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Abstract—Epilepsy is one of the most common neurological
disorders that is characterized by recurrent and unpredictable
seizures. Wearable systems can be used to detect the onset of
a seizure and notify family members and emergency units for
rescue. The majority of state-of-the-art studies in the epilepsy
domain currently explore modern machine learning techniques,
e.g., deep neural networks, to accurately detect epileptic seizures.
However, training deep learning networks requires a large amount
of data and computing resources, which is a major challenge for
resource-constrained wearable systems. In this paper, we propose
EpilepsyNet, the first interpretable self-supervised network tai-
lored to resource-constrained devices without using any seizure
data in its initial offline training. At runtime, however, once a
seizure is detected, it can be incorporated into our self-supervised
technique to improve seizure detection performance, without the
need to retrain our learning model, hence incurring no energy
overheads. Our self-supervised approach can reach a detection
performance of 79.2%, which is on par with the state-of-the-art
fully-supervised deep neural networks trained on seizure data.
At the same time, our proposed approach can be deployed in
resource-constrained wearable devices, reaching up to 1.3 days of
battery life on a single charge.

Index Terms—epilepsy, real-time seizure detection, self-
supervised learning, wearable systems, Internet of Things (IoT).

I. INTRODUCTION

EPILEPSY is a neurological disorder that affects more
than 60 million people worldwide, according to the World

Health Organization (WHO) [1]. Despite the advances in anti-
epileptic drugs, one-third of the people with epilepsy (PWE)
remain suffering from recurrent seizures. Furthermore, epileptic
seizures reduce PWE’s quality of life and may even lead to
sudden unexpected death in epilepsy (SUDEP) [2]. Indeed,
PWE have a 2–3 times higher mortality rate compared to the
corresponding healthy population [3]. Mobile health monitoring
on wearable devices can be used to detect the onset of seizures
in real time and alert family members and caregivers for rescue
[4], [5].

Modern machine learning techniques, especially deep learn-
ing, play a vital role in the state-of-the-art of seizure detection.
However, the lack of interpretability still prevents their wide
adoption in clinical practice due to clinicians’ mistrust [6].
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Moreover, deep learning models often need a large amount
of data for achieving high prediction performance, which is a
major challenge in the case of epilepsy monitoring and seizure
detection [6]–[12]. Indeed, many efforts have been paid to use
as small amount of data as possible. For instance, Siamese
networks with few-shot learning [13], [14], one-shot learning
[15], [16], transfer learning [17], and Generative Adversarial
Networks (GANs) [18] are used in seizure detection, but still re-
quiring seizure data in the training process. Moreover, anomaly
detection techniques [19]–[21] are also used in this concept,
which again require seizure data to select the hyperparameters
for outlier detection. However, new patients usually do not have
any collected and labelled seizure data, a major challenge that
has been recognized in the epilepsy domain.

In this paper, we propose EpilepsyNet, the first end-to-
end self-supervised network for seizure detection without any
need for labelled seizure data for new patients in training.
Our proposed network is aimed to be used in wearable and
resource-constrained systems, e.g., e-Glass [22] with only two
electroencephalogram (EEG) channels or behind-the-ear EEG
sensors [23] with eight channels. EpilepsyNet is interpretable
in the sense that it is designed to detect seizures by looking into
the similarities between the new EEG data and the signature set
for non-seizure and seizure signals. The signature set contains
representative non-seizure and seizure patterns, which have
recently been demonstrated to be highly relevant in epilepsy
monitoring [24]. Initially, the network is pretrained offline
based on generic non-seizure data and synthetic seizure data
(i.e., pretext task in self-supervised learning). Therefore, the
signature set originally contains only synthetic seizure and real
non-seizure data. At runtime, once a seizure is detected, the
new seizure data can be readily incorporated into the signature
set stored in the wearable system (i.e., the target/downstream
task in self-supervised learning). Thus, this scheme removes the
need to retrain the model, hence incurring no energy overhead.
Moreover, such a scheme enables incremental improvement of
the seizure detection performance by benefiting from the newly-
acquired seizure/non-seizure EEG data.

In summary, EpilepsyNet is designed for resource-
constrained wearable systems, exploiting the seizure/non-
seizure data acquired at runtime to incrementally improve
seizure detection performance without the need for online
retraining. Our main contributions are summarized below:

1) We propose EpilepsyNet, the first interpretable self-
supervised network for seizure detection without any
need for real seizure data in training, which has com-



parable performance with supervised methods.
2) Our self-supervised method has the capacity of exploiting

new seizure data at runtime to incrementally improve the
seizure detection performance, reaching 79.2% (compa-
rable with 80.8% in the fully-supervised state-of-the-art
techniques [25]), without any major energy overheads.

3) We deploy and evaluate our network on the e-Glass
wearable system. Our experimental evaluation shows that
the battery lifetime of the e-Glass system running Epilep-
syNet is 1.3 days, i.e., 31.2 hours on a 225 milliampere-
hour (mA·h) battery charge.

II. EPILEPSYNET

A. Network Overview
Fig. 1 shows the architecture of our proposed EpilepsyNet,

which consists of two parts: offline training (Section II-B)
and online inference (Section II-C). In the offline training, we
propose a pretrained synthesis network to generate synthetic
seizure data based on an autoencoder [20]. Then, we con-
struct the pairs of data and train a Siamese-based contrastive
network [26] to detect seizures by comparison against non-
seizure/seizure patterns in the signature sets. During the online
inference, we only need to deploy a sub-network of Epilep-
syNet, as shown in Fig. 1, on the e-Glass wearable system.
We keep the signature sets updated at runtime to incrementally
increase the performance of seizure detection without the need
to retrain the model, hence incurring no energy overheads.

