
1

Navigating Local Minima in Quantized Spiking
Neural Networks

Jason K. Eshraghian*, Corey Lammie*, Mostafa Rahimi Azghadi, and Wei D. Lu

Abstract—Spiking and Quantized Neural Networks (NNs) are
becoming exceedingly important for hyper-efficient implementa-
tions of Deep Learning (DL) algorithms. However, these networks
face challenges when trained using error backpropagation, due to
the absence of gradient signals when applying hard thresholds.
The broadly accepted trick to overcoming this is through the
use of biased gradient estimators: surrogate gradients which ap-
proximate thresholding in Spiking Neural Networks (SNNs), and
Straight-Through Estimators (STEs), which completely bypass
thresholding in Quantized Neural Networks (QNNs). While noisy
gradient feedback has enabled reasonable performance on simple
supervised learning tasks, it is thought that such noise increases
the difficulty of finding optima in loss landscapes, especially
during the later stages of optimization. By periodically boosting
the Learning Rate (LR) during training, we expect the network
can navigate unexplored solution spaces that would otherwise
be difficult to reach due to local minima, barriers, or flat
surfaces. This paper presents a systematic evaluation of a cosine-
annealed LR schedule coupled with weight-independent adaptive
moment estimation as applied to Quantized SNNs (QSNNs). We
provide a rigorous empirical evaluation of this technique on
high precision and 4-bit quantized SNNs across three datasets,
demonstrating (close to) state-of-the-art performance on the more
complex datasets. Our source code is available at this link:
https://github.com/jeshraghian/QSNNs.

Index Terms—Deep learning, quantization, spiking neural
networks, scheduling

I. INTRODUCTION

LOW-POWER implementations of NNs are essential for op-
eration on portable, edge devices [1]–[3]. Most resource-

constrained algorithmic options either reduce memory usage or
memory access frequency. As one example, QNNs compress
the possible parameter space, such that weights are represented
with limited resolution, reducing resource requirements [4]–
[7]. As another example, SNNs take inspiration from biologi-
cal neurons, which communicate via voltage spikes. Spikes
may coarsely be treated as binary events, where a spike
either occurs, or it does not [8]. This is represented using
binarized activations: an activation of ‘1’ trades the multiply
step with memory read-out, and ‘0’ simply bypasses the
need for memory access. This strict limitation is offset by
representing information in the time domain rather than the

J. K. Eshraghian and W. D. Lu are with the Department of Electrical
Engineering and Computer Science, University of Michigan, Ann Arbor,
Michigan 48109, USA. J. K. Eshraghian is also with the Department of Com-
puter Science and Software Engineering, The University of Western Australia,
Crawley, WA 6009, Australia. (e-mail: {jasonesh, wluee}@umich.edu).

C. Lammie and M. R. Azghadi are with the College of Science and
Engineering, James Cook University, Queensland 4814, Australia. (e-mail:
{corey.lammie, mostafa.rahimiazghadi}@jcu.edu.au).

*J. K. Eshraghian and C. Lammie contributed equally to this manuscript.

η1·∇ℒw

η1

η2

η2·∇ℒw

Lo
ss

 (
ℒ

) Loss (ℒ
)

Weight

In
iti

al

F
in

al
1

F
in

al
2

Le
ar

ni
ng

 R
at

e
(η

)

Training Iteration
(a) (b)

Fig. 1. Periodic scheduling can enable SNNs to overcome flat surfaces and
local minima. (a) When the LR is boosted during training using a cyclic
scheduler, it is given another chance to reduce the loss with different initial
conditions. (b) Loss evolution across training iterations. While the loss appears
to converge, subsequent LR boosting enables it to traverse more optimal
solutions.

binarized amplitude, i.e., when the spike is triggered, rather
than what value the spike is [9].

QSNNs offer orders of magnitude of power and latency
improvement over full precision networks, but several approx-
imations must be made during training before implementation
using neuromorphic hardware [10]–[16]. These approxima-
tions are applied during weight compression and gradient
calculation to enable error backpropagation. While NNs are
error tolerant to a degree, noise (e.g., quantization noise) often
slows training convergence [17], [18], or leads to suboptimal
solutions if weights become stuck in absence of informative
error signals [19], [20]1. QSNNs are especially susceptible to
becoming stuck at suboptimal barriers and local minima during
training, at excessive distance from the Bayes optimal error. A
large LR leads to large weight changes at the risk of jumping
over ideal solutions, but may also be required to traverse across
flat loss surfaces in later stages of training (Fig. 1(a)).

When training QSNNs, we show the use of a periodic
cosine-annealed LR schedule [25] when coupled together with
weight-independent adaptive decay [26], as depicted in Fig. 1,
outperforms alternative, more commonly adopted schedules.
By periodically boosting the LR at repeated intervals, this
can be thought of as providing the network with another
chance to search for a more optimal solution with potentially
improved initial conditions. Although large learning rates may
lead to divergence, early stopping with sufficient patience
allows the network to revert back to a previous optimal state.
We provide a rigorous empirical analysis across three datasets

1Non-systematic noise has been used to speed up convergence by overcom-
ing saddle points/local minima [21]–[23], and also as a ‘pseudo-regularizer’
to prevent overfitting [24], though demonstrations are limited to simple tasks.

ar
X

iv
:2

20
2.

