorithm utilizes 
only four EEG electrodes. The processor is implemented and 
validated on Artix-7 FPGA, requiring only 26229 lookup tables 
and 15180 flip flops. The hardware efficient implementation of 
the complex kurtosis value and Katz fractal dimension features 
using kurtosis value indicator and Katz fractal dimension 
indicator with 54% and 38% efficient implementations, 
respectively, is provided. A hardware feasible shallow neural 
network architecture is used for the ASD classification.  The 
implemented system classifies the ASD with a high 
classification accuracy of 85.5% using the power and latency of 
8.62 µW and 2.25 milliseconds, respectively. 

feeling of disgrace and repeated visits to neurologists. Fig. 1 
shows the difference between the conventional ADOS-2 
diagnosis and the proposed solution to solve the pain 
problem. The proposed solution (longer-term) would be able 
to diagnose a child as ASD or TD earlier in the form of a 
wearable head-band system on chip (SoC) processor. The 
processor would pre-process the brain waves (EEG), extract 
suitable features, and classify the child as ASD or TD using 
suitable machine learning (ML) or deep neural network 
(DNN) classification method with limited electrodes.  It 
would not only avoid the stigma associated with the 
prolonged diagnosis but also reduce the rehabilitation costs 
due to early intervention [4]. 

 

Keywords— Autism Spectrum Disorder, System on Chip, 
Wearable devices) 

I. INTRODUCTION  
Autism spectrum disorder (ASD) is a wide spectrum of 

neurological disorders including genetic and non-genetic 
factors. The term “spectrum” represents the widespread 
series of impairments associated with the disorder, causing 
the early diagnosis challenging.  The recent estimates show a 
significant rise in the number of ASD patients across all 
ethnicities and socio economic ranks  [1]. 

Fig. 1. a) Conventional ADOS-2 diagnosis (b) Proposed solution 

One of the biggest challenges in the ASD detection at an 
early stage is uncooperative behaviour of ASD children, 
therefore we are proposing to develop a miniaturized 
wearable device to record and process EEG data. Only 
transmitting the EEG data wirelessly for remote processing 
will consume >15mW power, which is not suitable for 
children under the age of 4 years [5]. Hence, a fully on-chip 
low power system (~0.5mW) is necessitated to extract the 
features and classify the ASD from EEG data on the sensor 
to assist the neurologist in the early detection. 

The ASD diagnosis is standardly performed by Autism 
diagnostic observation schedule, 2nd Edition (ADOS-2) [1], 
requiring extensive and frequent behavioural observations 
leading to late diagnosis [1]. The ADOS-2 involves a 
comprehensive analysis and observations of communication 
(CSC) scores, social interaction (SCI) scores, imagination, 
and creativity (IMC) score, stereotyped behaviours (STB) 
score, and their comparisons with a cut off values table. The 
medical practitioners/ neurologists then evaluate the children 
as ASD or typically developing (TD). These evaluations take 
ample time and may be avoided by many parents due to the 

Electroencephalogram (EEG) signals record the electrical 
activity inside the human brain using a certain number of 
electrodes. Despite the various challenges related to EEG 
signal acquisition including noise and artifacts, there is 



significant research to show the effectivity of scalp EEG for 
ASD diagnosis [6].There are some solutions to assist ASD 
children using their emotions [7]- [8]. But no hardware-based 
ASD prediction processor is available. This paper presents 
the first hardware-based low-power processor to classify 
ASD patients using a dataset recorded, trained, and tested on 
ADOS-2 confirmed ASD patients.  

number of EEG channels and bulky EEG headsets are not 
suitable for a wearable device. The initial analysis of the 
EEG signals for ASD and TD subjects identified different 
channels and features to be quite important for ASD 
classification. A four channel set (F7, F8, CP5, CP2) was 
chosen for our ASD classification processor. These channels 
differentiate ASD and TD children using frontal and central 
parietal connectivity differences. The selected channels 
classified a subject as an ASD or TD with 85.5% 
classification accuracy with selected features and 
classification algorithm. 

II. METHODS AND TECHNIQUES 
     The ASD prediction using the EEG signal involves the 
acquisition of EEG data, EEG signal pre-processing for 
noise and artifacts removal, suitable feature extraction, and 
ML/deep learning classification. 

C. Feature Extraction Engine 
The feature extraction requires the identified features of 

Kurtosis Value (KTV) and Katz Fractal Dimension (KFD) in 
the beta (12-30 Hz) frequency band. KTV provides 
information about the degree of concentration of the signal 
around the mean [14].  KFD provides information about the 
energy decay of a signal [15]. Equations (1)-(2) define KTV 
and KFD. The 10-bits digitized and pre-processed 
(P.Process) EEG data sampled at 250 Hz is forwarded to the 
feature extraction engine (FEE). The FEE passes the EEG 
signal from a bandpass filter and then calculates the KTV or 
KFD feature using the required hardware components. Fx 
represents the KTV or KFD feature for a single EEG 
channel. 

