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Abstract—Due to the limitations of realizing artificial neural
networks on prevalent von Neumann architectures, recent studies
have presented neuromorphic systems based on spiking neural
networks (SNNs) to reduce power and computational cost. How-
ever, conventional analog voltage-domain integrate-and-fire (I&F)
neuron circuits, based on either current mirrors or op-amps, pose
serious issues such as nonlinearity or high power consumption,
thereby degrading either inference accuracy or energy efficiency
of the SNN. To achieve excellent energy efficiency and high
accuracy simultaneously, this paper presents a low-power highly
linear time-domain I&F neuron circuit. Designed and simulated
in a 28 nm CMOS process, the proposed neuron leads to more
than 4.3× lower error rate on the MNIST inference over
the conventional current-mirror-based neurons. In addition, the
power consumed by the proposed neuron circuit is simulated to
be 0.230µW per neuron, which is orders of magnitude lower
than the existing voltage-domain neurons.

Keywords—artificial neural network, spiking neural network,
ANN-to-SNN conversion, integrate-and-fire neuron, time-domain
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I. INTRODUCTION

Artificial neural networks (ANNs) have been utilized to
achieve groundbreaking results in a variety of fields such as
image recognition [1], speech recognition [2], and machine
translation [3]. However, implementing such networks with a
large number of parameters on conventional von Neumann
architectures incurs tremendous latency and energy costs
dominated by memory access, which limits the use of deep
networks in mobile applications [4]. Hence, recent studies
have focused on developing a new type of system that can
replace the prevalent architectures. Especially, neuromorphic
systems using spiking neural networks (SNNs) are considered
an alternative since they are effective in reducing both power
consumption and computational effort [5]. While there have
been a multitude of researches on direct SNN training meth-
ods, SNNs based on simple integrate-and-fire (I&F) neurons
with the ANN-to-SNN conversion technique [6] show better
inference accuracy compared to other models. Thus, this paper
focuses on the design of a novel I&F neuron that leads to high-
accuracy SNN inference in an energy-efficient manner.

This research was supported in part by National R&D Program through
the National Research Foundation of Korea (NRF) funded by Ministry of
Science and ICT (2021M3F3A2A01037928) and by Ministry of Science and
ICT (2020M3H2A1078119).

Since conventional voltage-domain analog neurons exhibit
nonlinear behavior that causes inference accuracy degradation,
[7] proposes a time-domain neuron, which improves linearity,
thereby achieving inference accuracy on a par with that of
ANNs. However, questions on how to design a low-power
time-domain neuron and, more importantly, whether they
can be used to implement an SNN achieving good energy
efficiency and high accuracy simultaneously, remain unclear.
To answer these questions, this paper presents a low-power
design of the time-domain I&F neuron and simulates an SNN
for MNIST inference using the proposed neuron. Implemented
in a 28 nm CMOS process, the performance of the proposed
neuron is far superior to that of existing analog neurons while
operating energy-efficiently.

II. TIME-DOMAIN NEURON

A. Limitations of Voltage-Domain Neurons

Current-mirror-based neurons [8], [9] and op-amp-based
neurons [10], [11] are the two types of analog I&F neurons
commonly used in hardware-based SNNs. The I&F neurons
receive pre-synaptic spikes from the preceding layer and
accumulate them as membrane potential in the voltage domain.
When the membrane potential exceeds a threshold, a spike
is generated by the neuron and delivered to the next layer.
These voltage-domain neurons suffer from serious issues in
either performance or power. Since the membrane potential,
or the voltage of the capacitor, changes the amount of current
from the current mirror that flows into the capacitor due to
the channel length modulation, nonlinear behavior is observed
in the current-mirror-based neuron [7]. This leads to the
performance degradation of the SNN, which is later validated
in Section III. On the other hand, op-amp-based neurons
require high supply voltage to provide sufficient gain and
linearity, thereby suffering from high power consumption.

The design challenges of the voltage-domain neurons get
worse as technology scales down and the supply voltage
reduces. Due to the lower output impedance/intrinsic gain
and higher leakage of the devices, nonlinear behavior in the
voltage-domain neurons becomes severe in deep sub-micron
technologies. Moreover, as lower supply voltage reduces both
voltage headroom and the range of membrane potential,
performance degradation of the voltage-domain neurons is
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Fig. 1. Proposed architecture of the low-power mixed-signal time-domain I&F neuron.

inevitable. These issues can be partly overcome by choos-
ing large devices to design neurons, but this incurs large
area/power overhead, limiting the usage of deeper and larger
networks.

