
An Energy-Efficient Quad-Camera Visual System
for Autonomous Machines on FPGA Platform
Zishen Wan*1, Yuyang Zhang*2, Arijit Raychowdhury1, Bo Yu3, Yanjun Zhang2, and Shaoshan Liu3

1School of Electrical and Computer Engineering, Georgia Institue of Technology, Atlanta, GA 30332, USA
2School of Information and Electronics, Beijing Institute of Technology, Beijing, 100081, China

3PerceptIn Inc, Fremont, CA 94539, USA

Abstract—In our past few years’ of commercial deployment
experiences, we identify localization as a critical task in au-
tonomous machine applications, and a great acceleration target.
In this paper, based on the observation that the visual frontend
is a major performance and energy consumption bottleneck, we
present our design and implementation of an energy-efficient
hardware architecture for ORB (Oriented-Fast and Rotated-
BRIEF) based localization system on FPGAs. To support our
multi-sensor autonomous machine localization system, we present
hardware synchronization, frame-multiplexing, and paralleliza-
tion techniques, which are integrated in our design. Compared
to Nvidia TX1 and Intel i7, our FPGA-based implementation
achieves 5.6× and 3.4× speedup, as well as 3.0× and 34.6×
power reduction, respectively.

I. INTRODUCTION

In the past few years, we have developed and commercial-
ized autonomous machines, such as mobile robots and self-
driving cars. During our deployment process, the affordable
and reliable visual frontend is a critical challenge. With only
cameras and IMUs, the visual frontend must precisely perceive
the obstacles in unknown environments [1]. An efficient visual
system is a prerequisite for localization and exploration tasks.

Autonomous machines are complex cyber-physical sys-
tems [2], [3]. Through detailed performance profiling, the
visual frontend is the bottleneck and contributes significantly
to system end-to-end latency. Based on our profiling result
(Sec. II-A) of the localization task, the vision system accounts
for 74% processing time and consumes more than 50% CPU
resources. Thus, vision frontend is a lucrative acceleration
target (Sec. II-B, II-C), especially for edge applications with
strict real-time and power constraints.

Several prior works attempt to accelerate visual frontend
on low-power platforms. [4] and [5] implement ORB feature
extraction and feature matching on FPGA respectively, but
they only accelerate part of the visual system. [6] designs an
optical-flow based VIO (Visual-Inertial Odometry) on ASIC,
but optical-flow may fail in variational illuminations and large
motion conditions, limiting its application space. [7] presents
an ORB-based visual SLAM (Simultaneous Localization and
Mapping) design on FPGA, but it only reports results on low-
resolution images. Moreover, all of them have not considered

*Equal Contribution
To appear in IEEE International Conference on Artificial Intelligence

Circuits and Systems (AICAS), June 6-9, 2021, Virtual

large-scale 3D visual systems with multiple cameras, which
will provide more robust perception but bring much higher
compute intensity and design challenges.

In this paper, we present an FPGA-based quad-camera
visual system design for reliable and real-time localization,
the system has been commercially deployed in multiple mar-
kets around the globe. Specifically, four cameras (with 720p
resolution) are integrated into one hardware module, and they
create a 360-degree panoramic view of the environment. By
utilizing hardware synchronizations (Sec. III-A) and frame-
multiplexing processing techniques (Sec. III-B), the most time-
consuming feature extraction (Sec. III-C) and feature matching
(Sec. III-D) are accelerated on FPGA in a fully pipelined
way. Our design achieves 5.63× and 3.38× speedup over
Nvidia TX1 and Intel i7 CPU, with 3.03× and 34.63× power
reduction, respectively (Sec. IV). It should be noted that visual
odometry should never fail in our design since we can always
extract 360-degree spatial information from the environment at
any moment, and there are always enough overlapping spatial
regions between consecutive frames. Moreover, the efficient
use of cameras makes our design much more affordable than
LiDAR and its computing systems.

The main contributions of this paper are as follows:
• We propose a novel ORB-based quad-camera 3D visual

hardware architecture on an FPGA platform to accelerate
the computational-intensive localization frontend.

• We present a hardware synchronization scheme to support
multi-image channels and IMU for reliable localization.

• We demonstrate how to co-design an accelerator that
significantly reduces the latency and energy by exploiting
unique frame-multiplexing, parallelisms, and pipelines.

II. ALGORITHM FRAMEWORK

Hardware design must target critical and compute-intensive
blocks. We demonstrate that visual frontend is an universal ac-
celeration target (Sec. II-A), and analyze its two main compo-
nents, feature extraction (Sec. II-B) and matching (Sec. II-C).