 

 

Fig. 2. Top-level block diagram of the ASD classification processor 
Fig. 2 shows the top-level diagram of our ASD classification 
processor. The top part of the figure shows the offline 
analysis carried out in different python packages to identify 
the suitable features and channels required for ASD 
classification [10] . The selected features set and channels 
list were further optimized for the hardware realizable 
implementation and a shallow neural network (SNN) 
classifier was trained offline. Neural networks are capable of 
learning small datasets quickly [11]. The SNN architecture 
presented in this paper provided us better classification 
results with minimum hardware resources against other 
machine learning models. The SNN parameters (weights and 
biases) were then uploaded to our ASD classification 
processor for online testing and verification.  The bottom 
part of the figure shows our hardware-based ASD 
classification processor including the EEG pre-processing 
unit, feature extraction unit, and SNN classifier. The 
processor was implemented using Xilinx Artix-7 FPGA. The 
processor classifies a subject as ASD or TD using the EEG 
signals of the selected four channels. 

Fig. 3. Feature Extraction Engine highlighting a single channel 

         
 

 
 

Xi, , N, and S represent the time-series EEG sample, mean 
EEG value, total number of EEG samples, and standard 
deviation of the EEG data respectively. KTV (1) calculates 
the ratio of fourth power summation of differences of Xi and 

 with a product of one less than the total number of samples 
(N-1) and the fourth power of S. KFD (2) calculates the ratio 
between logarithms of summation of Euclidean differences 
(ED) between consecutive EEG samples (Xi and Xi-1) and the 
maximum ED. The calculation of these features requires 
huge memory requirements (> 15 MB) along with complex 
floating-point logarithm, power, and square root calculations 
(1)-(2). These calculations would make the ASD 
classification processor’s hardware implementation 
unrealizable and impractical due to high power consumption 
(> 500 mW) and huge silicon area requirements or FPGA 
resource constraints. Therefore, it is quite important to 
optimize these features to a hardware realizable 
approximation. 

A. Dataset 
To develop an efficient algorithm for the ASD 

classification, we have utilized the data recorded by Y. 
Jayawardana et.al [6]. The data provides the EEG dataset of 
17 participants including 8 ASD patients and 9 TD subjects 
using 32 electrodes. The EEG data was sampled at 250 Hz 
for 9 minutes duration. 

B. Channels Selection 
The selection of a limited number of channels and their 

scalp locations are quite important for the continuous 
monitoring of EEG data of ASD patients [7]. Due to the 
discomfort involved and the hardware infeasibility, a large  



 

 

 
KTV (1) and KFD (2) were approximated to KTV indication 
(KTVI) and KFD indication (KFDI) respectively. KTVI (3) 
was calculated using the product of the fourth power of 
standard deviation indicator (SDI) and a constant parameter 
K. SDI is the approximated standard deviation using range 
rule [16]. The SDI simply requires the difference between 
the maximum and minimum samples in the EEG time series 
represented by max(X) and min(X), respectively.  Eq (4) 
shows the calculation of SDI where X represents the EEG 
data. The KFDI (5) calculates the difference between squares 
of the maximum difference and the total difference between 
Xi and Xi-1. Xi and Xi-1 represent the current and previous 
EEG samples. 

Fig. 5. Feature Extraction Engine highlighting KFDI 
Fig. 5 shows the FEE to calculate the KFDI. The KFDI 
similarly requires the EEG β band and ELT.  Xi and Xi-1 
were sampled using a DFF and the difference between Xi 
and Xi-1 was calculated similarly to KTVI. A 16-bits 
floating-point summation unit (∑) was used to calculate the 
summation of differences (5) between Xi and Xi-1. The 
maximum difference (MX Diff (Xi, Xi-1)) was calculated 
using a floating-point comparator (COMP) controlled by a 2-
1 multiplexer (MUX). MX was stored in a 16-bits memory 
block and updated using a MUX controlled by the COMP. A 
floating-point subtraction unit (SUB) and multiplication unit 
(MUL) were used to calculate the squared difference (5) 
between Xi and Xi-1. The KFDI of the selected channel was 
similarly stored in a memory block (16’b x 4) using ELT. F4, 
F5, F6 and F8 represent the KFDI of the selected four 
channels. The proposed KFDI implementation does not 
require any complex FP calculations and huge memory 
requirements and was 54% efficient than conventional (2) 
KFD implementation. The calculated features F0-7 were 
forwarded to the SNN classification unit after normalization 
as a feature vector. 

