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Abstract—The acceleration of deep-learning kernels in hard-
ware relies on matrix multiplications that are executed efficiently
on Systolic Arrays (SA). To effectively trade off deep-learning
training/inference quality with hardware cost, SA accelerators
employ reduced-precision Floating-Point (FP) arithmetic. In this
work, we demonstrate the need for new pipeline organizations
to reduce latency and improve energy efficiency of reduced-
precision FP operators for the chained multiply-add operation
imposed by the structure of the SA. The proposed skewed pipeline
design reorganizes the pipelined operation of the FP multiply-
add units to enable new forwarding paths for the exponent logic,
which allow for parallel execution of the pipeline stages of consec-
utive PEs. As a result, the latency of the matrix multiplication
operation within the SA is significantly reduced with minimal
hardware cost, thereby yielding an energy reduction of 8% and
11% for the examined state-of-the-art CNNs.

Index Terms—systolic arrays, floating-point arithmetic,
pipeline, deep learning

I. INTRODUCTION

Deep learning has had a significant impact on many rapidly
emerging applications, such as computer vision [1], [2], natural
language processing [3], and robotics [4]. From the outset, the
widespread proliferation of various deep learning models ne-
cessitated their direct hardware acceleration, with the ultimate
goal being to improve both performance and energy efficiency.

Matrix multiplications are at the heart of deep learning
algorithms and their computation in hardware maps naturally
onto Systolic Arrays (SA) [5]. Tensor processing units [6] and
other related architectures [7]–[10] are characteristic examples
of newly designed SAs.

Matrix multiplication can be implemented in SAs using
integer or Floating-Point (FP) arithmetic [11], [12]. For in-
creased accuracy, the use of FP arithmetic dominates during
the training of deep learning models. To increase energy
efficiency, inference is typically executed using integer arith-
metic, after appropriate data quantization and pruning [13].
However, recent studies have shown that FP arithmetic cannot
be avoided, if one wishes to preserve the inference quality [12].

In an effort to enjoy both benefits, i.e., the low hardware
cost of integer arithmetic and the accuracy/dynamic range
of FP arithmetic, several reduced-precision FP formats have
been proposed [14]–[17]. For instance, the 16-bit Bfloat16
format [14] provides the same dynamic range as the IEEE-
754 single-precision FP format, but with a smaller precision.
Recently, two new 8-bit FP formats [17] were proposed, which
provide very similar results to those of Bfloat16, but with lower
hardware cost. Fig. 1 illustrates these FP formats.

The introduction of reduced-precision FP formats inevitably
affects the architecture of the corresponding FP operators. For
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Fig. 1. The structure of commonly used reduced-precision FP formats.

instance, the operation of the traditional pipelined FP units
used in SAs is dominated by the delay of the wide multipliers,
while the logic dedicated to the exponent calculations is not
time-critical. However, in reduced-precision FP operators this
delay profile is partially flipped, since the bit-width of the man-
tissa (fraction) field is now equal to, or smaller than, the bit-
width of the exponent field. Consequently, new architectures
are required that must account for this new delay attribute of
reduced-precision FP arithmetic, and, at the same time, tackle
the chained structure of the SA’s Processing Elements (PE).

To address said challenges, this work proposes a novel
pipeline architecture for SAs that operate on reduced-precision
FP arithmetic, with the following salient characteristics:

• A new skewed pipeline micro-architecture is proposed
that reorganizes the pipelined operation of the FP fused
multiply-add units, thereby enabling parallel execution of
the pipeline stages of consecutive PEs within the SA. The
proposed design minimizes the overall latency of matrix
multiplication, as compared to traditional pipelined archi-
tectures, with minimal area and power overhead.

• Pipeline skewing is enabled by the introduction of new
speculative forwarding paths within the exponent field’s
logic. These forwarding paths eliminate the restricting de-
pendencies across pipeline stages and effectively increase
pipeline parallelism.

Experimental evaluation using state-of-the-art CNNs
demonstrates the effectiveness of the proposed architecture.
The overall execution latency is markedly reduced by 16%
and 21% for MobileNet [18] and ResNet50 [19], leading to
overall energy reductions of 8% and 11% respectively. These
savings were achieved with a minimal area cost of 9%.

II. SYSTOLIC ARRAYS USING FP ARITHMETIC

The typical SA hardware structure consists of an array of
PEs, as depicted in Fig. 2(a). Each PE consists of a multiplier,
an adder, and necessary registers to appropriately pipeline the
streaming operation. The SA is fed by local memory banks
placed on the West and North edges of the array, while the
output results are collected on the South edge.