A. Visual Frontend Profiling

To understand the role of visual frontend, we analyze three
popular localization algorithms, SLAM [8], VIO [9] and Reg-
istration [10], which are adaptable to different scenarios [11].
As shown in Fig. 1, localization usually consists of a visual

ar
X

iv
:2

10
4.

00
19

2v
1

 [
cs

.A
R

]
 1

 A
pr

 2
02

1

Feature
Extraction

Feature
Matching

SLAMFeature Point
Correspondences

Frontend
Blocks

VIO

RegistrationBackend
Blocks

or

or

Image
Samples

Map &
Trajectory

Input &
OutputLe

ge
nd

Frontend
(Visual Feature Matching)

Backend
(Localization Optimization)

Fig. 1. Overview of localization task, including visual frontend and optimiza-
tion backend.

TABLE I
LATENCY DISTRIBUTION OF FRONTEND AND BACKEND IN THREE

LOCALIZATION MODES.

SLAM VIO Registration
Frontend 54.8% 86.7% 84.6%
Backend 45.2% 13.3% 15.4%

frontend and an optimization backend. The frontend extracts
visual features to find correspondences in observations, while
backend estimates the pose and updates the map. All three
localization backends share the same ORB-based vision fron-
tend, where ORB has been widely adopted in robotics and it is
proven to provide a fast and efficient alternative to SIFT [12].

Tab. I shows the average compute time distribution between
the visual frontend and optimization backend of localization
systems. We notice that visual frontend is the system bottle-
neck and its time varies from 54.8% to 86.7% in three modes.
Therefore, visual frontend is a lucrative acceleration target.
Moreover, since different localization algorithms usually use
the same image processing approach, accelerating the frontend
would lead to a universal performance improvement.

The visual frontend consists of feature extraction and feature
matching stages (Fig. 2). The algorithm details of each stage
will be described in Sec. II-B and Sec. II-C, respectively.

B. Feature Extraction

We use ORB for feature extraction (Fig. 2). ORB is an
efficient fusion of FAST (Feature from Accelerated Segment
Test) feature detector and BRIEF (Binary Robust Independent
Elementary Features) feature descriptor, describing as follows.

1) Feature Detection: Oriented FAST is used to detect
feature points in the image and ensure their rotation invariant.
First, the original image is resized to a multi-level image
pyramid to enable scale invariance. Second, at each level of the
image pyramid, points that differ greatly from the reference
point in intensity are detected as feature points. Third, the
orientation of feature points is computed as follows.

Assuming the patch of a feature point is the circle centered
at itself, the moments of the patch, mpq , are defined as

mpq =
∑
x,y∈r

xpyqI(x, y), p, q = 0 or 1 (1)

where I(x, y) is the intensity of the point (x, y) in the patch
and r is the patch radius. With these moments, the intensity
centroid of patch is defined as C = (m10/m00,m01/m00),
and the orientation is calculated as θ = arctan(m01/m10).

2) Feature Description: Rotated BRIEF computes descrip-
tors of feature points while maintaining their rotation invari-
ance. The detailed steps are as follows. First, considering the

Input
Image

Compute
Descriptor

Fast
Detection

Feature
Points

Compute
Orientation

Gaussian
Blur

Compute
Descriptor

Yes

Resize
Image

Scale
Revocer

Stereo
Match

SAD
Rectify

Output
Data

Fast
Detection

Feature
Points

Compute
Orientation

Yes

Gaussian
Blur

ORB Feature Extraction (Sec. 2.2)
oFAST rBRIEF

Feature Matching (Sec. 2.3)

Fig. 2. Visual frontend framework, including feature extraction and matching.

circular patch, p, a pair of points (A,B) is selected, and a
binary test, τ , is defined as

τ(p;A,B) =

{
0 : p(A) ≥ p(B)
1 : p(A) < p(B)

(2)

where p(A) is the intensity of patch p at point A.
Second, n pairs of points are selected from the patch p

based on Gaussian distribution. Repeated the previous step n
times, the descriptor is calculated as a vector of n binary tests
as fn(p) =

∑
1≤i≤n 2

i−1τ(p;Ai, Bi).
Third, to ensure rotation invariant, pixels in the patch are

rotated by a particular angle around the feature point. In light
of the high computation complexity of rotating all points, we
choose only to rotate the pairs used for computing descriptors.
A 2× n matrix consisting of these points is defined as

S =

(
A1, A2, . . . , An−1, An
B1, B2, . . . , Bn−1, Bn

)
(3)

Using the patch orientation θ and its rotation matrix Rθ, the
rotated matrix is derived from Sθ = RθS. Then the feature
descriptor is calculated as gn(p, θ) = fn(p)|(Ai, Bi) ∈ Sθ.

