
PREPRINT - accepted In Proceedings of the 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS ’22)

X-Fault: Impact of Faults on Binary Neural
Networks in Memristor-Crossbar Arrays with

Logic-in-Memory Computation
Felix Staudigl∗, Karl J. X. Sturm∗, Maximilian Bartel∗, Thorben Fetz∗,

Dominik Sisejkovic∗, Jan Moritz Joseph∗, Leticia Bolzani Pöhls†, and Rainer Leupers∗
∗ Institute for Communication Technologies and Embedded Systems, RWTH Aachen University, Germany

† Chair of Integrated Digital Systems and Circuit Design, RWTH Aachen University, Germany
{staudigl, sturm, bartel, fetz, sisejkovic, joseph, leupers}@ice.rwth-aachen.de

poehls@ids.rwth-aachen.de

Abstract—Memristor-based crossbar arrays represent a promis-
ing emerging memory technology to replace conventional mem-
ories by offering a high density and enabling computing-in-
memory (CIM) paradigms. While analog computing provides the
best performance, non-idealities and ADC/DAC conversion limit
memristor-based CIM. Logic-in-Memory (LIM) presents another
flavor of CIM, in which the memristors are used in a binary
manner to implement logic gates. Since binary neural networks
(BNNs) use binary logic gates as the dominant operation, they can
benefit from the massively parallel execution of binary operations
and better resilience to variations of the memristors. Although
conventional neural networks have been thoroughly investigated,
the impact of faults on memristor-based BNNs remains unclear.
Therefore, we analyze the impact of faults on logic gates in
memristor-based crossbar arrays for BNNs. We propose a sim-
ulation framework that simulates different traditional faults to
examine the accuracy loss of BNNs on memristive crossbar arrays.
In addition, we compare different logic families based on the
robustness and feasibility to accelerate AI applications.

Index Terms—ReRAM, memristor, faults, reliability, logic-in-
memory

I. INTRODUCTION

Non-volatile memories (NVMs) such as resistive RAM
(ReRAM) offer advantages over conventional RAMs in terms
of density, power consumption, and computing-in-memory
(CIM) capabilities. CIM is most promising to address the von
Neumann bottleneck by reducing data exchange, thus address-
ing the limitations of memory-bound AI accelerators [1], [2].

Several architectures using ReRAM have been proposed for
CIM-based AI [3]. These accelerators use analog computing on
ReRAM crossbars by utilizing Kirchhoff’s law (Fig. 1a). While
this approach promises power and latency benefits, in practice,
many architectures are limited by (1) inefficient analog-to-
digital conversion or vice versa, and (2) the low resilience to
faults in analog computing. The former is caused by ADC/DAC
drawing large amounts of power [3]. The latter results from
stored values being altered by write and read accesses [4], [5].

Logic-in-memory [6] is an orthogonal method to analog CIM
that does not suffer from the mentioned limitations. It uses
binary vectors stored in crossbar columns. Two columns are
combined with given logic operations, and the result is stored

This work was funded by the Federal Ministry of Education and Research
(BMBF, Germany) in the project NEUROTEC II (16ME0398K, 16ME0399).

a)

DAC

DAC

DAC

DAC

S&H S&H S&H S&H

ADC

Shift & Add
b)

G
at

e
a

G
at

e
b

G
at

e
c

G
at

e
d

INa,1 INa,2

INb,1 INb,2

INc,1 INc,2

INd,1 INd,2

OUTa

OUTb

OUTc

OUTd

Fig. 1: Comparison of CIM paradigms: (a) Kirchhoff-based
analog CIM, and (b) binary logic-in-memory.

in a third column (Fig. 1b) [7]. This method is less error-
prone, as only two states (high and low resistive) are stored,
and expensive ADCs/DACs are not required [6]. Despite worse
latency and density compared to analog CIM, LIM effectively
accelerates AI applications in memory [8]. Nevertheless, LIM
still suffers from faults caused by immature technology [4],
including both traditional and unique faults. Traditional faults
are represented by conventional fault models prevalent in
CMOS-based memories. Unique faults are emerging faults
associated with memristive devices [9]. Despite their impact
on individual memristors, faults might be acceptable for AI
workloads if accuracy is not significantly reduced. This effect
is well understood for analog computing [10] but not for LIM.

