
Access to this work was provided by the University of Maryland, Baltimore County (UMBC)
ScholarWorks@UMBC digital repository on the Maryland Shared Open Access (MD-SOAR)
platform.

Please provide feedback Please support the
ScholarWorks@UMBC repository by emailing
scholarworks-group@umbc.edu and telling us what
having access to this work means to you and why it’s
important to you. Thank you.

mailto:scholarworks-group@umbc.edu

CoughNet: A Flexible Low Power CNN-LSTM
Processor for Cough Sound Detection

Hasib-Al Rashid, Arnab Neelim Mazumder, Utteja Panchakshara Kallakuri Niyogi, Tinoosh Mohsenin
Department of Computer Science and Electrical Engineering

University of Maryland, Baltimore County
Baltimore, USA

Email: {hrashid1, arnabm1, ukalla1, tinoosh}@umbc.edu

Abstract—The continuing effect of COVID-19 pulmonary
infection has highlighted the importance of machine-aided
diagnosis for its initial symptoms such as fever, dry cough,
fatigue, and dyspnea. This paper attempts to address the
respiratory-related symptoms, using a low power scalable
software and hardware framework. We propose CoughNet,
a flexible low power CNN-LSTM processor that can take
audio recordings as input to detect cough sounds in audio
recordings. We analyze the three different publicly available
datasets and use those as part of our evaluation to detect
cough sound in audio recordings. We perform windowing and
hyperparameter optimization on the software side with regard
to fitting the network architecture to the hardware system. A
scalable hardware prototype is designed to handle different
numbers of processing engines and flexible bitwidth using
Verilog HDL on Xilinx Kintex-7 160t FPGA. The proposed
implementation of hardware has a low power consumption of
o 290 mW and energy consumption of 2 mJ which is about
99 × less compared to the state-of-the-art implementation.

I. INTRODUCTION

Coughing is one of the most common symptoms that is
reported among patients, and it is usually the first symptom
of most respiratory illnesses. In fact, coughing is one
of the early symptoms of the recent infectious disease,
COVID-19. Traditionally, when patients feel symptoms, they
either contact a doctor or have themselves examined by
medical professionals at walk-in facilities where extensive
use of vital signs, visual and auditory input is used to make
diagnostic decisions. During a pandemic, in-person clinical
visits are restricted to minimize the virus transmission and
to help the health care system. As a result, machine aided
remote diagnosis is getting more attention due to this highly
contagious COVID-19 outbreak. Machine learning and deep
learning models for various early symptoms detection would
be a solution which can be implemented on low-powered
mobile devices to replace the initial screening by the health
practitioners to reduce the risk of infection to be spread.

When the patients record their cough sounds through
a web based or an app based recorder, noise from the
surroundings might change the early detection results.
As a result, detecting cough sounds from recorded
audio is another important research direction to make
the early symptoms detection work as per the plan.
Convolutional Neural Network (CNN) and Long Short Term
Memory (LSTM) Networks are two important deep learning

algorithms which have shown impressive performance in
image and time-series classification tasks which make
them good contenders for audio recognition tasks as well.
Researchers in [1] have suggested end-to-end CNN models
for audio recognition tasks. However, because of their
large model sizes and computations, these models are
not ideally adapted for integrated, low-power applications.
To address this research question, this paper presents a
combined CNN-LSTM based low powered energy efficient
cough detection architecture which can be implemented on
resource constrained, small processors of the cell-phones
and tablets and/or FPGAs. The main contributions of this
paper include:

• Propose CoughNet, a flexible software hardware
CNN-LSTM framework that can take audio recordings
and be configured for detecting cough sounds in it.

• Design a parameterized and flexible hardware in
verilog HDL for different input modalities, numbers of
processing engines (PE) and flexible data bitwidth that
replicate the CoughNet for low power deployment.

II. RELATED WORK
With the advent of numerous machine learning and deep

learning technologies [2]–[6], audio based medical diagnosis
has recently become an active field of study. Authors in
[7]–[9] used deep CNN and RNN to classify cough and
lung sounds. Authors in [8] proposed Log quantized deep
CNN-RNN based model for respiratory sound classification
for memory limited wearable devices. Authors in [9]
presented an end-to-end CNN model to detect cough sounds
from directly the recorded audio. However, their models
still require large number of operations due to large input
size and model architectures which requires large power
consumption that is limited in the resource constrained
wearable devices. In this paper, we tried to address the
minimization of the number of computations by leveraging
the mel-spectrogram of the input audio recordings and
making an CNN-LSTM based cough detection model. We
also emphasize on the energy efficient implementation on
FPGA hardware.