C. Feature Matching

1) Stereo Matching: This module matches feature points in
a stereo image pair. First, for a feature point, F , in left image,
the strip-like searching region R in right image is determined.
Second, the Hamming distance H of the descriptors between
F and each feature point in R is computed. Third, the feature
point pair with the smallest H is considered as the best match.

2) Rectification: Stereo matching with ORB feature is a lo-
cal mapping algorithm with fast speed but a high mismatching
rate. Thus, SAD (Sum of Absolute Differences) rectification
is integrated by correcting the coordinates of feature points.

Let (F, F ′) be a matched feature points pair in left and
right images. First, patch windows centered at (F, F ′) are
created respectively, as (Fw, F

′
w). The SAD is computed as

SAD(Fw, F
′
w) =

∑∑
|Fw −F ′w|, where smaller SAD value

means higher similarity of F and F ′. Second, fix Fw and slide
F ′w within a range, repeat the former steps to compute SAD for
each new location, find out the window with the lowest SAD,
and F ′ will be relocated to its center. Third, the disparity and
depth information is calculated based on adjusted positions.

III. HARDWARE ARCHITECTURE

The overall architecture of the proposed visual frontend
accelerator is shown in Fig. 3a. Four cameras and IMU
interface with on-board compute. The frontend is implemented
in FPGA to accelerate feature extraction and matching, and
the CPU is used for backend computations. To improve per-
formance, we propose hardware-based synchronization, direct

4x

IMU
Module

Camera
Module

Parallel Port &
Image Sync. Logic

Image
data

IMU
data

Trigger
signal

Time tag

Time tag

Trigger
signal

Visual
Frontend
(FPGA)

Localization
Backend

(CPU)

Memory
Controller

DMA

Off-chip
DRAM

Interface

Interface

Image
Buffer

IMU
Buffer

Trigger
Generator

Image with
time stamp

IMU with
time stamp

Synchronized

Timer
Unified time tag

Synchronized &
stable time lag

Serial
InterfaceTimer

Camera data
@30fps/channel

IMU data
@240fps

AXI Bus

Hardware Synchronization (Sec. 3.1)

Image
Buffer 1

Image
Buffer 2

Mux

Feature
Extractor 1

Feature
Buffer 1

Feature
Matcher 1

Disparity
Buffer 1

Control

Instruction
Memory

DM
A�
%
XV
�,Q
WH
UI
DF
H

Visual Front-end Frame-multiplexed (Sec. 3.2)

Image
Resizing

FAST
Detection

Orientation
Computing

Image
Smoothing

Descriptor
Computing

Input
Image

RAM

RAM

RAM

LB
RB

LB
RB

LB
RB

To Feature
Matcher

Feature Extractor (Sec. 3.3)

Search
Region

Decision
RAM

Hamming
Distance

ComputingFeatures
Coordinates

Coordinates Orientatioins

Smoothed
Image

RAM

Hamming
Distance
Compare

RAM

Descriptors

Corrections
& Disparity
Computing

RAM
Image

Pyramid

LB
RB

Matched
Feature

Pairs

Disparity Map
To DMA�Bus

Feature Matcher (Sec. 3.4)

1

2

3

Word Length Opt.

Two-stage
Pipelined

Stereo
Matcher

SAD
Recitifier

(a)

(b)

(c)

(d)

(e)

Mux

Feature
Extractor 2

Feature
Buffer 1

Feature
Matcher 2

Disparity
Buffer 2

Image
Buffer 3

Image
Buffer 4

Data
Signal

On-chip Memory

Le
ge

nd

oFAST

rBRIEF

Compute Module

Sync.

Frame-
multiplexed

Optimization Technique

Pyramid-multiplexed

Fig. 3. Overview of proposed FPGA-based hardware architecture design.

I/O architecture (Sec. III-A) and frame-multiplexed schemes
(Sec. III-B). The detailed architecture of feature extraction and
matching are presented in Sec. III-C and III-D.

A. Hardware Synchronization Interface

The synchronized interface between sensors and computing
modules is crucial for the autonomous machine to correctly
perceive the surroundings and localize itself. However, in the
whole system, the software synchronization in CPU leads to
variable delay among the four images, making it impossible
to achieve reliable localization results.