B. Time-Domain Signal Processing

Time-domain signal processing has emerged as an attractive
technique to mitigate the analog circuit design challenges
associated with process scaling and reduced voltage headroom,
and it has been applied to analog filters [12], data convert-
ers [13], and PID controllers [14]. The main idea behind time-
domain signal processing is to encode the variable of interest
in the time, or phase, domain, which fundamentally solves
the voltage-headroom-related issues. For instance, since phase
is obtained by integrating frequency with respect to time, an
ideal integrator of a voltage signal can be implemented in
the phase domain using a voltage controlled oscillator (VCO)
whose frequency is controlled by the voltage signal. An I&F
neuron exploiting this concept is presented in [7], which shows
highly linear behavior and better performance compared to the
existing current-mirror-based voltage-domain neurons.

In the time-domain neuron, whenever a spike is received
from the preceding layer, a current pulse flows into the current
mirror. Depending on the polarity of the synaptic weights, the
amount of current that flows into the current controlled oscilla-
tor (ICO) either increases or decreases. This changes the ICO
frequency, and a phase is shifted accordingly. Since the amount
of phase shift is the accumulation of the weight-multiplied
input spikes, the time-domain neuron generates and transmits
a spike to the following layer when the phase shift reaches a
threshold. Although time-domain neurons can potentially solve
many design issues existing in voltage-domain neurons, an
important question on whether both excellent energy efficiency
and high inference accuracy can be achieved simultaneously
using time-domain neurons has not been answered yet.

C. Low-Power Design of Time-Domain Neuron

To answer the question, we first propose an ultra-low-
power mixed-signal time-domain I&F neuron circuit (see

Fig. 1). When a spike is received from the preceding layer,
a current pulse (typically generated by synaptic devices like
memristors [15]) is supplied from the synapse array and
flows into the neuron circuit. Note that when an input spike
is modulated with a positive (negative) weight, the ICO
frequency should increase (decrease). A straightforward way
to implement this is to use a current mirror as [9], where
PMOS/NMOS are used to add/subtract current flowing into the
ICO, respectively. However, this implementation suffers from
a mismatch between PMOS and NMOS, which manifests itself
as weight error and leads to inference accuracy degradation. To
circumvent this issue, the proposed neuron uses only NMOSs
to increase/decrease the ICO current as shown in Fig. 1. For
positive weights, less current flows into the current mirror1,
while more current flows in for negative weights. This results
in an increase or decrease, respectively, in the ICO current
(i.e. ICO frequency) as the constant current is provided by
the PMOS current source. With this time-domain neuron, the
membrane potential is now embedded in the ICO phase.

To detect the amount of phase shift, which represents
the membrane potential, a reference phase is required. The
proposed neuron uses an identical ICO whose current, or
frequency, is fixed to generate a reference. Note that, since
this reference ICO can be shared for all the neurons, it
adds negligible area overhead. Two counters are used to
detect whether the phase difference between the two ICO
outputs, CLK and REF , crosses a threshold by counting
the numbers of rising edges. In our implementation, when
the phase difference ΦCLK − ΦREF crosses the threshold
2π, the difference between the counter outputs becomes 1.
Then, a digital spike generator (see Fig. 1) generates a spike
and transmits it to the following layer. Since two counters are
synchronized with different clocks, gray code with cascaded
flip-flops is used for clock domain crossing.

The proposed time-domain I&F neuron circuit does not need
any extra hardware to implement the “reset by subtraction”

1This can be implemented by having current from the synapse constantly
flow (steady state) and then gating the current when receiving an input spike.



Fig. 2. Spike generation and reset by subtraction mechanism.

mechanism, which enables more accurate inference than “reset
to zero” when converting ANNs into SNNs [6]. When a spike
is generated, 1 is added to the reference counter value to
reset the phase difference, as shown in Fig. 2, by which the
exact amount of the threshold (2π phase) can be subtracted
from the original phase difference. In the proposed design, in
order to minimize the number of bits in digital circuits, which
incurs minimal area/power overhead, the threshold is set to 2π
radians in phase, equivalent to the counter output difference
of 1. Moreover, since the proposed neuron is highly digital,
energy efficiency can be improved substantially by lowering
the supply voltage down to a range of 0.35 V-0.5 V, which is
inapplicable to the existing analog voltage-domain neurons.