07
22

1v
1

 [
cs

.L
G

]
 1

5
Fe

b
20

22

https://github.com/jeshraghian/QSNNs

2

ranging from simple to increasingly difficult: MNIST [27],
FashionMNIST [28], and DVS128 Gesture [29].
Our specific contributions are as follows:

1) Our baseline SNNs perform competitively against previ-
ously reported results, without exotic techniques which
increase memory and computational complexity;

2) Our approach is tested on high precision SNNs, and 4-
bit QSNNs, which are systematically compared against
networks trained without scheduling, and with step de-
cay, and loss-dependent schedules;

3) Using annealed scheduling, we achieve the best per-
formance for the FashionMNIST and DVS128 Ges-
ture datasets when compared to other more commonly
adopted schedules. Performance degradation when quan-
tizing weights is also less to hyperparameters associated
with non-periodic schedules.

Furthermore, our empirical analysis across various datasets
and hyperparameter sweeps provides insight into how QSNNs
react to different optimization conditions and noise sources
(e.g., dropout, surrogate gradients).

II. BACKGROUND AND RELATED WORK

A. Spiking Neuron Model

The spiking neuron model used is a single-state leaky
integrate-and-fire neuron governed by the discrete-time dy-
namics:

ujt+1 = βujt +
∑
i

wijzit − z
j
t θ, (1)

zjt =

{
1, if ujt > θ

0, otherwise,
(2)

which is derived using the forward Euler method to solve the
continuous-time representation [30]. Here, ujt is the hidden
state (membrane potential) of neuron j at time t; β is the
membrane potential decay rate; wij is the synaptic weight
between neurons i and j; and the final term of (1) resets the
state by subtracting the threshold θ each time an output spike
zjt ∈ {0, 1} is generated.

B. Hard Thresholds in QSNNs

The sources of approximation in calculating the gradients
of QNNs and SNNs are quite similar [31]. SNNs apply a
hard threshold to a neuron’s hidden state to generate a spike
(2), and QNNs apply a threshold to full precision weights
to obtain fixed precision integers. Hard thresholds are non-
differentiable, which null out gradient signals. Consequently,
current best practices employ approximations that calculate
biased gradient estimators during the backward pass. To solve
the non-differentiability of SNNs, training SNNs broadly use
surrogate gradients that ‘smooth’ the thresholding function
during training [32]–[34]. Addressing the non-differentiability
of quantization uses STEs, which simply bypasses the thresh-
old operator in quantization-aware training schemes [35]–[39].
High precision weights are used to accumulate surrogate (ap-
proximate) gradients in backpropagation, while the quantized

weights are used in the forward-pass. To formalize, let wr be
the full precision proxy for the quantized weight wq:

∂wq

∂wr
= 1. (3)

However, an infinitesimally small change of a high precision
weight will not always change the quantized weight, nor will
it always trigger a change of spiking activity2. There is a
risk that the effect of weight updates are absorbed into the
subthreshold dynamics of spiking neurons, which causes the
loss at the output to become identical across training iterations.
Put succinctly, QSNNs are effectively more challenging to
train than conventional NNs.

C. Mitigating the Impact Of Quantization in QNNs

Existing mitigation techniques require additional memory
or increased computational complexity during training [40].
Specific methods include taking the loss as a function of
a continuous variable rather than single-bit spikes, such as
spike time [41], or membrane potential [42]. Such methods
hold much potential when the cost of feedforward inference
outweighs the importance of the training step.

In our experiments, we avoid the modification of neuron
models, or any other technique that is not common practice
in DL, to avoid adding overhead at runtime. Specifically,
we constrain our analysis to only make modifications to the
evolution of the LR across training iterations together with an
extensive hyperparameter search.

D. Periodic LR Schedules

The most broadly used strategy for adjusting the LR is
exponential decay [43]. For example, He et al. apply a step
decay at a rate of 0.1/30 epochs. Recently, cosine annealing
has shown superior performance where the LR follows a
half cosine curve [25], [44]. LR restarts can encourage the
model to move from one local minimum to another, with
the expectation that it allows the model to explore uncharted
regions of the solution space, and therefore lead to a more
accurate result. This may be especially important in networks
that are susceptible to becoming stuck in sub-optimal regions,
such as QSNNs. We compute the LR, ηt, in our experiments
using the following scheduler inspired by [25], [44]:

ηt =
1

2
η
(
1 + cos

(πt
T

))
, (4)

where η is the initial LR, t is the iteration, and T is the
period of the schedule. Several prior works have used cosine-
based scheduling to train SNNs via error backpropagation,
where its use is typically incidental to proposing alternative
novel methods to train networks. For example, Refs. [45] and
[46] apply periodic scheduling to strided sparse convolutional
SNNs and spike-time based learning rules, respectively, both
to highly competitive results. We aim to decouple the effect of
emerging training algorithms from that of best deep learning

2One caveat is that spike timing may be modified for certain neuron models,
e.g., spike response models [9]. We focus here on spiking neuron models with
discontinuous state-changes.