To solve this unstable synchronization issue, we propose a
hardware-based synchronization (Fig. 3b). First, all captured
images are directly sent to on-chip RAM through a direct IO
architecture. The trigger generator module generates synchro-
nized trigger signals for cameras and IMU. Second, both input
images and IMU data are tagged by a unified time tag. Finally,
images and IMU are synchronized at the interface with stable
time tags and then sent to the computing modules, significantly
helping achieve stable feature processing and localization.

B. Frame-Multiplexed Visual Front-End

Fig. 3c overviews the architecture of vision frontend. We
propose a frame-multiplexed scheme where two camera chan-
nels share one feature extractor. The rationale behind this is,
based on the profiling result, feature extraction (FE) takes
7.28 ms and feature match (FM) takes 14.59 ms when pro-
cessing 640×480 images, indicating that the latency of FM is
twice of FE. Moreover, two identical hardware modules are
designed to process two stereo cameras in parallel.

The utilized pipeline is shown in Fig. 4. Two images (left
and right) are captured at each frame. During processing, at
Nth frame, FE first processes left image and stores the result
in buffer and then processes right image. After the extraction
is finished, feature descriptors of image pyramid are sent to
FM for disparity computation. When FM at Nth frame starts
to work, FE is fired up to process images for (N+1)th frame.

FE (L) FE (R) FM

FE (L) FE (R) FM

Nth frame

(N+1)th frame

FE (L) FE (R) FM(N+2)th frame

Pipeline Camera i

Fig. 4. Pipeline in visual front-end, where FE refers to feature extraction,
FM refers to feature matching, L/R refers to left/right image. Two camera
channels share one FE (frame-multiplexed).

With this frame-multiplexed scheme, FE and FM could be
performed efficiently in pipelining. Visual frontend runs in
parallel with optimization backend. This scheme significantly
saves hardware resources and improves throughput.
C. Hardware Architecture of Feature Extractor

The feature extractor block extracts features from images. It
reads data from image buffer and calculates the ORB features
with on-chip memory. After the task is finished, it sends the
features to buffer and descriptors to feature matcher block.

The detailed architecture of feature extraction is shown in
Fig. 3d. It consists of image resizing, FAST detection, orien-
tation computing, image smoothing, and descriptor computing
modules. RAM, line buffers (LB), and register banks (RB) are
used to store intermediate results. The details are as follows.

Image Resizing. This module builds a two-layer image
pyramid with bilinear interpolation. The size of an input image
is 1280×720 and a scaled image is 1067×600.

FAST Detection. The FAST Detection module takes a
31×31 patch from RB as an input. It detects the feature point
and computes the moments of patch (e.g., m10 in Eq. 1). The
coordinates of the feature point (x, y) are stored in RAM.

Orientation Computing. This module takes the intensity
centroid of a patch as input, and calculates the orientation θ
of the patch that are stored in RAM.

Image Smoothing. The image smoothing module utilizes
Gaussian filter to smooth 7×7 pixels patch stored in RB. The
smoothened images are used to compute feature descriptors.

Descriptor Computing. This module takes the smoothened
images, coordinates and orientations of feature points as
inputs, and determines their descriptors with 32×8 bits.

TABLE II
FPGA RESOURCE CONSUMPTION OF SYSTEM.

Resource Modular Used (640×480) Total Used
FE FM Ctrl. 640×480 720×1280

LUT 96850 40034 1759 138643 (51%) 177196 (65%)
Flip-Flop 54100 12694 479 67273 (12%) 82730 (15%)
BRAM 271 0 0 271 (30%) 785 (86%)

DSP 32 0 0 32 (1%) 109 (4%)

Design Techniques. Orientation computing involves divi-
sion and square root operations that require substantial costs.
We adopt a word length optimization method and choose 8-bit
to reduce hardware consumption. During descriptor computa-
tion, to avoid smoothened images occupying too much mem-
ory, we adopt synchronized two-stages shifting line buffers to
compute Gaussian filtering and descriptor in a streaming way.

D. Hardware Architecture of Feature Matcher

The feature matcher block aims to match feature points from
stereo images and derive depth information. It contains two
parts in our design, the stereo matcher for pre-match and the
SAD rectifier for further rectification.

The detailed architecture of feature matcher is demonstrated
in Fig. 3e, including region decision, distance computing and
compare, correction and disparity computing modules. The
design of each module is presented as follows.