III. COUGHNET FRAMEWORK

The high level overview of the proposed CoughNet
framework and the more detailed architecture of the

1

256

2

LSTM Layer Flatten Layer Dense Layer
1-D Convolution
Layer

64

1

2

255

1-D Maxpooling
Layer

Mel-Spectrogram of Audio Signal

1

2

CoughNet
Framework Classified Labels

Audio
Recording

1

2

Output Layer

Fig. 1: The detailed architecture of the proposed flexible CoughNet in
which CNN-LSTM based deep neural network is implemented that can be
used for cough detection. The input of the model is Mel-Spectrogram 2d
image of size (101, 40) which is converted from audio recordings with
sampling rate of 44.1 KHz.

framework is presented in Figure 1. CoughNet can take
an audio recordings of the cough from the user and detect
accordingly. As the input is in the form of audio recordings,
we converted the audio recordings into mel-spectrogram 2D
images, where rows correspond to frequencies in Mel scale
and columns correspond to time (window) and each value
represents log amplitude value of the signal corresponding
to that frequency and time window. Then it is divided into
window frames to extract features since the right windows to
distinguish between static and continuous signals are crucial.
Windowing involves first standardizing the independent
variables and then creating sliding T windows. Then the
window frames are forwarded to the one dimensional CNN
layer with 40 filters and kernel size 8 for necessary feature
extraction. Then the output is passed to a maxpool layer
with pool size 8 which selects the maximum values from a
pixel neighborhood to minimize the total parameters of the
network. Then to learn temporal relations from the audio
signals, the output from the maxpool layer is passed to
an LSTM layer of 64 units. Then the output is flattened
and then forwarded to a fully connected layers to isolate
sufficient window frame information with interconnections
between nodes. At the end, the output is seen in the form of
the probability distribution of the last fully connected layer
with the Softmax activation function. We trained our model
with categorical cross-entropy loss and SGD optimizer with
0.6 as momentum.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, CoughNet is evaluated with in-depth
analysis using three different datasets for cough detection
along with the respective experimental results. Moreover, a
brief comparison with some state-of-the-art models is also
presented here.
A. Data Sets

We evaluated CoughNet for cough detection on three
different datasets: ESC-50 [10], FSDKaggle2018 [11], and
Coughvid [12]. The ESC-50 dataset contains a total of
2,000 audio recordings of normal environmental sounds.
It has 50 equally distributed classes including “coughing”,
so that each class has 40 audio recordings. All the audio
recordings are 5 seconds in length and are stored as
single-channel audio waveform files at 44.1 kHz sampling

(a)

(c)

(b)

Fig. 2: Detection Accuracy with different window sizes for (a)ESC-50
cough detection, (b) FSDK2018 Cough Detection (c) CoughVID Cough
Detection

rate. The FSDKaggle2018 dataset also contains 41 sound
classes and cough is one of them. There are 11,073 audio
recording samples, where each of the audio recordings is
an uncompressed Pulse Code Modulation (PCM) 16 bit,
44.1 kHz, mono audio file. We consider a window with
a stride always 0.25s and its label as one instance of
model input for all cases. However, since the sound of an
audio recording may only exist in some of the extracted
windows, we evaluate the predictions at audio recording
level by probability voting [13]. Moreover, Coughvid is
a crowdsourced dataset for machine learning researchers
aiming to find the connections between COVID-19 diagnosis
and cough sound features. It provides over 20,000 cough
recordings donated by participants. As an initial step
of taking fully advantage of this dataset for COVID-19
research, we evaluate cough detection with this dataset.
B. Results

Figure 2(a) shows the accuracy results for the ESC-50
dataset with respect to window size. As evident in Figure
2 (a), all the experiments show similar performances on
the overall accuracy metric. As for the performance on
cough detection, 1s windows show the good and balanced
performance of extracting distinctive features. Thus, a
window size of 1s is chosen for our implementation
scenario.

We considered the overall top-3 accuracy and recall
score of the cough class as our metrics to assess the
proposed architecture on cough detection. Figure 2 (b)
shows the overall top-3 accuracy and recall score results
for FSDKaggle2018 dataset with respect to window size.
As evident in Figure 2 (b), all the experiments show similar
performances on overall top-3 accuracy metric. As for the
performance on cough detection, 2s windows show good
and balanced performance of extracting distinctive features.
A window size of 2s is chosen for our implementation.

Fig. 3: CoughNet The hardware architecture designed for CoughNet
consists of convolution, maxpooling, LSTM and fully connected modules
and can be configured for M-bit precision where M ranges from 8 to 64
bits.

We used models trained on the ESC-50 dataset and used
transfer learning to predict cough existence into CoughVID
dataset, and compared with an assumed ground truth based
on the affiliated probability. We considered two cough
existence prediction schemes here. For the first one, we
predict the audio recording contains cough if cough class
is among the top-5 predictions of the sliding-window
probability-voting results. For the second one, if at least
one window gives a cough prediction among the top-5
predictions, we consider the audio recording has cough. This
approach is taken because CoughVID dataset contains some
silent audio recordings as this is a volunteer crowd-sourced
dataset. Figure 2 (c) shows the results for both schemes by
different input window sizes, we chose 1.5 sec window size
as it gives better performance.