3

Le
ar

ni
ng

 R
at

e
(η

)

Training Iteration

Cosine

LossStep

LRStep

None

Fig. 2. Various learning rate schedules which were evaluated. These schedules
are depicted for illustration purposes, and are not representative of the exact
schedules used in Section IV. For LRStep, the step interval and step height
can be configured arbitrarily. For LossStep, the iteration and loss thresholds,
in addition to the step height can be configured arbitrarily. For Cosine, the
period and amplitude can be configured arbitrarily.

practices. The work in [47] uses a half cosine schedule without
periodicity, where it is expected the absence of discontinuities
in the LR improves network performance [25].

III. METHODS

Testing: Our hypothesis is that cosine scheduling can im-
prove performance by escaping local minima in challeng-
ing networks with ill-defined gradients, such as SNNs and
QSNNs. We assess performance on three datasets using
SNNs and QSNNs. We use uniform 4-bit weight quanti-
zation, as it is closely compatible with several lightweight
academic neuromorphic chips [11], [15], [48], and also poses a
greater challenge to train over more conventional 8-bit integer
weights [10].
Gradient Approximations: Quantization-aware training is
used for the 4-bit QSNNs, and a threshold-shifted fast sigmoid
surrogate gradient is applied to the spike non-differentiability:

∂z̃

∂u
=

1

(1 + k|θ − u|)2
. (5)

k modifies the slope of the surrogate gradient and is tuned dur-
ing a hyperparameter search. A smaller value of k corresponds
to a larger approximation.
Optimization: Each network is tested without scheduling,
step decay (‘LRStep’), loss-dependent decay (‘LossStep’), and
cosine annealing, all of which are depicted in Figure 2. The
schedule is updated for each minibatch. The Adam optimizer
has shown empirically good performance on recurrent and
spiking networks, and our early experiments showed it out-
performed stochastic gradient descent. Consequently, we com-
bine Adam’s weight-adaptive learning rate [26] with cosine
annealing [25] with a period of 10 epochs, repeated over the
entire range of epochs. Further detail pertaining to network
initialization, and network and neuron hyperparameters is
provided in https://github.com/jeshraghian/QSNNs.
Loss: To avoid offsetting the hardware benefits gained from
operating on discrete variables, and to further ‘stress’ the
network under a discontinuous loss landscape mired with flat
surfaces, we test our network under the more challenging

constraint of using target spike counts for each class. The
spikes of each output neuron zjt are accumulated over time.
The Mean Square Error (MSE) from the target spike count cj

is measured, and then summed across N output classes:

LMSE =

N∑
j

∑
t

(cj − zjt)2. (6)

The target in all cases adopts a similar approach to Shrestha
and Orchard [51]: the correct class c is targeted to fire 80% of
all time steps, while incorrect classes are set to 20% (intended
to avoid the suppression of neuron activity). The predicted
class is the neuron with the highest spike count in each
simulation.
Architecture: Each model uses 2 convolutional layers ter-
minated with a dense layer. Each convolution operation was
followed by average-pooling applied to the membrane poten-
tial rather than spikes, as pooling sparse outputs with many
zero elements would arbitrarily drive the influence of spikes
lower. The exact architecture for each dataset is provided as a
footnote in Table II.

While learnable and heterogeneous neuronal parameters can
be used to enhance network performance [52], we avoid them
here because individualising neuron parameters causes forward
pass memory to scale with O(n), and during training with
O(nT) where n is the number of neurons and T is the number
of time steps. This otherwise counters benefits derived from
quantization.
Initialization: Dense layers were initialized by uniformly
sampling from U(−

√
a,
√
a):

a =
1

Nin
, (7)

where Nin is the number of input features. Parameters in
convolutional layers were also uniformly sampled:

a =
1

CinNxNy
, (8)

where Cin is the number of input channels, and Nx and Ny

are the kernel dimensions.

IV. EXPERIMENTAL RESULTS

Each experiment was run on a 16GB NVIDIA V100 GPU.
Brevitas 0.7.1 was used to uniformly quantize network pa-
rameters [53], snnTorch 0.4.11 to construct spiking neuron
models [30], PyTorch 1.10.1 for training [54], in Python 3.7.9
with results recorded across three trials. Hyperparameters for
each dataset and precision combination are provided in Table I.
For all datasets, no data augmentation was used, the test set
accuracy across trials is shown in Table II, and the moving
average of the MSE loss during training of QNNs is shown in
Fig. 3. For all implementations, ‘LRStep’ halves the LR every
15 epochs, ‘LossStep’ halves the LR each time the training loss
does not improve, and ‘Cosine’ is our application of annealing,
which cycles every 10 epochs.

https://github.com/jeshraghian/QSNNs

4

TABLE I
QSNN PARAMETERS.