Search Region Decision. Search Region Decision module
takes the coordinates of feature points as inputs and determines
whether the feature points locate within the searching field.

Distance Computing and Compare. This module obtains
the descriptors from RAM and computes the Hamming dis-
tance of each pair of feature descriptors. It then finds out the
best matching with the smallest value of Hamming distance.

Correction and Disparity Computing. This module is
used for SAD rectification. It takes the coordinates of matched
feature pairs obtained in stereo matcher and 11×11 patch
image pyramid from RB, and computes the corrections and
disparity. The depth information will be sent for backend use.

Design Techniques. We utilize an image pyramid-
multiplexed scheme during implementation where two resizing
images share the same Feature Matcher block, significantly
saving hardware resources costs.

IV. EVALUATION RESULTS

A. Experimental Setup

Hardware Platform. The proposed visual front-end accel-
erator is implemented and evaluated on Xilinx Zynq Ultra-
scale+ XCZU9EG MPSoC. The FPGA is directly interfaced
with the four cameras and IMU sensors. The max operated
clock frequency is 203 MHz for feature extractor and 230MHz
for feature matcher, respectively. The FPGA device has 274K
LUTs, 548K Flip-Flops, 912 BRAMs, and 2520 DSPs in total.

Resource Consumption. The resource consumption of the
proposed system is shown in Tab. II. We evaluate the design
on two different image resolutions. Overall, the hardware
architecture utilizes 51% LUT, 12% Flip-Flop, 30% BRAM,
and 1% DSP resources when processing 640×480 images.

TABLE III
ACCURACY EVALUATION OF FPGA SYSTEM.

Feature Points # Matched Pairs # Effective Depth Value
Software 961.2 211.5 107

FPGA 961.1 211.7 107.3
Error -0.1 +0.2 +0.3

TABLE IV
PERFORMANCE AND POWER COMPARISON.

Perform. (fps) Perform. (%) Power (W) Power (%)
Image Resolution: 640x480

Our 69 - 1.63 -
[7] 56 81.16% 1.94 1.19×
[4] 67 97.1% 4.56 2.80×

Image Resolution: 1280x720
Our 50.7 - 2.31 -

Nvidia TX1 9 17.75% 7 3.03×
Intel i7 Core 15 29.59% 80 34.63×

Particularly, in 640×480 images, it is observed that FE
consumes over two-thirds of the frontend resource; the per-
centages in 720×1280 images are similar, corroborating our
scheme to multiplex FE module between left and right frames.

B. Accuracy Analysis

The accuracy of the system is evaluated by the results of
feature extraction and matching between FPGA and software
implementation (MATLAB) with processing 30 frames, shown
in Tab. III. For the number of extracted feature points, matched
feature points pairs and obtained depth values, the results
of two approaches are almost the same (error<0.3%). For
detailed coordinates, the accuracy is 99.7%, 98.2% and 96.8%.

C. Performance and Power Evaluation

CPU/GPU Comparison. Tab. IV compares the performance
and power of our FPGA design, Nvidia TX1 and Intel i7
CPU. Compared with TX1, the performance is raised by 5.63×
and power is reduced by 67%. Compared with i7 CPU, the
performance is raised by 3.38× and power is reduced by 97%.

Existing Accelerator Comparison. Tab. IV compares our
proposed hardware with some existing accelerators. Compared
to [4] (FPGA), we achieve a slight 1.03× speedup but 64%
power reduction. Particularly, we propose extra stereo match
modules for depth information, which is vital in 3D environ-
ments. Compared to [7] (FPGA), our design achieves 1.23×
speedup and saves 16% power. Moreover, we support multi-
channel camera systems with proposed hardware synchroniza-
tion scheme. Compared to [6] (ASIC), our design achieves 69
fps on more robust feature-based stereo-flow method, whereas
they achieves 171 fps on optical-flow method that may fail in
large displacements or inconsistent illumination conditions.

D. Discussions

Our proposed design can be further improved in two di-
rections. For high-performance scenarios, it can be improved
by involving more aggressive pipelining and higher fan-out
nets reduction. For embedded scenarios, power can be further
reduced by optimizing supply voltage and clock frequency.

V. CONCLUSION

In this paper, the unified compute bottleneck of various
localization system is identified. An ORB-based visual fron-
tend architecture is presented for real-time and energy-efficient
localization and evaluated on FPGA platform. To support mul-
tiple cameras and IMU, we propose hardware synchronization
for stable localization. To accelerate feature extraction and
matching, we utilize frame-multiplexing, parallelism and word
length optimization. Compared with Nvidia TX1 and Intel i7,
our design achieves 5.6× and 3.4× speedup in frame rate, and
3× and 34.6× improvement in energy efficiency, respectively.