Contributions: We present the first thorough investigation
of the impact of traditional faults on binary logic families.
Thereby, we measure the resilience of binary logic families
based on two introduced metrics. Furthermore, we propose X-
Fault, an end-to-end mapping and simulation framework for
binary neural networks (BNNs) using LIM in ReRAM.

II. BACKGROUND

A. Related Work

Previous work investigated non-idealities in memristive
crossbars and their impact on CIM [11], [12]. Various simula-

ar
X

iv
:2

20
4.

01
50

1v
1

 [
cs

.E
T

]
 4

 A
pr

 2
02

2

PREPRINT - accepted In Proceedings of the 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS ’22)

CrossbarLARQ Library Mapping

Model

Constrains

XNOR

Native execution

Simulator

Faults

C
on

tro
lle

r XBar XBar XBar

XBar XBar XBar

XBar XBar XBar

Fig. 2: X-Fault’s end-to-end simulation workflow.

tion frameworks have been proposed to investigate the impact
of faults on machine learning applications. Chakraborty et
al. [13] presented a generalized approach to simulate neural
networks on faulty memristive crossbars. The framework can
simulate linear and non-linear non-idealities at architectural
level. He et al. [14] proposed an end-to-end neural network
tool that builds upon PyTorch. The tool takes into account the
non-ideal effects of crossbars and adjusts mapping and training
to drastically limit the impact of errors. The existing research
has focused on analog-based CIM without exploiting binary
logic families mapped to the memristive crossbar.

B. Binary Neural Networks (BNNs)

BNNs emerged as a promising low-power, low-cost, and
reduced accuracy approach using aggressive quantization [15].
This method is particularly promising to deploy deep neural
networks to resource-constrained devices, such as on the edge.
The accuracy of BNNs is not on par with its less-quantized
counterparts. This limitation is an unsolved challenge for to-
day’s complex datasets. However, simple classification tasks
can achieve competitive performance. Table 2 in [15] reports
up to 98.4% accuracy for the MNIST dataset using an MLP,
but accuracy drops to 40% for Imagenet using VGG. Due
to the low area and power cost of BNNs, an ecosystem of
commercial tools recently emerged. For example, the Larq li-
brary [16] provides reference implementations and functions for
training and deploying BNNs. In a BNN, the basic arithmetic
scheme of convolutions in neural networks—the matrix-matrix-
multiplication—is equivalent to an XNOR operation between
two single-bit precision vectors. This arithmetic relation maps
directly to LIM for memristive crossbars. Hence, a BNN is
currently a preferred operation mode for neuromorphic devices
using ReRAM in edge applications. While convolutional and
dense layers can be represented as XNOR operations, and there-
fore executed on ReRAMs, this is not the case for other, non-
binary operations. We decided to take a conservative approach,
in which other operations (e.g., integer bit-count operations
after each layer) are executed in CMOS in the hardware model.

C. LIM families on Memristive Crossbars

As stated in the introduction, memristive crossbars can be
used in an analog or LIM fashion. We investigate LIM as it
trades higher error resilience and reduced ADC/DAC overhead
with lower power density and higher latency. In LIM, the logi-
cal state (0 or 1) is represented as a high or low resistive value
programmed in a memristor. A set of memristors are operating

together for any logical operation to build a certain logic gate.
An operation voltage is applied for a logical operation between
two inputs. It is modulated by the state of the input memristors
and applied to the output memristor. This voltage alters the state
of the output memristor. Logic families have been classified
into three categories: statefulness, proximity of computation,
and flexibility [17]. Within the scope of this work, we focus
on MAGIC [7] and IMPLY [18], which define basic logic
operations. A full set of operations can be defined by daisy-
chaining the basic ones. Fig. 3a illustrates the basic operations
(OPs) supported by the logic families. To compute the inference
of a BNN, we extend the basic OPs towards more sophisticated
OPs, including the dominant XNOR operation.