Dataset Precision Batch Size Decay Rate β Threshold θ Slope k Initial LR η Grad. Clip Weight Clip BatchNorm Dropout

MNIST flt32 128 0.92 2.0 6.0 1.9e-3 3 3 3 0.09
MNIST int4 128 0.99 2.9 13.8 5.4e-3 3 7 3 0.00

FMNIST flt32 128 0.39 1.5 7.7 2.0e-3 3 3 3 0.13
FMNIST int4 128 0.97 2.5 5.6 2.9e-3 7 7 3 0.07

DVS128 flt32 16 0.72 2.5 9.7 2.4e-3 7 3 3 0.29
DVS128 int4 16 0.61 0.4 4.4 2.6e-3 3 3 7 0.20

1 Optimal parameters selected from 500 separate trials of 5 epochs each using a tree-structured Parzen Estimator algorithm to randomly sample from the wide
hyperparameter space performed using Optuna [49], [50]. The above parameters were used for full training runs until early stopping terminated the process.

TABLE II
TEST SET ACCURACIES FOR THE MNIST, FASHIONMNIST, AND DVS128 GESTURE DATASETS.

Precision Scheduler MNIST FashionMNIST DVS128 Gesture
Best Avg. (n = 3) σ Best Avg. (n = 3) σ Best Avg. (n = 3) σ

flt32 None 99.45 99.31 0.12 90.49 90.37 0.18 91.67 90.39 1.12
flt32 LRStep 99.36 99.27 0.08 90.85 90.69 0.14 92.36 90.74 1.75
flt32 LossStep 99.29 99.23 0.04 90.86 90.71 0.18 90.97 90.74 0.16
flt32 Cosine 99.29 99.24 0.04 91.13 91.03 0.08 93.05 92.87 0.32

int4 None 99.27 99.23 0.03 90.35 90.29 0.07 90.27 89.58 0.69
int4 LRStep 99.35 99.3 0.08 90.43 90.26 0.15 91.32 90.62 1.20
int4 LossStep 99.36 99.31 0.05 90.93 90.87 0.07 91.32 88.77 2.13
int4 Cosine 99.33 99.31 0.02 90.93 90.83 0.09 92.01 91.44 0.52

1 MNIST Architecture: 16Conv5-AP2-64Conv5-AP2-1024Dense10. FashionMNIST Architecture: 16Conv5-AP2-64Conv5-AP2-
1024Dense10. DVS128 Gesture Architecture: 16Conv5-AP2-32Conv5-AP2-8800Dense11. 2 σ: Sample standard deviation.

A. MNIST

The raw MNIST dataset was repeatedly passed to the net-
work for 100 time steps of simulation, without encoding [27].
The MNIST dataset includes 60,000 28×28 greyscale images
of handwritten digits in the training set, and 10,000 in the test
set [27]. Averaging across all 12 high precision trials (4 × n
trials), it took ≈65 epochs for early stopping to terminate
training, which provided ample opportunity for scheduling to
impact the learning process.

For high precision weights, our proposed approach
marginally underperforms when compared to alternative
scheduling techniques, though other schedules cause high vari-
ance across trials. However, the MNIST dataset is commonly
regarded as too simple of a task, and so difficulty is marginally
increased by using 4-bit quantized weights. Several broad ob-
servations are made. Firstly, the experiments without schedul-
ing drops from best to worst performance when going from
high precision to fixed precision integers. This may indicate
the use of scheduling becomes increasingly important as task
complexity increases. Secondly, cosine annealing shows the
best average accuracy for 4-bit weights and smallest variance
(and therefore, consistency). Finally, the average performance
with cosine annealing improved when constraining weight
precision (99.24% to 99.31%) - an unexpected result that is
explored further in the next section. More complex datasets
can offer more insight.

B. FashionMNIST

The FashionMNIST dataset is intended to be a more
challenging ‘drop-in’ replacement for MNIST, with identical
resolution and dataset size, consisting of 10 classes of clothing
items and accessories [28]. The raw input was again passed to
the network for 100 time steps of simulation without encoding.
We now find that cosine annealing outperforms across the
board, and the lack of scheduling reduces accuracy signifi-
cantly, as distinct from high precision MNIST. Quantization
now has a slight detrimental impact on performance (degrading
the average from 91.03% to 90.83% for cosine annealing), but
the effect is observed to be quite small as QSNNs amortize the
cost by accumulating spikes in continuous spaces (i.e., time
and hidden state).

C. DVS128 Gesture

The DVS128 Gesture dataset is an event-based dataset
with 11 different gesture classes, such as clapping, air guitar,
etc., featuring temporal dynamics [29]. The dataset is filmed
with a dynamic vision sensor, which only processes sufficient
changes in luminance, of resolution 128×128 with two chan-
nels: one for on-spikes (increases in luminance) and another
for off-spikes (decreases in luminance) [55]. To account for
GPU memory constraints, spatial downsampling was applied
(32 × 32), events were integrated over a temporal resolution
of 5 ms per input at a given sequence step, such that training
samples were fit to a duration of 1 s each, which corresponds
to a sequence length of 100 time steps. Cosine annealing
again outperforms the average test set accuracy of all other

5

x1E5x1E5 x1E4

(a) (b) (c)MNIST FashionMNIST DVS128 Gesture

M
S

E
 L

o
ss

M
S

E
 L

o
ss

M
S

E
 L

o
ss

MinibatchMinibatchMinibatch

Cosine

LossStep

LRStep

None

Fig. 3. The moving average of the MSE loss evolution for different schedules when training our QSNNs using the MNIST, FashionMNIST, and DVS128
Gesture datasets. As some LR parameters were subject to hyperparameter optimization, they have not been visualized. LRStep terminates significantly earlier
than other schedules as the learning rate drops faster without picking back up as with Cosine.