V. HARDWARE ARCHITECTURE DESIGN

The hardware accelerator for the CoughNet framework
illustrated in Figure 2, was designed with the primary
implementation requirements of low utilization overhead,
low power consumption and infrequent memory accesses for
the hardware RTL (Register-Transfer Level) configuration.
The individual modules and the final pipelined architecture
have been elaborated in the following paragraphs.

Convolution module is constructed to perform both 1D
and 2D convolution of the feature space with the help
of sliding filters. The module takes in image pixels as
feature input and filter weights as filter input in the form of
block RAM (BRAMs) memories. It mimics the convolution
operation by moving the filters all over the image space to
isolate spatial features. The module considers the edge cases

of the feature space and performs valid padding. Also, the
capacity of the module is further extended by parallelizing
the filter movement with multiple processing engines. Each
processing engine contains a multiplier along with an adder
to replicate the ReLu activation logic of the convolutional
layers.

Maxpooling module reduces the feature space by
selecting the maximum feature value within a space bounded
by the filter shape. Even though this module does not
perform any computation, it still implements the logic to
extract the maximum feature value by using a comparator
in the design flow. Along with this, the design for this block
also takes care of uniform and non-uniform striding of the
filters to accommodate maxpooling for any given window
shape.

LSTM module performs the time-space processing
of long data sequences and to this extent, the hardware
architecture implements matrix-vector multiplications
showed in [14]. To reduce frequent memory accesses and
high-power overhead, the kernel weights and recurrent
kernel weights use two different memories. Furthermore,
the hardware performs the sigmoid and tanh activation
of these equations to exactly mimic the computational
complexity.

Fully Connected block mirrors the multilayer perceptron
functionality where every input node is connected to
all output nodes. In the hardware RTL, this block is
implemented with ReLu activation logic for specifically
addressed MAC operations.

The complete pipeline of the hardware architectures
includes all these modules discussed above and is illustrated
in Figure 3. The top state machine flow regulates the access
of different memories. First, the convolution layer takes
in M-bit feature and filter data and performs 1D or 2D
convolution. Then, the output of the convolution is written
into the convolution output memory which serves as the
input memory of the maxpooling block to reduce the feature
space size. Output from the maxpooling block in the vein
of a reduced shape is written to the LSTM feature memory.
With the help of the LSTM weights memory, the LSTM
module performs all necessary matrix multiplications to
generate output features and then saves these features in
the LSTM feature memory again. Thus, the LSTM feature
memory becomes the input feature map for the concurrent
fully connected blocks and with weights data coming from
a separate fully connected weights memory, it performs the
relevant MAC operations and generates M-bit output. The
bulk of the computation, in this case, is dedicated to the first
fully connected layer operation. Hence, we reuse the LSTM
feature memory to store the output values from the LSTM
module itself. This allows the design to bypass the use of
a separate memory to store LSTM output values and thus,
the memory overhead is decreased.

TABLE I: Hardware implementation results and comparison with a
previous CNN hardware architecture [9] for cough detection.

Architecture [9] This Work

Application
Cough

Detection
Cough

Detection
FPGA Platform Artix-7 100t Kintex-7 160t
Input Dimension 44100 ×1 101 ×40

Model Size (Kb) 960 933
Computations (MOP) 75.2 0.51
Fixed Point Precision 32-bit 32 bit

Frequency (MHz) 47.6 95
#PE used 8 2 4 8

Latency (ms) 1000 7.52 7.38 7.31
Total Power (mW) 211 284 287 290

Energy (mJ) 211 2.14 2.12 2.12
Performance (GOPS) 0.08 0.07 0.07 0.07
Efficiency (GOPS/W) 0.38 0.25 0.24 0.24

VI. FPGA IMPLEMENTATION AND RESULTS

Our hardware RTL was written in Verilog HDL and
implemented on the Xilinx Kintex-7 160t device using the
Xilinx Vivado 2018.3 tool for synthesis and implementation.
The Kintex-7 160t device was chosen as the target device
since it has 107 mW of static power dissipation which is
suitable for low power embedded device implementation.
Besides, the device also accommodates 325 BRAM slices
of 36 Kb which totals to a memory capacity of 1462 KB.
The hardware RTL includes parallelization only for the
convolution layer to take care of the large feature input.
Corresponding maxpooling, LSTM, and dense layers are
implemented sequentially. The results in Table I indicate
that as the number of processing engines increases, the total
power increases, and the latency goes down. The latency
reduction is a direct result of the parallelization of the
convolution operation. However, the decrease in latency is
not significant for this particular architecture as there is only
one convolution layer and a major portion of the hardware
computation is dedicated to the first fully connected layer
only. With multiple layers of convolution and a small feature
input to the fully connected layers, the latency numbers
would scale logarithmically.

