
FPGA-accelerated Agent-Based Simulation
for COVID-19

Lei Fu, Ce Guo and Wayne Luk

Imperial College London, United Kingdom

Email: {lei.fu18, c.guo, w.luk}@imperial.ac.uk

Abstract—Agent-based models (ABMs) can provide realistic
dynamics for epidemics at the individual level so that users can
observe and predict the spreading pattern and the effectiveness of
intervention over time and space. This paper proposes an FPGA-
based accelerator for agent-based epidemic modeling for COVID-
19. The optimizations enabling the effective acceleration of the
simulation procedure are presented. The key idea is to partition
the calculation properly to decouple the on-chip resource usage
from the population size. Also, an algorithmic adaptation is
proposed to reduce the latency caused by conditional branches
within loops. An experimental implementation on an Intel Arria
10 GX 10AX115S2F45I1SG FPGA running at 240MHz achieves
2.2 and 1.9 times speed-up respectively over a CPU reference
using 10 cores on an Intel Xeon Gold 6230 CPU and a GPU
reference on an Nvidia GeForce RTX 2080 Ti GPU.

I. INTRODUCTION

COVID-19 is a highly contagious epidemic that transmits

mainly via respiratory droplets. Decision support systems that

aid people in predicting and intervening in the spread of the

epidemic are in great need. Among modern artificial intelli-

gence techniques, a useful approach to build such decision

support systems is agent-based modeling.

Agent-based modeling is widely used as an AI approach to

analyze stochastic and chaotic systems. Over the last decade,

agent-based models for epidemics have become popular due

to their ability to incorporate individual-level dynamics and

complex interventions. A critical calculation for agent-based

models is the simulation. Given the agents’ setup and their

actions in each time step, the simulation procedure updates

the states of the agents through time. The simulation algorithm

keeps track of each agent and for further analysis.

This paper introduces an FPGA design to accelerate the sim-

ulation of an agent-based model for COVID-19. Specifically,

the design efficiently calculates a key quantity in the simula-

tion process, namely the household force of infection (FOI) in

the CovidSim model [1]–[3]. In the proposed approach, the on-

chip resources usage is independent of the maximum size of

the simulated population. As a result, the approach facilitates

the simulation of large populations. The main contributions of

the paper include:

• A cache mechanism decoupling the on-chip resource

usage from the population size.

• An algorithmic adaptation removing conditioning state-

ments from the simulation procedure.

• An experimental study comparing an FPGA implemen-

tation against a multi-core CPU and a GPU.

II. BACKGROUND

Computational methods to model the spread of epidemics

include deterministic models [4], structured metapopulation

models [5] and agent-based models [3]. Agent-based mod-

els are unique because they can keep track of individuals’

actions, behaviors, and status through time. The individual-

level modeling allows the users to encode information such as

the geological distribution of the population. Besides, agent-

based models allow the users to simulate the scenarios with

human intervention to analyze containment and mitigation

effectiveness.

Accelerated simulation of agent-based models on FPGAs

is challenging in general [6]. Although there have been a

few solutions to accelerate agent-based epidemic models using

CPU and GPU clusters [7], [8], there are only two known

studies on the simulation of epidemics using FPGAs. Both of

them have serious limitations.

The first study is on a design of the Susceptible-Exposed-

Infectious-Removed (SEIR) model [9]. In this approach, each

individual in the population occupies dedicated on-chip re-

sources. An advantage of this approach is that the simulation

of all agents can take place in parallel. However, the on-chip

resource usage grows with the population size. In other words,

the maximum population size depends on the availability of

on-chip resources. For instance, the experimental implemen-

tation in [9] on an Intel Cyclone IV 4CX150 FPGA can only

simulate 140 agents. Practically, an agent-based model usually

has a minimum population size to generate a proper collective

behavior. When the population requires more resources than

the device can offer, it is impossible to simulate the model.

Our proposed design avoids the problem by decoupling the

correlation between the resource usage and the population size.