techniques, this time by a more significant margin (92.87% for
Cosine annealing, 90.74% for the next best). This is accompa-
nied by a considerably low standard deviation (σ = 0.32). The
variance is the smallest when weights are quantized (σ = 0.52;
next best: σ = 0.69). Quantization has a more significant
impact with increasing data complexity (reduction by ∼1.4%
for cosine annealing, while other schedules suffer greater
degradation), but this still manages to outperform all other
learning rate schedules in the full precision experiment. We
note that most top-performing results on the DVS128 Gesture
dataset are in excess of 93% [51], though the model we use
is reasonably smaller in comparison with only a marginal
reduction in performance.

V. DISCUSSION

Reduced variance of accuracy: Cosine scheduling almost
always achieved smaller variance of accuracy when compared
to the alternatives. Periodically boosting the learning rate
enables the network to explore alternative solution spaces,
where if performance deviates too far from the ideal, early
stopping with patience allows the network to revert back to
the optimal solution. The low variance (across trials) coupled
with the relatively low bias of cosine annealing may indicate
that alternative schedules occasionally enable convergence to
an optimal solution, but with less confidence than for cosine
annealing.

Inconsistent effects of quantization noise: Oddly, quan-
tization noise enabled the network trained on the MNIST
dataset using cosine scheduling to consistently improve. While
the same improvement from quantization does not hold for
our experiments on the FashionMNIST and DVS128 Gesture
datasets, it shows that SNNs are quite robust to quantization.
We believe it is likely that QSNNs absorb a significant degree
of the quantization noise into: i) the subthreshold dynamics
of neurons [56], and ii) the high precision state-space of the
spiking neuron. In the case of a task as simple as MNIST
classification, the noise that does alter network activity may
actually serve to prevent overfitting. We note that our analysis
is fixed to weight quantization rather than state quantization.
The dominant cost in neural networks is memory access and

data transfer, and a neuron’s state is a continuously changing
variable that is more likely to be stored in high-speed cache
rather than in main memory. For additional empirical analyses
on quantized state variables, we recommend referring to the
work in [42], [57].

Alternative noise sources are reduced in quantized
networks: When moving from high precision to fixed pre-
cision networks, the dropout rate in dense layers consistently
decreases (MNIST: 9% → 0%, FashionMNIST: 13% → 7%,
DVS128 Gesture: 29% → 20%). We offer two possible
reasons that support why lower dropout rates are preferred
in QSNNs. Firstly, this may be the network’s attempt to
offset quantization noise by reducing other noise sources in
the network (i.e., dropout probability). Secondly, the effect
of dropout is that a full network (or layer) is treated as an
ensemble of various sub-networks that share parameters at
training time. This reduces the number of pathways avail-
able for backpropagation to be applied through the unrolled
computational graph of the network. While this may not be
as significant an issue in non-spiking networks, high rates of
dropout lead to a smaller number of neuronal connections,
which may lead to weaker gradient signals. This is further
exacerbated by the stringent training conditions we applied,
i.e. backpropagating through discrete spike counts rather than
continuous membrane potentials. Ultimately, reducing the
dropout rate enables the output layer to have higher fan-in,
which increases the likelihood of early layer spiking activity
propagating all the way through, and triggering a change to
the final loss.

Boosted gradient signals: When quantizing weights, the
preferred surrogate gradient slope k decreased by 27% and
54% for FashionMNIST and DVS128 Gesture, respectively.
The surrogate gradient is limited to the range of ∂z̃/∂u ∈
[0, 1], which can lead to vanishing gradients when training
deep networks.3 With respect to Equation (5), as k → 0, the
fast sigmoid surrogate function approaches a straight line with
a constant gradient ∂z̃/∂u → 1. That is to say, in the limit,
the surrogate gradient converges to a STE. A smaller value

3For the same reasons why the deep learning community shifted from
sigmoid activations to ReLU [43].

6

of k promotes gradient signal propagation by reducing the
risk of vanishing gradients, which is increasingly important for
quantized networks that are susceptible to flat loss landscapes.

The trade-off between long training runs and optimal
solutions: While weight quantization increased the difficulty
of reaching an optimal result, cosine annealing reduced the
impact significantly by persistently searching new solution
spaces. As can be seen in Fig. 3, early stopping was applied
to all other schedules considerably earlier when trained on the
FashionMNIST and DVS128 Gesture datasets. For example,
the best high precision trial using cosine annealing with the
DVS128 Gesture data set (93.05%, Table II) is not too far from
the next best performing approach (92.36%, LRStep) which
suggests that both are capable of finding optimal solutions. But
the large variation and low average for LRStep shows that it is
also susceptible to being stuck in suboptimal regions, unable to
escape in absence of periodic LR boosts. The extended training
duration for cosine annealing is a cost to consider when relying
on early stopping coupled with periodic schedules, though we
note that all other schedules were afforded the same early
stopping criterion.