The CNN hardware implementation in [9] uses the same
datasets to detect cough but with an end-to-end CNN
structure. The hardware takes in raw audio waveforms
as feature input in this case which restricts it to have
very high latency. In this work, the raw input waveform
is processed through mel-spectrogram to represent the
short-term power spectrum of the input audios. This allows
the input dimension to go down significantly which is
almost 11× smaller than the input of [9]. As a result, our
framework can run at twice the frequency with a latency
improvement of almost 138×. Finally, our implementation
consumes 2.12 mJ energy which is approximately 100×
the energy consumed in [9]. Our hardware RTL performs
at lower but moderate efficiency when compared to [9].
This stems from the fact that in this work our primary
objective was to reduce computation to ensure low energy
consumption and to utilize the LSTM module for time-space

feature extraction.

VII. CONCLUSION

In this paper, to identify various respiratory symptoms,
we proposed CoughNet, a flexible low power CNN-LSTM
processor that can take audio recordings and detect cough
sounds out of it. We evaluate and use three distinct publicly
accessible databases to detect cough sounds as part of
our experiment. The hardware prototype for CoughNet is
also scalable and reconfigurable to accommodate different
data bitwidth precisions and parallel processing engine
numbers. The proposed implementation of hardware has a
low power consumption of 290 mW and energy consumption
of 2.12 mJ.

VIII. ACKNOWLEDGEMENT

This research is based upon work supported by the
National Science Foundation CAREER Award under Grant
No. 1652703.

REFERENCES

[1] Y. Tokozume and T. Harada, “Learning environmental sounds with
end-to-end convolutional neural network,” in 2017 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP).
IEEE, 2017, pp. 2721–2725.

[2] H.-A. Rashid et al., “A low-power lstm processor for multi-channel
brain eeg artifact detection,” in 2020 21th International Symposium
on Quality Electronic Design (ISQED). IEEE, 2020.

[3] A.Mazumder et al., “An Energy-Efficient low power LSTM processor
for human activity monitoring,” in 2020 IEEE 33rd International
System-on-Chip Conference (SOCC 2020), 2020, in press.

[4] M. Hosseini et al., “A fast method to fine-tune neural networks for the
least energy consumption on fpgas,” in Proceedings of the Hardware
Aware Efficient Training workshop of ICLR 2021, 2021.

[5] M. Khatwani, H.-A. Rashid et al., “A flexible multichannel eeg artifact
identification processor using depthwise-separable convolutional
neural networks,” ACM Journal on Emerging Technologies in
Computing Systems (JETC), 2020.

[6] S. Islam et al., “Fire frontline monitoring by enabling uav-based
virtual reality with adaptive imaging rate,” in 2019 53rd Asilomar
Conference on Signals, Systems, and Computers, 2019, pp. 368–372.

[7] M.Hosseini et al., “Neural networks for pulmonary disease
diagnosis using auditory and demographic information,” in epiDAMIK
2020: 3rd epiDAMIK ACM SIGKDD International Workshop on
Epidemiology meets Data Mining and Knowledge Discovery. ACM,
2020, pp. 1–5, in press.

[8] J. Acharya and A. Basu, “Deep neural network for respiratory
sound classification in wearable devices enabled by patient specific
model tuning,” IEEE transactions on biomedical circuits and systems,
vol. 14, no. 3, pp. 535–544, 2020.

[9] H.Ren et al., “End-to-end scalable and low power multi-modal CNN
for respiratory-related symptoms detection,” in 2020 IEEE 33rd
International System-on-Chip Conference (SOCC 2020), 2020, in
press.

[10] K. J. Piczak, “Esc: Dataset for environmental sound classification,”
in Proceedings of the 23rd ACM international conference on
Multimedia, 2015, pp. 1015–1018.

[11] E. Fonseca et al., “General-purpose tagging of freesound audio
with audioset labels: Task description, dataset, and baseline,” arXiv
preprint arXiv:1807.09902, 2018.

[12] L. Orlandic, T. Teijeiro, and D. Atienza, “The coughvid
crowdsourcing dataset: A corpus for the study of large-scale cough
analysis algorithms,” arXiv preprint arXiv:2009.11644, 2020.

[13] K. J. Piczak, “Environmental sound classification with convolutional
neural networks,” in 2015 IEEE 25th International Workshop on
Machine Learning for Signal Processing (MLSP). IEEE, 2015, pp.
1–6.

[14] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

	ScholarWorksCoverSheetNoLicense
	AICAS_Hasib