Fig. 4 shows the FEE to calculate the KTVI. The pre-
processed EEG data in the beta frequency band (EEG β 
band) and the electrode/ channel number (ELT) were 
forwarded as input to the KTVI calculation unit. The EEG β 
band was calculated using a quantized FIR filter of 30th 
order as a half-precision (16’b) floating-point value.  

 

D. Shallow Neural Network Classification Unit 
A Shallow Neural Network (SNN) is a fully connected 

neural network without multiple hidden layers.  The SNN 
classifies the output as ASD and TD by adjusting or 
optimizing the weights and biases during the learning 
process from the difference between the desired output and 
the actual output through backpropagation. 

Fig. 4. FEE highlighting KTVI 
The ELT represents the current electrode from the subset of 
four electrodes used for the classification. A comparator unit 
(COMP) compares the consecutive EEG samples and raises 
the output flag if the current EEG sample (Xi) is higher than 
the previous sample (Xi-1). The output flag of the comparator 
is used as a section input for a two-to-one multiplexer to 
update the contents of minimum (MN) and maximum (MX) 
values. Xi and Xi-1 were sampled by a flip-flop (DFF) and 
forwarded as inputs to the multiplexer.   A 32-bits memory 
unit block (16’b x 2) was used to store the MN and MX 
values. A FP subtractor (SUB) calculates the difference 
between MX and MN values. The fourth power SDI and 
KTVI were calculated using a single floating-point 
multiplication unit (MUL) controlled by the control unit. The 
KTVI of the selected channel was stored in a memory block 
(16’b x 4) using ELT. F0-3 represent the KTVI of the selected 
four channels. The proposed KTVI implementation does not 
require any complex FP calculations and huge memory 
requirements and was 38% efficient than conventional KTV 
implementation using (1). 

 
Fig. 6. SNN architecture 

Fig. 6 shows the architecture of the SNN used for ASD 
classification.  The SNN contains eight, fifty, and two nodes 



in the input, hidden, and output layers respectively. The eight 
normalized features (F0-F7) are forwarded to the input layer.  

Table 1. Comparison with the state-of the-arts 

The comparison of the work with previous ASD 
classification processors [6], [9] is shown in Table 1. Since 
no other hardware-based ASD classification processor exists, 
the results are also compared with similar systems for other 
biomedical applications [8],[12],[13]. The classification 
performance of the work is quite good (85.5%) being the 1st  
hardware implementation and using the lowest number (4) of  
electrodes. Since the other hardware implementations target 
different biomedical applications, the classification accuracy 
does not represent a lateral comparison alone. The overall 
classification power, lookup tables and flip-flops count is 
significantly lesser than epilepsy or emotion classification. 

 

 
                                   

 
Fig. 7. SNN classification unit hardware architecture 

 The input layer (6) calculated the hidden layer values (N0-49) 
using multiplications and additions with the parameters (P0-

449) and a sigmoid function.  The output layer (7) values (O0-

1) are calculated using N0-449 and output layer parameters 
(P450-551). The higher value of O0 or O1 classifies the patient 
as ASD or TD respectively. Equations (6)-(7) represent the 
mathematical operations required for SNN implementation.  
P0-399 and P400-449 are the weights and biases for the input 
layer respectively. P450-459 and P550-551 are the weights and 
biases for the output layer respectively.          

IV. CONCLUSION 
Wearable ASD classification processors can be a major 

breakthrough in biomedical healthcare. They would assist 
ASD children and their caregivers in ASD diagnosis without 
any feeling of stigma. The implemented SNN classification 
processor utilizes the approximated and optimized 
implementations for hardware costly KTV and KFD features 
with 38% and 54% lesser hardware resources compared to 
conventional implementation. The high classification results 
and lower hardware resources are quite encouraging to 
develop a fully integrated SoC system for ASD classification 
after validation of the system after incorporating more ASD 
datasets. 

Fig. 7 shows the hardware implementation of the SNN 
classification unit. The normalized features F0-7 are inputted 
to the classification unit, which uses a floating-point 
multiplier and adder to perform the addition or accumulation 
functions (6)-(7). Two multiplexers (512 x 1 and 64 x 1) are 
used to select multiplier’s inputs to perform the 
multiplication, accumulation, or addition functions. Two 
finite state machine control units (control_1 and control_2) 
are used to provide the selection inputs of the multiplexers. A 
sigmoid unit is used to apply the sigmoid activation function 
[2]. A 32-bits memory block is used to store O0 and O1. A 
finite state machine control unit (control_3) is used to control 
the memory block using index and enable.  The classification 
output (ASD/TD) is calculated after comparing O0 and O1 
using a floating-point comparator. 
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