The second study is a large-scale FPGA-based simulator

based on a space-explicit model [10]. The model comes

from [5] with hardware-oriented adaptations. This design uses

clustering techniques to compute an approximate infection

probability for each individual at each time step. This approx-

imation method allows the information required by the FOI

to fit in limited on-chip memory. As a result, the design can

support a far larger population than the one in [9]. However,

the clustering-based approximation reduces the reliability of

© IEEE 2021. This article is free to access and download, along with rights for full text and data mining, re-use and analysis.

2
0
2
1
 I

E
E

E
 3

rd
 I

n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 A

rt
if

ic
ia

l 
In

te
ll

ig
en

ce
 C

ir
cu

it
s 

an
d
 S

y
st

em
s 

(A
IC

A
S

) 
| 9

7
8
-1

-6
6
5
4
-1

9
1
3
-0

/2
0
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 | 

D
O

I:
 1

0
.1

1
0
9
/A

IC
A

S
5
1
8
2
8
.2

0
2
1
.9

4
5
8
5
7
0



simulation so that the variance of the infected population

over multiple runs is significantly larger than that of the

original model in [5]. Moreover, since the model in [10] is

space-explicit, it requires a geological location model for the

agents. Therefore, the model is difficult to calibrate due to

the randomness of human behavior and the lack of data. Our

proposed design avoids these problems by adopting a well-

studied epidemic model with public-domain software.

III. DESIGN AND IMPLEMENTATION

A. Reference model

The CovidSim [1]–[3] micro-simulation model developed

by MRC centre for Global Infectious Disease Analysis hosted

at Imperial College London is used as software reference.

CovidSim models the transmission dynamics and severity

of COVID-19 throughout a spatially and socially structured

population over time, which also takes intervention policies

and healthcare into account.

The propagation of newly infected cases has been spotted

as the performance bottleneck. This process takes around

85% of total execution time and has been called around

20,000 times for a country with around 10M population. After

detailed analysis on its memory access pattern, it has been

found that the process of selecting infectors mostly follows

a sequential pattern and there is little serial data dependency

during propagation. These features make it a suitable model

reference.

Algorithm 1 shows the abstracted simulation procedure of

each propagation. It can be divided into two components.

The first component calculates the probability of infection for

each individual and decide whom to infect, while the second

component processes through the infection queue generated

and update each individual’s status. The main indicator is

called FOI (force of infection). It is expressed as the product

of two factors: infectiousness and susceptibility. Infectiousness

takes into account their age, place, vaccination status, etc.

Susceptibility indicates a person’s susceptibility to another

person.

Although the design objective is to accelerate the household

FOI for COVID-19, it is possible to use the design in other

fields. For instance, the design requires little modification to

accelerate epidemic simulation with household infections such

as the flu. Also, the essential assumption for the design is that

people with an infectious person in the same household can get

infected. The assumption works in general for places where

people stay together for a significant time, like workplaces and

schools. Therefore, we may extend the proposed approach to

place-related infections in general.

B. Kernel design and implementation

Parameters fed into the kernel include global parameters

for the simulation, records of all individuals and households,

information about institutions that people may belong to and

quarantine status of people.

Algorithm 2 presents the calculations in the kernel. It

first selects the households with more than one non-traveling

Algorithm 1: Abstracted Simulation Procedure

1 foreach infected household hi ∈ Households do
2 infi ← CalculateInfectiousness(hi);
3 if any of the individuals in the selected household

are absent from places then
4 infi ← infi ∗

PlaceCloseHouseholdRelContactConstant;

5 foreach individual pj ∈ hi do
6 if pj is uninfected and not travelling then
7 susj ←

CalculateSusceptibility(hi, infi);
8 FOIj ← infi ∗ susj ;

9 if FOIj > a random float between 0 and 1
then

10 Calculate the generation of infection;

11 Push pj to infection queue;

individual. Then it calculates the infectiousness of the selected

household and scales up the infectiousness of that household if

individuals are absent from their places. After that, it iterates

through all individuals in the household and calculates the

susceptibility and FOI (force of infection) for those who are

not infected.