ACKNOWLEDGEMENTS

This work was supported in part by C-BRIC, one of
six centers in JUMP, a Semiconductor Research Corporation
(SRC) program sponsored by DARPA.

REFERENCES

[1] Z. Wan, B. Yu, T. Y. Li, J. Tang, Y. Zhu, Y. Wang, A. Raychowdhury,
and S. Liu, “A survey of fpga-based robotic computing,” arXiv preprint
arXiv:2009.06034, 2020.

[2] S. Krishnan, Z. Wan, K. Bhardwaj, P. Whatmough, A. Faust, G.-
Y. Wei, D. Brooks, and V. J. Reddi, “The sky is not the limit: A
visual performance model for cyber-physical co-design in autonomous
machines,” IEEE Computer Architecture Letters, vol. 19, no. 1, pp. 38–
42, 2020.

[3] S. Krishnan, Z. Wan, K. Bharadwaj, P. Whatmough, A. Faust, S. Neu-
man, G.-Y. Wei, D. Brooks, and V. J. Reddi, “Machine learning-based
automated design space exploration for autonomous aerial robots,” arXiv
preprint arXiv:2102.02988, 2021.

[4] W. Fang, Y. Zhang, B. Yu, and S. Liu, “Fpga-based orb feature extraction
for real-time visual slam,” in 2017 International Conference on Field
Programmable Technology (ICFPT), pp. 275–278, IEEE, 2017.

[5] J. Cong, B. Grigorian, G. Reinman, and M. Vitanza, “Accelerating vision
and navigation applications on a customizable platform,” in ASAP 2011-
22nd IEEE International Conference on Application-specific Systems,
Architectures and Processors, pp. 25–32, IEEE, 2011.

[6] A. Suleiman, Z. Zhang, L. Carlone, S. Karaman, and V. Sze, “Navion:
A 2-mw fully integrated real-time visual-inertial odometry accelerator
for autonomous navigation of nano drones,” IEEE Journal of Solid-State
Circuits, vol. 54, no. 4, pp. 1106–1119, 2019.

[7] R. Liu, J. Yang, Y. Chen, and W. Zhao, “eslam: An energy-efficient
accelerator for real-time orb-slam on fpga platform,” in Proceedings of
the 56th Annual Design Automation Conference 2019, pp. 1–6, 2019.

[8] R. Mur-Artal and J. D. Tardós, “Orb-slam2: An open-source slam
system for monocular, stereo, and rgb-d cameras,” IEEE Transactions
on Robotics, vol. 33, no. 5, pp. 1255–1262, 2017.

[9] C. Forster, L. Carlone, F. Dellaert, and D. Scaramuzza, “On-manifold
preintegration for real-time visual–inertial odometry,” IEEE Transactions
on Robotics, vol. 33, no. 1, pp. 1–21, 2016.

[10] G. Elbaz, T. Avraham, and A. Fischer, “3d point cloud registration for
localization using a deep neural network auto-encoder,” in Proceedings
of the IEEE conference on computer vision and pattern recognition,
pp. 4631–4640, 2017.

[11] Y. Gan, Y. Bo, B. Tian, L. Xu, W. Hu, S. Liu, Q. Liu, Y. Zhang, J. Tang,
and Y. Zhu, “Eudoxus: Characterizing and accelerating localization in
autonomous machines,” arXiv preprint arXiv:2012.01353, 2020.

[12] D. G. Lowe, “Object recognition from local scale-invariant features,” in
Proceedings of the seventh IEEE international conference on computer
vision, vol. 2, pp. 1150–1157, Ieee, 1999.

	I Introduction
	II Algorithm Framework
	II-A Visual Frontend Profiling
	II-B Feature Extraction
	II-B1 Feature Detection
	II-B2 Feature Description

	II-C Feature Matching
	II-C1 Stereo Matching
	II-C2 Rectification

	III Hardware Architecture
	III-A Hardware Synchronization Interface
	III-B Frame-Multiplexed Visual Front-End
	III-C Hardware Architecture of Feature Extractor
	III-D Hardware Architecture of Feature Matcher

	IV Evaluation Results
	IV-A Experimental Setup
	IV-B Accuracy Analysis
	IV-C Performance and Power Evaluation
	IV-D Discussions

	V Conclusion
	References