III. SIMULATION RESULTS

A. Operation of Proposed Time-Domain I&F Neuron

The proposed time-domain I&F neuron circuit is designed
and simulated in a 28 nm CMOS process. The simulated wave-
forms of the neuron are plotted in Fig. 3. When the current
pulses are periodically supplied from the synapse array, the
phase difference between two ICOs, ∆Φ = ΦCLK − ΦREF ,
eventually becomes larger than 2π, which can be detected by
comparing the numbers of rising edges of CLK and REF ,
counted by two counters. If the numbers differ as shown
in Fig. 3, a spike is generated and the phase difference is
subtracted by 2π by resetting the counters. From the supply
voltage ranging from 0.35 V to 0.5 V, the designed ICO
oscillates with the frequency from 3 MHz to 100 MHz, which
is also the range of the maximum firing rates of the neuron.

B. SNN System Simulation with Proposed Neuron

To evaluate the performance of the SNN using the proposed
time-domain neurons, LeNet-5 [1] is trained on the MNIST
dataset and converted to the SNN by extracting the network
parameters using the ANN-to-SNN conversion tool [6]. Fig. 4
displays the inference error rate on MNIST with respect
to the simulation time step for three different neurons: the
ideal I&F neuron, the current-mirror-based voltage-domain
neuron, and the proposed time-domain neuron. The simulated
error rates of these three neurons are 0.99 % (ideal), 4.31 %

Fig. 3. Simulated waveform of the proposed neuron.

Fig. 4. Simulated inference error rate on MNIST for different
neurons.

Fig. 5. Simulated inference error rate versus latency for the
proposed neurons with different maximum firing rates.

(voltage-domain), and 0.98 % (proposed), respectively. While
the accuracy of the time-domain neuron approaches that of the
ideal I&F neuron and the original ANN (0.99 %), the voltage-
domain neuron fails to reach the same accuracy level due to
its nonlinearity. In Fig. 5, the error rates for the time-domain
neurons with 6 different oscillation frequencies, or maximum
firing rates (from 3 MHz to 100 MHz), are illustrated, where
the x-axis represents the absolute latency in microseconds.
The result indicates that, although all the neurons eventually
approach the same accuracy level, lower inference latency can
be achieved when the maximum firing rate becomes higher.



Fig. 6. Average energy per inference that each neuron with
different maximum firing rate consumes to reach the error rates
of 1 %, 2.5 %, 5 %, and 10 %.

TABLE I. Performance summary and comparison.

[8] [10] [11] This work

Process 800 nm 65 nm 65 nm 28 nm
Domain Voltage Voltage Voltage Time

Key element Current mirror Op-amp Op-amp ICO
Power per neuron > 10µW 14.4µW 3µW 0.230µW

Energy per inference N/A N/A N/A 3.72 nJ
Inference accuracy N/A N/A N/A 99 %

C. Energy Efficiency of Proposed Neuron

Fig. 6 shows the total energy consumption per neuron for
each inference to achieve a certain level of accuracy for the
proposed neuron with different maximum firing rates. Neurons
with lower ICO frequency result in reduced power consump-
tion compared to those with higher frequency. However, as
shown in Fig. 6, since more time should be spent to achieve the
same level of accuracy (see Fig. 5), less power does not simply
imply lower energy for inference. For example, the lowest total
energy per neuron to achieve 1 % error is 0.488 pJ at 15 MHz
ICO frequency while the highest is 0.646 pJ at 3 MHz. It is
important to notice that there is an optimal operating point
that minimizes the total energy consumption, e.g. 15 MHz
operating frequency in our simulation results. Therefore, when
choosing the operating frequency of the time-domain neuron,
both total energy consumption and latency should be carefully
considered.

Table I summarizes the performance of the proposed neuron
and compares it with the prior art. The proposed neuron shows
the power consumption of 0.230µW, which is substantially
low compared to the voltage-domain neurons. Note that, as
technology scales down, the voltage-domain neurons will
suffer from either higher power consumption or degraded
inference accuracy due to nonlinearity, and the benefits of the
proposed time-domain neuron are expected to become larger.
The SNN using the proposed neuron consumes only 3.72 nJ for
classifying an MNIST image while achieving 99 % inference
accuracy.

IV. CONCLUSION

This paper proposes a low-power highly linear I&F neuron
circuit composed of a time-domain integrator and a digital
spike generator. Designed and simulated in a 28 nm CMOS
process, the proposed neuron leads to more than 4.3× lower
error rate on the MNIST inference over the conventional
analog current-mirror-based neurons. In addition, the power
consumed by the proposed neuron circuit is 0.230µW per
neuron, which is orders of magnitude lower than the existing
voltage-domain neurons. The simulation results indicate that
the proposed time-domain neuron enables the SNN inference
to achieve excellent energy efficiency and high accuracy.
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