C. Chunk processing and cache system

One major challenge for processing large usage is the posi-

tive correlation between the usage of on-chip resource and the

population size. Although records for persons and households

are parsed and stored continuously on global memory, the

simulation procedure often includes frequent irregular memory

access when indexing between them, which could dramatically

increase usage of memory blocks and latency of execution.

Fig. 1 shows the memory access pattern between households

and individuals.

To decouple the correlation, one reasonable approach is

to divide parameter arrays into independent chunks. In this

way, each chunk could be cached and processed separately

to minimize communications between on-chip and off-chip

memory. Because of the clustering nature of persons and

households, related statuses are often stored in continuous

spaces and parameter arrays for individuals are often aligned

accordingly with the indexing of their households.

However, the unpredictable pattern of starting index and size

of each cluster makes partitioning infeasible. If individuals

are partitioned into blocks with fixed size, there could be

a magnitude of cache misses, which would cause additional

communications between on-chip and off-chip memory.

A preprocessing routine is therefore proposed to reorganize

parameter arrays. It iterates through all parameters array while

keeping track of the indexing between them. A padding is

added to each cluster, leveraging it to a fixed size. Irregular

indexing would also be detected and mitigated during the



Fig. 1: Memory access pattern between household and person

Fig. 2: Cache system around the calculation component

process. The routine takes O(N) time and O(N) additional

space with a small constant. It would be activated only once

for each simulation procedure. The time complexity of the

simulation is at least O(NT ) where T is the number of time

steps. Therefore, the additional O(N) time for preprocessing

does not change the overall time complexity of the simulation

procedure. On the other hand, the additional space for padding

only increases the off-chip memory usage, while the on-chip

memory usage keeps unchanged.

After regularizing all parameter arrays with individual sta-

tuses, a cache system is implemented with three categories:

global parameter cache, individual status cache and result

cache, as shown in Fig. 2. Fixed size parameters, including the

Age Group Susceptibility and WAIFW (who acquires infection

from whom) matrix, are stored in global parameter cache.

Before processing each chunk, relevant parameters are first

parsed and stored in individual status cache. In this way, all

calculation components are separated from off-chip memory.

The result cache is activated when all possible calculations are

finished for an individual and would be dumped to off-chip

memory after a constant number of chunks are processed.

D. Control flow conversion

Another challenge that limits the performance is the latency

caused by control flows. As the simulation process includes

frequent status checks, there are lots of nested conditional

branches within loops. Those branches cause difficulties for

static optimization and exhaust on-chip logical units.

An algorithmic adaptation is therefore proposed to mitigate

this effect and reduce latency. Instead of justifying whether an

individual should be infected, the target for each simulation

procedure is directed to calculate the probability for one

individual to be infected. FOI is used as the basis for the final

probability. Most conditional branches within loops are thus

converted to arithmetic operations that measure their impact

on the resulting probability.

Algorithm 2: Abstracted Kernel Execution Procedure

1 Store Age Susceptibility and WAIFW matrix in global

parameter cache;

2 foreach chunk of households ci ∈ Households do
3 Store related individual records in individual status

cache;

4 foreach infected household hi ∈ ci do
5 infi ← CalculateInfectiousness(hi);
6 foreach individual pj ∈ hi do
7 infi∗ = (1 + a boolean indicating absence);

8 foreach individual pj ∈ hi do
9 susj ←

CalculateSusceptibility(hi, infi);
10 FOIj ← infi ∗ susj ;

11 Calculate the generation of infection gj ;

12 rj ← FOIj * other related individual

records of pj ;

13 Store rj and gj in result cache;

14 Dump result cache to off-chip memory;

IV. EVALUATION

This section presents an evaluation of an experimental

implementation. We evaluate the accelerator using an FPGA-

based development platform and compare its speed against

CPU and GPU implementations.