III. SIMULATION METHODOLOGY

X-Fault’s end-to-end workflow is presented in Fig. 2. The
input to the flow is a user-defined BNN model in the Larq
library [16] in Tensorflow. X-Fault iterates the BNN, maps
XNOR-compatible operations to the memristive crossbar sim-
ulator, and executes the remainder of the model in native
Tensorflow (representing CMOS logic next to a crossbar).

Mapping: X-Fault’s mapping tool brings convolutional and
dense layers of a BNN to a crossbar of a given size. The
mapper takes the kernel values from a BNN Tensorflow model
and generates crossbar write, read, and logic instructions. It
tracks if partial kernels fit on the remaining places to minimize
write operations. We apply a linear mapping that iterates the
BNN layerwise. The mapper writes all instructions as a binary
file containing memory addresses of kernels and values, plus
required logic operations.

Simulator: The simulator implements a memory controller
that parses the given binary file from the mapping tool and
provides the parameterized crossbars with the kernels and input
values. The controller executes the logic operations of the logic
families. The simulator tracks the resulting pulses applied to
the respective bit and word lines for each crossbar access (read,
write, and compute operation). The tracking information is used
to trigger the currently active fault models.

Crossbar: The crossbar module implements a memristive
crossbar array including a set of fault models. We focused
on the conventional fault models, which are detailed in [9],
[19]. The crossbar consists of memristors with binary states
that connect the respective bit with word lines. Each memristor
can be assigned with one of the following fault models:

PREPRINT - accepted In Proceedings of the 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS ’22)

MAGIC IMPLY

OR

NOR NIMP IMPLY FALSE

XNOR XOR AND

NAND OR NOR

XNOR

XOR AND

NAND

Logic family

Logic gates

Extended
gates

NOT

(a)

IMPLY MAGIC
mem # cycle # mem # cycle

AND 3 4 5 9
IMP 2 1 / /

NAND 3 3 5 12
NOR 3 5 3 1
NOT 2 2 / /
OR 3 3 3 1

XNOR 4 6 4 6
NIMP / / 3 1
XOR 4 5 3 3

(b)

Fig. 3: Simulation methodology: (a) overview of basic operations and the extended logic gates, and (b) number of memristive
devices and required clock cycles of the implemented logic families.

• Stuck-at-Fault (SAF) is modeled as a constant resistive
value of the memristor, which is either the high resistive
state (HRS) or the low resistive state (LRS).

• Read-Distructive-Fault (RDF) flips the current state of
the memristive cell and returns a correct value.

• Deceptive Read Destructive Fault (DRDF) alters the
current state of the cell but returns the incorrect value.

• Incorrect Read Fault (IRF) does not change the cell state
but returns an incorrect value.

• Slow Write Fault (SWF) does not successfully write the
cell, and hence returns the unmodified value.

The fault models are randomly assigned to a certain percent-
age of all instantiated memristors, defined as the injection rate.
To better understand the resilience of faults on the functional
behavior of logic families, we introduce two new metrics. The
Quality of Logic (QoL) is defined for a single fault model as

QoL =

G−1∑
i=0

Λ

Ω
· 100%, (1)

where G is the number of gate types, Λ the total number of
faulty outputs, and Ω the number of all outputs. QoL implies
how well the entire set of supported logic gates performs when
affected by a certain fault. The Impact of Fault (IoF) is defined
for a single gate type as

IoF =

F−1∑
i=0

Λ

Ω
· 100%, (2)

where F is the number of fault types. IoF indicates the impact
of all faults on a single logic gate. These two metrics are
calculated on the basis of the information provided in Table 3b,
which shows the required number of memristors and the
resulting cycle count of each logic gate.

IV. RESULTS AND DISCUSSION

In this section, we validate the simulation framework and
investigate the robustness of two available logic families with
respect to a sub-set of traditional faults. Furthermore, we
investigate the fault impact on the accuracy of a BNN.