The dataflow type employed by the SA determines the
internal structure of the PEs and how the matrix multiplication
A×W , is executed. For instance, in weight-stationary (WS)
dataflow [8], matrix W (the ‘weights’) is pre-loaded in the SA,
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Fig. 2. The micro-architecture of a typical systolic array, and a high-level
overview of the weight-stationary dataflow within the SA.

(a) FMA for regular precision. (b) FMA for reduced precision.
Fig. 3. The two main pipeline organizations that may be employed by the FP
multiply-add units in each PE of the SA. In reduced-precision FP arithmetic,
two pipeline stages are sufficient to achieve the required clock frequency.

while matrix A (the ‘input’) is transposed and fed into the SA
from the West side, as shown in Fig. 2(b). The WS approach is
generally preferred over other dataflows, since it exploits the
high spatio-temporal reuse of the weights [6]. After the top
row is filled, it takes multiple cycles to reduce the results of
all the PEs in the same column. The number of cycles required
for the reduction depends on the FP multiply-add units within
each PE; i.e., the result of each PE moves downwards to the
next PE in the same column. The SA becomes empty when the
reduction is finished in the right-most column, for all incoming
columns of matrix A.

Under the WS dataflow, a chain of multiply-add operations
is computed in each column of the array. The FP multiply-add
units in each PE have a fused/cascaded structure [20], [21],
whereby the product of the multiplication is passed directly to
the adder, without intermediate normalization and rounding.
Normalization occurs after each addition at the South border
of each PE. To further reduce hardware cost, state-of-the-
art implementations [22]–[24] do not perform rounding after
each multiply-add step in each PE. Instead, the rounding is
performed only once, at the South end of each column. To
avoid precision loss, the intermediate results produced at the
South output of each PE use double-width precision [12]. For
instance, for Bfloat16 inputs, the reduction that occurs in the
vertical direction is implemented with FP32 arithmetic.

State-of-the-art FP multiply-add units in each PE may adopt
one of the two pipelined datapaths shown in Fig. 3. The
diagrams in the figure highlight only the most critical blocks
involved in the multiply-add datapath and omit, for clarity,
several logic-level details. Note that, for reduced-precision
FP arithmetic, a two-stage pipeline – as depicted in Fig. 3
– is sufficient to achieve the required clock frequency. On
the contrary, traditional full-precision FP units rely on deeper
pipelines for high clock frequencies [25].

In the first pipeline stage of Fig. 3(a), multiplication is

performed in parallel with the exponent computation, which
calculates the amount of alignment required for the incoming
partial addition result. This approach is adopted by many
multiply-add architectures [25], [26]. It is based on the funda-
mental assumption that the delay of the multiplier completely
hides the computation on the exponents and the delay of
alignment. However, this assumption is only true in full-
precision FP arithmetic, where the delay of the multiplication
dominates the delay of the exponent computations.

In the second pipeline stage of Fig. 3(a), addition is per-
formed. Leading-Zero Anticipation and counting (LZA) [27],
[28], running in parallel to the addition, predicts the amount
of shifting needed to normalize the adder’s result. This shift
amount is also used to correct the already computed exponent
of the final result.

Since the delay of the multiplication cannot hide the delay of
the exponent computations in reduced-precision FP arithmetic,
it is preferable to move the alignment to the second pipeline
stage, as shown in Fig. 3(b). The alignment may involve either
the output of the multiplier, or the incoming partial addition
result [29], [30]. This approach is a more natural fit to the
delay profiles observed with the new FP formats. Hence, the
pipeline of Fig. 3(b) serves as the state-of-the-art reference FP
multiply-add design for reduced-precision FP arithmetic.

III. THE PROPOSED SKEWED PIPELINE ARCHITECTURE

The two-cycle latency incurred by either the pipelined FP
multiply-add units shown in Fig. 3 increases the number of
cycles required to complete the reduction within each column
of the SA. Also, the pipeline parallelism across PEs is limited
since the computation in each PE can begin only after the
previous PE in the same column has finished its operation.

Fig. 4. The dependencies arising in a chained FP multiply-add operation
across two neighboring PEs of the same column of the SA. These dependen-
cies prohibit the interleaving, in time, of the pipeline execution.

A. The serialization problem
The fundamental reason for this serial execution is the

dependency that appears between the result of the second
pipeline stage of the PE in row i of the SA and the first
pipeline stage of the PE in row i + 1 of the same column.
This dependency is highlighted in Fig. 4 across cycles t0 + 1
and t0+2. Recall that each PE employs the 2-stage pipelined
organization of Fig. 3(b).