A. Experiment setup

We compile and run the hardware design using the FPGA

acceleration platform on the Intel DevCloud. The host has

an Intel Xeon Gold 6230 CPU running at 2.10GHz. The

hardware kernel is developed in OpenCL 1.2. We compile the

kernel using the Intel FPGA SDK for OpenCL 19.4. The CPU

communicates with an Intel Programmable Acceleration Card

(PAC) based on an Arria 10GX 10AX115S2F45I1SG FPGA

built on 20nm technology. In all experiments, we clock the

FPGA at 240MHz. The resource usage of the implementation

is shown in Table I. Since the on-chip resource usage is

independent of the population size, the resource usage stays

unchanged when the population size grows.

We also evaluate and compare the execution time of one

simulation procedure on the CPU and GPU platforms. The



TABLE I: On-Chip Resource Usage

Resource Available Used Used (%)
ALUTs 854400 520166 61%
RAMs 2713 1145 41%

FFs 1708800 300324 30%
DSPs 1518 375 25%

MLABs - 2058 -

CPU and GPU implementations are based on the original

household FOI algorithm. The CPU reference is evaluated on

an Intel Xeon Gold 6230 built on the 10nm process running at

2.10GHz. The GPU software is compiled with NVCC 10.0 and

experimented on one Nvidia GeForce RTX 2080 Ti running at

1545MHz. The GPU has 4352 CUDA cores building on the

12nm process. The GPU kernel is developed with block size

256.

B. Results and discussion

The population size in the experiments ranges from 10

million to 500 million. We record the execution times (T) in

milliseconds for the FPGA, 1-core CPU, 10-core CPU, and

GPU implementations respectively in columns 2–5 in Table II.

In addition to the raw execution times, we present the speed-

up (SU) of the FPGA over other implementations in columns

6–8. The implementation on the FPGA platform achieves at

most 2.3 (on average 2.2) times speed-up against 10 Intel Xeon

Gold 6230 CPU cores, and up to 2.0 (on average 1.9) times

speed-up against the Nvidia GeForce RTX 2080 Ti GPU.

TABLE II: Evaluation Result

Pop. T (ms) T (ms) T (ms) T (ms) SU SU SU
Size FPGA 1C 10C GPU 1C 10C GPU
10M 76 1241 174 123 16.3 2.3 1.6
20M 147 2432 310 261 16.5 2.1 1.8
30M 216 3717 459 405 17.2 2.1 1.9
40M 287 4958 627 533 17.2 2.2 1.9
50M 357 6395 783 684 17.9 2.2 1.9
60M 428 7449 853 859 17.4 2.0 2.0
70M 498 8674 1109 937 17.4 2.2 1.9
80M 570 10032 1290 1129 17.6 2.3 2.0
90M 639 11178 1432 1199 17.4 2.2 1.9

100M 709 13987 1613 1310 19.7 2.3 1.8
200M 1414 28566 3129 2754 20.1 2.2 1.9
500M 3588 70935 7762 7192 19.7 2.2 2.0

The software on Nvidia GeForce RTX 2080 Ti GPU

achieves around 10 times speed-up against single Intel Xeon

Gold 6230 CPU core. The main bottleneck for the GPU soft-

ware is the latency of data transfer for very large population

size. It can also be observed that the speed-up number does

not change much with the population size, as for very large

population, the execution times for all platforms are almost

directly proportional to population size. Another main obser-

vation is that current bottleneck for FPGA implementation is

ALUTs. It can be reasonably estimated that higher throughput

and speed-up number can be achieved when there are more

bottleneck resources. Besides, there is a non-negligible gap

in the speedup over one CPU core. The speedup grows from

17.4 to 19.7 when the population size increase from 90M to

100M. We are not sure about the cause of the gap, but it

is probably because the large population size disables some

memory optimizations for the CPU code.