Table 4a and Table 4b illustrate the simulation results of
logic gates versus the injected faulty behavior. The analysis

is based on the execution of single operations of all possible
input values and initial values of all memristive devices. As an
example, the NOT gate of the IMPLY logic family uses two
distinct memristors (Table 3b). The memristors are initialized
with the patterns [(0,0), (1,0), (0,1), (1,1)], and the inputs 0 and
1 are supplied. The shown percentages represent the number
of wrong outputs and are visualized with a heat map, which
indicates that a reduced number of faults was propagated at
logic level, affecting the functional behavior of the logic family.
Note that coupling faults have not been considered in this first
set of experiments because they require two or more consec-
utive accesses. Both QoL and IoF are calculated and shown
in the last row and column of both tables, respectively. The
OR gate performs the best in terms of resilience for both logic
families, with an IoF of 31% (IMPLY) and 30% (MAGIC). The
calculated QoL indicates that RDF has the least impact on logic
gates, while the DRDF has a high impact. In addition, the worst
logic gate in terms of fault resilience is the NOT (IMPLY) and
the XOR gate (MAGIC). In general, the experiment shows that
both logic families perform equally well considering the similar
QoL and IoF values. However, architectural design decisions
can be optimized based on the resilience towards certain fault
models. For instance, the designer should favor the IMPLY
implementation of the NAND gate with an IoF of 34% over
the MAGIC implementation with an IoF of 45%.

Next, we perform a preliminary experiment with the full
simulation framework to investigate the impact on a BNN
during inference. We use a BNN model from the LARQ library
examples [16] and train it with the MNIST dataset [20]. Within
the scope of this work, only a preliminary simulation was
performed, using a subset of the test data set for the inference.
Each configuration has been executed twenty times to eliminate
the effects resulting from the randomly placed errors based on
the given injection rate. Fig. 4c and Fig. 4d illustrate the impact
of the injected faults on the accuracy of the BNN. Independent
of the chosen logic family, it can be observed that already low
injection rates significantly reduce the accuracy of the BNN.
Furthermore, the accuracy reaches a plateau at around 15%,
independent of the logic family. We observe that the SWFset
and SWFreset reduce the accuracy to roughly 20% for the
MAGIC version, independent of the injection rate.

PREPRINT - accepted In Proceedings of the 4th International Conference on Artificial Intelligence Circuits and Systems (AICAS ’22)

SAF RDF DRDF IRF IoF
AND 42% 42% 39% 42% 38%
IMP 38% 25% 50% 50% 34%

NAND 33% 25% 58% 42% 34%
NOR 42% 42% 33% 42% 37%
NOT 50% 50% 75% 50% 48%
OR 33% 25% 42% 42% 31%

XNOR 44% 38% 44% 50% 41%
QoL 40% 35% 49% 45%

(a)

SAF RDF DRDF IRF IoF
AND 35% 25% 35% 43% 31%
NIMP 33% 29% 67% 38% 34%
NAND 45% 28% 60% 60% 45%
NOR 44% 38% 33% 42% 36%
XOR 50% 75% 50% 38% 46%
OR 34% 27% 40% 40% 30%

XNOR 44% 38% 44% 50% 40%
QoL 41% 37% 47% 44%

(b)

1 5 10 15 20 25 30

10
20
30
40
50
60
70
80
90

100

Injection rate (%)

A
cc

ur
ac

y
(%

)

SAF DRDF IRF RDF
SWFreset SWFset AVG

(c)

1 5 10 15 20 25 30

10
20
30
40
50
60
70
80
90

100

Injection rate (%)

A
cc

ur
ac

y
(%

)

SAF DRDF IRF RDF
SWFreset SWFset AVG

(d)

Fig. 4: Simulation results: Impact of faults on (a) the IMPLY logic family and (b) the MAGIC logic family. Effect of injection
rate on the BNN inference accuracy for (c) IMPLY and (d) MAGIC.

V. CONCLUSION

This work investigated the impact of a sub-set of traditional
faults on the logic-in-memory paradigm in general and on the
accuracy of BNNs in particular. We developed an end-to-end
simulation framework that maps the XNOR operations of an
arbitrary Tensorflow model onto memristive crossbar arrays.
In addition, the crossbar includes different faults randomly
injected into the memristive devices. The results show that
faults on memristive crossbar arrays significantly impact their
functionality. Furthermore, a comparison of two logic families
based on their fault resilience is facilitated by introducing
two novel metrics. In future work, we plan to run extensive
simulations with different models and data sets. In addition,
we intend to expand the framework by including memristor-
specific faults as well as the implementation of other logic
families.