Quantization increases the difficulty of finding optimal
solutions, and periodic scheduling can offset this difficulty:
This observation becomes most clear when comparing the
high precision performance of DVS128 Gesture to the fixed
precision performance in Table II. The top performing trial
for all schedules are within a range of 1.44% in the high
precision case, which expands to 1.86% in the quantized
network due to substantial performance degradation of non-
periodic schedules. This may indicate that quantization does
not completely eliminate optimal solutions, but rather makes
them harder to find. We also note there may be more optimal
step sizes and frequencies to improve results obtained from
the alternative schedules in the quantized case (i.e., LRStep
and LossStep). As examples, LRStep underperformed with
a schedule rate of 15 epochs (average accuracy of 86.11%),
and had to be increased to 20 epochs (average accuracy of
91.32%). The frequency of LossStep also had to be reduced,
where the LR was halved only when the loss worsened for
two consecutive epochs. This may potentially be due to the
smaller size of the DVS128 Gesture dataset when compared
to MNIST and FashionMNIST, though the period of cosine
annealing was completely robust and did not require any modi-
fication to maintain good performance. The alternative sched-
ules therefore add an additional free (and highly sensitive)
hyperparameter which periodic scheduling shows robustness
against.

VI. CONCLUSION

We have demonstrated the ability of periodic scheduling
as a promising method to continue finding optimal solutions
in cases where other schedules cease to improve network
performance. Performance degradation from weight quantiza-
tion impacts non-periodic schedules substantially more than
cosine-annealing, and has an increasing impact with data
complexity. We have also shown that SNNs can be made
to be robust to weight quantization which offers hardware

savings across both memory and computation, given sufficient
exploration of the solution space which is more likely to
be achieved using periodic schedules. The online repository
containing high precision and quantized SNN experiments
across the reported datasets can be accessed at this link:
https://github.com/jeshraghian/QSNNs.

REFERENCES

[1] M. R. Azghadi et al., “Hardware Implementation of Deep Network
Accelerators Towards Healthcare and Biomedical Applications,” IEEE
Trans. on Biomed. Circuits Syst., vol. 14, no. 6, pp. 1138–1159, 2020.

[2] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing: Vision
and challenges,” IEEE Internet of Things J., vol. 3, no. 5, pp. 637–646,
2016.

[3] Y. Yang, N. D. Truong, J. K. Eshraghian, A. Nikpour, and O. Kavehei,
“Adaptive, unlabeled and real-time approximate-learning platform (aura)
for personalized epileptic seizure forecasting,” medRxiv, 2021.

[4] Y. Gong, L. Liu, M. Yang, and L. Bourdev, “Compressing deep
convolutional networks using vector quantization,” arXiv preprint
arXiv:1412.6115, 2014.

[5] J. Lee, J. K. Eshraghian, S. Kim, K. Eshraghian, and K. Cho, “Quantized
convolutional neural network implementation on a parallel-connected
memristor crossbar array for edge ai platforms,” Journal of Nanoscience
and Nanotechnology, vol. 21, no. 3, pp. 1854–1861, 2021.

[6] W. Chen, J. Wilson, S. Tyree, K. Weinberger, and Y. Chen, “Compress-
ing neural networks with the hashing trick,” in Intl. Conf. on machine
learning. PMLR, 2015, pp. 2285–2294.

[7] J. K. Eshraghian and W. D. Lu, “The fine line between dead neurons
and sparsity in binarized spiking neural networks,” arXiv preprint
arXiv:2201.11915, 2022.

[8] W. Maass, “Networks of spiking neurons: the third generation of neural
network models,” Neural networks, vol. 10, no. 9, pp. 1659–1671, 1997.

[9] S. M. Bohte, J. N. Kok, and H. La Poutre, “Error-backpropagation
in temporally encoded networks of spiking neurons,” Neurocomputing,
vol. 48, no. 1-4, pp. 17–37, 2002.

[10] M. Davies et al., “Loihi: A neuromorphic manycore processor with on-
chip learning,” IEEE Micro, vol. 38, no. 1, pp. 82–99, 2018.

[11] C. Frenkel, J.-D. Legat, and D. Bol, “MorphIC: A 65-nm 738k-
synapse/mm2 quad-core binary-weight digital neuromorphic processor
with stochastic spike-driven online learning,” IEEE Trans. Biomed.
Circuits Syst., vol. 13, no. 5, pp. 999–1010, 2019.

[12] P. A. Merolla, J. V. Arthur, R. Alvarez-Icaza, A. S. Cassidy, J. Sawada,
F. Akopyan, B. L. Jackson, N. Imam, C. Guo, Y. Nakamura et al., “A
million spiking-neuron integrated circuit with a scalable communication
network and interface,” Science, vol. 345, no. 6197, pp. 668–673, 2014.

[13] J. K. Eshraghian, X. Wang, and W. D. Lu, “Memristor-based binarized
spiking neural networks: Challenges and applications.” IEEE Nanotech-
nology Magazine, 2022.

[14] S. B. Furber, F. Galluppi, S. Temple, and L. A. Plana, “The SpiNNaker
project,” Proc. of the IEEE, vol. 102, no. 5, pp. 652–665, 2014.