To increase parallelism, we would like the first pipeline
stage of the PE in row i + 1 to execute in parallel with
the second pipeline stage of the previous PE (i.e., both in
cycle t0 + 1). If this were allowed, it would create a new



critical combinational logic path across the two neighboring
PEs, emanating from the exponent output of the first PE: the
alignment logic of the first PE would be connected in series
with the LZA module of the first PE, the exponent correction
logic of the first PE, and the exponent computation logic of
the following PE.

To avoid the formation of this long path, the operation in
each PE begins only after the previous PE has completed its
entire computation at the end of its second pipeline stage.

B. Removing dependencies using speculative paths

To interleave, in time, the operation of the pipeline stages
in each PE, a new pipelined organization for the FP multiply-
add datapath is required, which relaxes the above-mentioned
restricting dependencies and avoids the introduction of new
combinational logic critical paths. The first step in optimizing
the FP multiply-add pipeline is to decouple the exponent
correction logic of the second pipeline stage of one PE from
the exponent compute logic of the first pipeline stage of
the next PE. This decoupling is achieved by the pipeline
organization shown in Fig. 5.

Fig. 5. Removing the dependency across the exponent output of each PE.
A speculative exponent is produced at the output of the first pipeline stage,
which is corrected at the beginning of the second stage.

In this setup, the exponent correction logic is replaced by
exponent fix logic and moved to the input of the second
pipeline stage of each PE. This is the new module ‘Fix Sign &
Exponent’ shown in green in Fig. 5. To enable this relocation,
the exponent fix logic no longer depends on the output of the
LZA module of the current PE, but, instead, it receives the
output of the LZA logic of the previous PE. This decoupling
allows for the interleaving, in time, of the pipelined execution
of the multiply-add operation in consecutive PEs of the same
column of the SA.

The output of the exponent fix logic controls the alignment
of the adder’s inputs in the same pipeline stage and it is also
given to the next PE in the place of the output exponent.
This output is not the final exponent, but an intermediate and
partially correct result. The correct exponent value will be
computed in the exponent fix logic of the next PE.

In each PE, the exponent compute logic selects the max-
imum between the exponents of the multiplication that was
just calculated and the input exponent that comes from the
previous PE. This maximum value, which is denoted as êi,
represents the exponent of the unnormalized result of the
FMA’s addition and it is calculated as êi = max(eMi

, ei−1),
where eMi = eAi + eBi is the exponent of the multiplication

in the current PE. Furthermore, the difference of the two
exponents di = |eMi − ei−1|, serves as the alignment value of
the two addends. In the setup of Fig. 4, êi gets corrected by
the value of the LZA Li and the corrected exponent output
ei = êi − Li, now referring to the normalized output, is
forwarded to the next PE.

On the other hand, in the case of Fig. 5, the compute
exponent logic of the PE in row i receives the intermediate
êi−1 exponent, instead of the corrected one, as Li−1 is not yet
available to correct it. This means that the outputs of its first
pipeline stage e′i = max(eMi

, êi−1) and d′i = |eMi
− êi−1|

are speculative values, as the exponent used refers to an
unnormalized result and must be subsequently fixed. At the
beginning of its second pipeline stage, Li−1 becomes available
and is forwarded to the exponent fix logic, in order to correct
the speculated values. The difference of the exponents required
for the alignment is:

di= |eMi
−ei−1|= |eMi

−(êi−1−Li−1)|= |(eMi
−êi−1)+Li−1|

As the value of Li−1 is always greater than, or equal to, zero,
we can say that:

di =

{
|eMi

− êi−1|+ Li−1 = d′i + Li−1 , if eMi
≥ êi−1

Li−1 − |eMi
− êi−1| = Li−1 − d′i , if eMi

< êi−1

Additionally, the fix logic generates êi from e′i. However, since
êi is either eMi

, or ei−1 (see above), e′i is not a computed
quantity, but, instead, it comprises the two values eMi and
êi−1 that are being forwarded from the first to the second
pipeline stage. After the correction of ei−1 = êi−1 − Li−1 in
the exponent fix logic, êi is computed and forwarded to the
next exponent compute logic block.

As both êi and Li are computed in the same pipeline stage,
and because Li becomes available at the end of the cycle,
the correction of the final exponent result (i.e., at the South
edge of each column) cannot happen in the same cycle. As a
result, the correction for the exponent of the last PE of each
column will happen during the rounding stage at the end of
the column.

The presented re-organization of the exponent computations
allows for the parallel execution of the pipeline stages of
consecutive PEs. However, the placement of the exponent fix
logic inevitably increases the combinational path delay of the
second pipeline stage of each PE. To overcome this overhead,
we can retime the normalization step.