V. CONCLUSION AND FUTURE WORK

Agent-based modeling is a useful decision support tool

for epidemics. This paper presents a way to speed up the

household FOI evaluation in the CovidSim. Source-level op-

timizations for the hardware architecture include data caching

and control flow adaption. An implementation of the proposed

accelerator on an Intel Arria 10GX FPGA achieves 2.2 and 1.9

times speed-up respectively over a CPU reference using 10

cores on an Intel Xeon Gold 6230 CPU and a GPU reference

on an Nvidia GeForce RTX 2080 Ti GPU.

A direction of future work is to extend our approach to

cover realistic models targeting multiple hardware accelera-

tors, and providing effective support to enable its adoption

by epidemiologists. Also, since the simulation time depends

on the throughput, we mainly optimize the throughput for the

proposed design. A direction of future work is to optimize

other aspects, including latency and power consumption.

ACKNOWLEDGEMENT

The support of UK EPSRC (grant number EP/L016796/1,

EP/I012036/1, EP/L00058X/1, EP/N031768/1 and

EP/K034448/1) and Intel is gratefully acknowledged.

REFERENCES

[1] N. M. Ferguson, D. A. Cummings, S. Cauchemez, C. Fraser, S. Riley,
A. Meeyai, S. Iamsirithaworn, and D. S. Burke, “Strategies for contain-
ing an emerging influenza pandemic in southeast asia,” Nature, vol. 437,
no. 7056, pp. 209–214, 2005.

[2] M. E. Halloran, N. M. Ferguson, S. Eubank, I. M. Longini, D. A.
Cummings, B. Lewis, S. Xu, C. Fraser, A. Vullikanti, T. C. Germann,
et al., “Modeling targeted layered containment of an influenza pandemic
in the United States,” Proceedings of the National Academy of Sciences,
vol. 105, no. 12, pp. 4639–4644, 2008.

[3] N. M. Ferguson, D. A. Cummings, C. Fraser, J. C. Cajka, P. C. Cooley,
and D. S. Burke, “Strategies for mitigating an influenza pandemic,”
Nature, vol. 442, no. 7101, pp. 448–452, 2006.

[4] J. M. Carcione, J. E. Santos, C. Bagaini, and J. Ba, “A simulation of a
covid-19 epidemic based on a deterministic seir model,” arXiv preprint
arXiv:2004.03575, 2020.

[5] M. Ajelli, B. Gonçalves, D. Balcan, V. Colizza, H. Hu, J. J. Ramasco,
S. Merler, and A. Vespignani, “Comparing large-scale computational ap-
proaches to epidemic modeling: agent-based versus structured metapop-
ulation models,” BMC infectious diseases, vol. 10, no. 1, p. 190, 2010.

[6] J. Xiao, P. Andelfinger, D. Eckhoff, W. Cai, and A. Knoll, “A survey on
agent-based simulation using hardware accelerators,” ACM Computing
Surveys (CSUR), vol. 51, no. 6, pp. 1–35, 2019.

[7] P. Zou, Y.-s. Lü, L.-D. Wu, L.-l. Chen, and Y.-P. Yao, “Epidemic
simulation of a large-scale social contact network on GPU clusters,”
Simulation, vol. 89, no. 10, pp. 1154–1172, 2013.

[8] C. L. Barrett, K. R. Bisset, S. G. Eubank, X. Feng, and M. V. Marathe,
“EpiSimdemics: an efficient algorithm for simulating the spread of infec-
tious disease over large realistic social networks,” in SC’08: Proceedings
of the 2008 ACM/IEEE Conference on Supercomputing, pp. 1–12, IEEE,
2008.

[9] T. Gao, “FPGA of acceleration of stochastic simulation,” Master’s thesis,
Cornell University, 2014.

[10] C. Guo, W. Luk, and S. Weston, “Accelerating simulation for agent-
based epidemic models using fpgas,” in 2020 IEEE/ACS 17th Interna-
tional Conference on Computer Systems and Applications (AICCSA),
pp. 1–8, IEEE, 2020.