[15] S. Schmitt, J. Klähn, G. Bellec, A. Grübl, M. Guettler, A. Hartel, S. Hart-
mann, D. Husmann, K. Husmann, S. Jeltsch et al., “Neuromorphic
hardware in the loop: Training a deep spiking network on the brainscales
wafer-scale system,” in 2017 Intl. Joint Conf. on Neural Netw. (IJCNN).
IEEE, 2017, pp. 2227–2234.

[16] A. Neckar, S. Fok, B. V. Benjamin, T. C. Stewart, N. N. Oza, A. R.
Voelker, C. Eliasmith, R. Manohar, and K. Boahen, “Braindrop: A
mixed-signal neuromorphic architecture with a dynamical systems-based
programming model,” Proceedings of the IEEE, vol. 107, no. 1, pp. 144–
164, 2018.

[17] S. Bartunov, A. Santoro, B. A. Richards, L. Marris, G. E. Hinton,
and T. Lillicrap, “Assessing the scalability of biologically-motivated
deep learning algorithms and architectures,” 32nd Conf. on Neural Inf.
Process. Syst. (NeurIPS 2018), 2018.

[18] C. Lammie, W. Xiang, and M. R. Azghadi, “Modeling and simulating
in-memory memristive deep learning systems: An overview of current
efforts,” Array, p. 100116, 2021.

[19] M. Refinetti, S. d’Ascoli, R. Ohana, and S. Goldt, “Align, then memo-
rise: The dynamics of learning with feedback alignment,” in Intl. Conf.
on Machine Learning. PMLR, 2021, pp. 8925–8935.

[20] C. Lammie, J. K. Eshraghian, W. D. Lu, and M. R. Azghadi, “Memristive
stochastic computing for deep learning parameter optimization,” IEEE
Trans. on Circuits and Syst. II: Exp. Briefs, vol. 68, no. 5, pp. 1650–
1654, 2021.

https://github.com/jeshraghian/QSNNs

7

[21] M. Rahimi Azghadi, Y.-C. Chen, J. K. Eshraghian, J. Chen, C.-Y. Lin,
A. Amirsoleimani, A. Mehonic, A. J. Kenyon, B. Fowler, J. C. Lee et al.,
“Complementary metal-oxide semiconductor and memristive hardware
for neuromorphic computing,” Advanced Intelligent Systems, vol. 2,
no. 5, p. 1900189, 2020.

[22] F. Cai, S. Kumar, T. Van Vaerenbergh, X. Sheng, R. Liu, C. Li, Z. Liu,
M. Foltin, S. Yu, Q. Xia et al., “Power-efficient combinatorial optimiza-
tion using intrinsic noise in memristor hopfield neural networks,” Nature
Electronics, vol. 3, no. 7, pp. 409–418, 2020.

[23] S. M. Kang, D. Choi, J. K. Eshraghian, P. Zhou, J. Kim, B.-S.
Kong, X. Zhu, A. S. Demirkol, A. Ascoli, R. Tetzlaff et al., “How to
build a memristive integrate-and-fire model for spiking neuronal signal
generation,” IEEE Transactions on Circuits and Systems I: Regular
Papers, vol. 68, no. 12, pp. 4837–4850, 2021.

[24] Y.-C. Chen, J. K. Eshraghian, I. Shipley, and M. Weiss, “Analog synaptic
behaviors in carbon-based self-selective rram for in-memory supervised
learning,” in 2021 IEEE 71st Electronic Components and Technology
Conference (ECTC). IEEE, 2021, pp. 1645–1651.

[25] I. Loshchilov and F. Hutter, “SGDR: Stochastic gradient descent with
warm restarts,” Intl. Conf. on Learning Representations, 2017.

[26] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[27] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning
applied to document recognition,” Proc. of the IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[28] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: a novel image
dataset for benchmarking machine learning algorithms,” arXiv preprint
arXiv:1708.07747, 2017.

[29] A. Amir et al., “A low power, fully event-based gesture recognition
system,” in Proc. of the IEEE Conf. on Computer Vision and Pattern
Recognition, 2017, pp. 7243–7252.

[30] J. K. Eshraghian et al., “Training spiking neural networks using lessons
from deep learning,” arXiv preprint arXiv:2109.12894, 2021.

[31] S. Lu and A. Sengupta, “Exploring the connection between binary and
spiking neural networks,” Frontiers in Neuroscience, 2020.

[32] P. O’Connor, D. Neil, S.-C. Liu, T. Delbruck, and M. Pfeiffer, “Real-
time classification and sensor fusion with a spiking deep belief network,”
Frontiers in Neuroscience, vol. 7, p. 178, 2013.

[33] E. O. Neftci, H. Mostafa, and F. Zenke, “Surrogate gradient learning
in spiking neural networks: Bringing the power of gradient-based
optimization to spiking neural networks,” IEEE Signal Process. Mag.,
vol. 36, no. 6, pp. 51–63, 2019.

[34] E. Hunsberger and C. Eliasmith, “Spiking deep networks with lif
neurons,” arXiv preprint arXiv:1510.08829, 2015.

[35] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv, and Y. Bengio,
“Binarized neural networks,” Adv. in Neural Inf. Process. Syst., vol. 29,
2016.