This retiming is shown in Fig. 6. Instead of normalizing the
result of the addition in the same cycle, normalization occurs
in parallel to the alignment logic at the input of the adder. The
unnormalized value that arrives from the adder of the PE in
row i− 1 requires at most Li−1 left shifts to get normalized.
In the meantime, the alignment value that is computed by the
fix logic determines the amount of right-shifting that may be
required, if the addend was already normalized. Depending
on the relation between the alignment value and Li−1, the
addend would need to either shift to the left, or to the right.
As only one of these options may occur, the two operations are
completely in parallel, removing the serial dependency in the
delay. The new alignment scheme also affects the alignment
value of the second addend that comes from the multiplication.
However, only a right shift may occur in that case. The
unnormalized output of the final PE will be normalized at
the rounding stage at the end of the column.



Fig. 6. The normalization logic is retimed in parallel to the align logic of
the next PE. The addition result that flows across PEs is properly shifted to
the left, or right, according to the exponent fix logic of the same stage.

Fig. 7. The per-layer energy consumption when executing MobileNet [18]
with the two pipeline architectures under comparison.

Overall, the proposed pipeline structure blurs what a PE
actually is across the pipeline stages. In the new design, a PE
implements, in parallel, part of the second pipeline stage of
the first PE and part of the first pipeline stage of the next PE
(in the same column). In fact, this new operational attribute of
the PE is explicitly seen in cycle t0 + 1 in Fig. 6. Assuming
that the highlighted PE of Fig. 6 is the last of the column, an
extra addition stage is needed for the operation to be complete.
Similar to the baseline case, an extra stage is also needed to
round the final result of each column.

IV. EVALUATION

In this section, we demonstrate the effectiveness of the
proposed architecture in reducing the energy requirements
when computing CNNs, as compared to state-of-the-art FP
multiply-add architectures employing the traditional two-stage
pipeline organization of Fig. 3(b). In both cases, we assume
Bfloat16 inputs that are reduced in the vertical direction using
single precision FP32 arithmetic.

Both designs under comparison were implemented in C++
and synthesized to Verilog RTL using Catapult HLS, driven
by a commercial-grade 45-nm standard-cell library. Both SA

architectures have an array size of 128 × 128 PEs. Final
timing/area results are derived from the Oasys logic synthesis
tool. Power was estimated after synthesis using the PowerPro
power analysis and optimization tool.

The proposed design, depicted in Fig. 6, requires 9% more
area than the state-of-the-art FP multiply-add architecture
shown in Fig. 3(b). We assume that both designs have been
optimized for a clock frequency of 1 GHz. This area overhead
is due to the extra pipeline registers required by the proposed
design to pass intermediate exponent and LZA output values
across the two pipeline stages, and the extra combinational
logic of the exponent fix module. Similarly, the proposed de-
sign consumes 7% more power, on average, when computing
layers from state-of-the-art CNNs, such as MobileNet [18] and
ResNet50 [19].

This marginal hardware area and power overhead is amor-
tized by the latency savings reaped by the proposed approach,
which allows for the parallel execution of the pipeline stages of
consecutive PEs. Such latency savings allow the computation
of each CNN layer to finish much sooner, thus yielding a re-
duction in the overall energy consumption of the computation.

To clarify this result, Figs. 7 and 8 report the per-layer
energy consumed when executing each layer of the Mo-
bileNet [18] and ResNet50 [19] CNNs. The energy reported
refers to the average energy observed after computing Mo-
bileNet and ResNet50 on 100 randomly picked images from
the ImageNet database [31].

In both Figs. 7 and 8, we observe that, in the first layers,
the proposed approach actually leads to energy increases.
The reason for this behavior is that the latency reduction
cannot offset the small power overhead of the skewed pipeline
organization. For the last layers, where the structure of the
CNN layers changes, more latency is saved, thereby leading
to significant per-layer energy savings. Most importantly, these
per-layer savings translate to an overall/total energy reduction
of 8% for MobileNet [18] and 11% for ResNet50 [19].

V. CONCLUSIONS

The design of balanced pipelined FP multiply-add units
for the PEs of a SA should not stop at the boundaries of
each PE, but it should also account for the dependencies
arising across pipeline stages of consecutive PEs. The pro-
posed skewed pipeline architecture focuses exactly on this
aspect and effectively optimizes the latency of the reduction
within each column of the SA. In effect, this reduces the
overall latency of matrix multiplication. The small area and
power overhead incurred by this pipeline reorganization is
compensated by significant overall energy reductions when
computing the layers of state-of-the-art CNNs.

Fig. 8. The per-layer energy consumption when executing ResNet50 [19] with the two pipeline architectures under comparison.
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