REFERENCES

[1] F. Staudigl et al., “A survey of neuromorphic computing-in-memory:
Architectures, simulators and security,” IEEE Design Test, pp. 1–1, 2021.

[2] J. M. Joseph et al., NEWROMAP: Mapping CNNs to NoC-Interconnected
Self-Contained Data-Flow Accelerators for Edge-AI. New York, NY,
USA: Association for Computing Machinery, 2021, p. 15–20. [Online].
Available: https://doi.org/10.1145/3479876.3481591

[3] A. Ankit et al., “PUMA: A programmable ultra-efficient memristor-based
accelerator for machine learning inference,” in ASPLOS. IEEE, 2019.

[4] P. Liu et al., “Fault modeling and efficient testing of memristor-based
memory,” TCAS I, vol. 68, no. 11, pp. 4444–4455, 2021.

[5] F. Staudigl et al., “NeuroHammer: Inducing bit-flips in memristive
crossbar memories,” arXiv preprint arXiv:2112.01087, 2021.

[6] P.-E. Gaillardon et al., “The programmable logic-in-memory (PLiM)
computer,” in DATE. IEEE, 2016.

[7] S. Kvatinsky et al., “MAGIC—Memristor-aided logic,” TCAS II, vol. 61,
no. 11, pp. 895–899, 2014.

[8] G. Papandroulidakis et al., “Crossbar-based memristive logic-in-memory
architecture,” TNano, vol. 16, no. 3, pp. 491–501, 2017.

[9] M. Fieback et al., “Testing resistive memories: Where are we and what
is missing?” in 2018 IEEE International Test Conference (ITC), 2018.

[10] M. J. Rasch et al., “A flexible and fast PyTorch toolkit for simulating
training and inference on analog crossbar arrays,” in AICAS, 2021.

[11] S. Kannan et al., “Modeling, detection, and diagnosis of faults in
multilevel memristor memories,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 2015.

[12] Y.-X. Chen et al., “Fault modeling and testing of 1t1r memristor memo-
ries,” in 2015 IEEE 33rd VLSI Test Symposium (VTS), 2015, pp. 1–6.

[13] I. Chakraborty et al., “Geniex: A generalized approach to emulating
non-ideality in memristive xbars using neural networks,” in 2020 57th
ACM/IEEE Design Automation Conference (DAC), 2020, pp. 1–6.

[14] Z. He et al., “Noise injection adaption: End-to-end reram crossbar
non-ideal effect adaption for neural network mapping,” in 2019 56th
ACM/IEEE Design Automation Conference (DAC), 2019, pp. 1–6.

[15] H. Qin et al., “Binary neural networks: A survey,” Pattern Recognition,
vol. 105, p. 107281, 2020.

[16] L. Geiger et al., “Larq: An open-source library for training binarized
neural networks,” Journal of Open Source Software, vol. 5, no. 45, p.
1746, Jan. 2020. [Online]. Available: https://doi.org/10.21105/joss.01746

[17] J. Reuben et al., “Memristive logic: A framework for evaluation and
comparison,” in 2017 27th PATMOS, 2017.

[18] S. Kvatinsky et al., “Memristor-based material implication (IMPLY)
logic: Design principles and methodologies,” TVLSI, 2013.

[19] P. Liu et al., “Fault modeling and efficient testing of memristor-based
memory,” IEEE Transactions on Circuits and Systems I: Regular Papers,
vol. 68, no. 11, pp. 4444–4455, 2021.

[20] Y. LeCun et al., “Gradient-based learning applied to document recogni-
tion,” Proceedings of the IEEE, vol. 86, no. 11, pp. 2278–2324, 1998.

https://doi.org/10.1145/3479876.3481591
https://doi.org/10.21105/joss.01746

	I Introduction
	II Background
	II-A Related Work
	II-B Binary Neural Networks (BNNs)
	II-C LIM families on Memristive Crossbars

	III Simulation Methodology
	IV Results and Discussion
	V Conclusion
	References