[36] Y. Bengio, N. Léonard, and A. Courville, “Estimating or propagating
gradients through stochastic neurons for conditional computation,” arXiv
preprint arXiv:1308.3432, 2013.

[37] J. H. Lee, T. Delbruck, and M. Pfeiffer, “Training deep spiking neural
networks using backpropagation,” Frontiers in Neuroscience, vol. 10, p.
508, 2016.

[38] P. O’Connor and M. Welling, “Deep spiking networks,” arXiv preprint
arXiv:1602.08323, 2016.

[39] G. Hinton, “Neural networks for machine learning,” Coursera, video
lectures, 2012.

[40] R. V. Putra and M. Shafique, “Q-SpiNN: A framework for quantizing
spiking neural networks,” in 2021 Intl. Joint Conf. on Neural Networks
(IJCNN), 2021.

[41] S. R. Kheradpisheh, M. Mirsadeghi, and T. Masquelier, “Bs4nn: Bi-
narized spiking neural networks with temporal coding and learning,”
Neural Process. Letters, pp. 1–19, 2021.

[42] C. J. Schaefer and S. Joshi, “Quantizing spiking neural networks with
integers,” in Intl. Conf. on Neuromorphic Syst. 2020, 2020, pp. 1–8.

[43] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. of the IEEE Conf. on computer vision and pattern
recognition, 2016, pp. 770–778.

[44] T. He, Z. Zhang, H. Zhang, Z. Zhang, J. Xie, and M. Li, “Bag of tricks
for image classification with convolutional neural networks,” in Proc.
of the IEEE/CVF Conf. on Computer Vision and Pattern Recognition,
2019, pp. 558–567.

[45] L. Cordone, B. Miramond, and S. Ferrante, “Learning from event
cameras with sparse spiking convolutional neural networks,” arXiv
preprint arXiv:2104.12579, 2021.

[46] F. Liu, W. Zhao, Y. Chen, Z. Wang, T. Yang, and L. Jiang, “Sstdp:
Supervised spike timing dependent plasticity for efficient spiking neural
network training,” Frontiers in Neuroscience, vol. 15, 2021.

[47] G. Shen, D. Zhao, and Y. Zeng, “Backpropagation with biologically
plausible spatio-temporal adjustment for training deep spiking neural
networks,” arXiv preprint arXiv:2110.08858, 2021.

[48] S.-T. Lee and J.-H. Lee, “Neuromorphic computing using nand flash
memory architecture with pulse width modulation scheme,” Frontiers in
Neuroscience, vol. 14, p. 945, 2020.

[49] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna: A next-
generation hyperparameter optimization framework,” in Proc. of the 25th
ACM SIGKDD Intl. Conf. on knowledge discovery & data mining, 2019,
pp. 2623–2631.

[50] J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms for hyper-
parameter optimization,” Adv. in Neural Inf. Process. Syst., vol. 24, 2011.

[51] S. B. Shrestha and G. Orchard, “Slayer: spike layer error reassignment
in time,” in Proc. of the 32nd Intl. Conf. on Neural Inf. Process. Syst.,
2018, pp. 1419–1428.

[52] N. Perez-Nieves, V. C. Leung, P. L. Dragotti, and D. F. Goodman,
“Neural heterogeneity promotes robust learning,” bioRxiv, pp. 2020–12,
2021.

[53] A. Pappalardo, “Xilinx/brevitas,” Zenodo, 2021. [Online]. Available:
https://doi.org/10.5281/zenodo.3333552

[54] A. Paszke et al., “Pytorch: An imperative style, high-performance deep
learning library,” Adv. in Neural Inf. Process. Syst., vol. 32, pp. 8026–
8037, 2019.

[55] L. Patrick, C. Posch, and T. Delbruck, “A 128x 128 120 db 15µ s latency
asynchronous temporal contrast vision sensor,” IEEE J. of Solid-State
Circuits, vol. 43, pp. 566–576, 2008.

[56] S. Sharmin, P. Panda, S. S. Sarwar, C. Lee, W. Ponghiran, and K. Roy,
“A comprehensive analysis on adversarial robustness of spiking neural
networks,” in 2019 International Joint Conference on Neural Networks
(IJCNN). IEEE, 2019, pp. 1–8.

[57] A. Yousefzadeh, S. Hosseini, P. Holanda, S. Leroux, T. Werner,
T. Serrano-Gotarredona, B. L. Barranco, B. Dhoedt, and P. Simoens,
“Conversion of synchronous artificial neural network to asynchronous
spiking neural network using sigma-delta quantization,” in 2019 IEEE
International Conference on Artificial Intelligence Circuits and Systems
(AICAS). IEEE, 2019, pp. 81–85.

https://doi.org/10.5281/zenodo.3333552

	I Introduction
	II Background and Related Work
	II-A Spiking Neuron Model
	II-B Hard Thresholds in QSNN
	II-C Mitigating the Impact Of Quantization in QNN
	II-D Periodic LR Schedules

	III Methods
	IV Experimental Results
	IV-A MNIST
	IV-B FashionMNIST
	IV-C DVS128 Gesture

	V Discussion
	VI Conclusion
	References