B. Offline Training
1) Synthesis Network: The synthesis network has two main

parts: an encoder and a decoder. We use a 2-layer 1D-CNN as
the encoder to extract the latent features and a 2-layer 1D-
CNN as the decoder to reconstruct the original data. Here,
only the non-seizure data, denoted by Ins, is used as input
for the training of the synthesis network. Let us denote the
reconstructed signal by Ĩns. Accordingly, the reconstruction
loss function Lre, which makes the synthesis network learn
the latent features is defined as:

Lre =
1

T

∥∥∥Ĩns − Ins

∥∥∥
1
, (1)

where T is the length of the input signal. We first train the
synthesis network. Then, we use the trained network to generate
synthetic seizure data, denoted by Iss, by adding Gaussian
noise N ∼ (0, 1) to the non-seizure data Ins. If the recon-
struction error exceeds a certain threshold, the reconstructed
signal is regarded as synthetic seizure data.

The threshold is determined automatically by calculating the
loss between Ins and Ĩns and selecting a fixed cutoff at 95%
(95th percentile), without the need for any real seizure data.

2) Contrastive Network: We consider contrastive learning
for seizure detection to avoid the demand for large amounts
of data. Specifically, a 3-layer 1D-CNN and a 2-layer fully
connected layer are used to measure the relative similarity of
the input pairs and a 4-layer 1D-CNN is used to reconstruct
these signals from the latent features for both classes. Given
that we have nns non-seizure samples and nss synthetic seizure

samples, we get nns · nss +

(
nns

2

)
+

(
nss

2

)
pairs. The

pairs include three different types of data: (Ins, Ins), (Iss, Iss)
and (Ins, Iss). We use all these different pairs to train our
contrastive network.

3) Re2Cons Loss Function: To train the contrastive network,
we propose a new loss function, called Re2Cons. This loss
function has three parts: L1, L2 and L3 denoting the recon-
struction loss of non-seizure data, the reconstruction loss of
synthetic seizure data and the contrastive loss, respectively. L1,
L2, and L3 are defined as follows:

L1 =
1

T

∥∥∥Ĩns − Ins

∥∥∥
1
, L2 =

1

T

∥∥∥Ĩss − Iss

∥∥∥
1
, (2)

L3 =
1

T
((1− Y )×D2 + Y × (max(0,M −D)2)), (3)

where Y is the label. Y is 1 for (Ins, Iss) as a pair and 0
for (Ins, Ins), (Iss, Iss). D is the Euclidean distance between
latent features. Besides, we introduce margin M to maintain the
distinguishability of latent features between the non-seizure and
synthetic seizure data. The Re2Cons loss includes contrastive
and reconstruction losses as shown below:

Re2Cons = λ1L1 + λ2L2 + λ3L3, (4)

where λi captures the relative importance of each loss.

C. Online Inference
In the online inference phase, we only deploy a sub-network

of EpilepsyNet on a e-Glass wearable system because the
latent feature is the only required output for seizure detection.
As shown in Fig. 1, a 3-layer 1D-CNN and a 2-layer fully
connected layer are exploited to extract the latent feature and
measure the relative similarity. This network is essentially
the exact same replica of the contrastive network in Fig. 1,
excluding the two decoders. Therefore, this network, denoted
by F (·), does not need to be trained online and it uses the
corresponding network weights from the trained contrastive
network. The network expects two inputs: one is the newly-
acquired real-time EEG data at runtime and the other is from
the signature sets. In essence, the network measures the distance
between the corresponding embeddings of the two inputs. The
signature set contains the representative non-seizure and seizure
patterns, which provide the references for calculating relative
similarity between signatures and real-time EEG data. This
demonstrates the interpretability of EpilepsyNet.

We use the 2-way K-shot learning strategy, which means
that we prepare a non-seizure signature set Sns with K

2 non-
seizure data/patterns, and a seizure signature set Sss with K

2
seizure data/patterns, as shown below:

Sns =
{
I(1)ns , I

(2)
ns , ..., I

(K
2 )

ns

}
, Sss =

{
I(1)ss , I(2)ss , ..., I

(K
2 )

ss

}
.

For any real-time input Ii, the seizure/non-seizure class is
determined by selecting the pattern in the signature sets with
the highest score of similarity. In other words, the highest score
of latent feature similarity is the shortest feature distance D in
the latent domain, as formulated below:

Dns = min
Ins∈Sns

∥F (Ii)− F (Ins)∥2 ,

Dss = min
Iss∈Sss

∥F (Ii)− F (Iss)∥2 ,
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Fig. 1. EpilepsyNet contains offline training and online inference. Synthesis Network: only non-seizure data are used and noise is added to generate synthetic
seizure data. Contrastive network: it constructs the contrastive pairs with the Re2Cons loss. The yellow blocks are 1D-CNNs with BatchNorm and ReLU
activation function and the gray blocks are Fully Connected Layers.

Ii =

{
non− seizure if Dss > Dns,

seizure otherwise.

The update of the signature sets at runtime are computa-
tionally efficient. In particular, once a seizure is detected at
runtime, the seizure data can be incorporated into the signature
sets on the e-Glass wearable system without the need to retrain
the model. During the update process, we only need to replace
the synthetic seizure data with the detected real seizure data in
seizure signature set. We maintain the latent feature of detected
real seizures to reduce the number of online inferences in the
future. At the same time, we already have the latent feature
of the initial signature sets, during the process of the offline
contrastive network. Thus, only one inference for each newly-
acquired EEG data is conducted during the online inference.

Finally, as more real seizure data are detected at runtime, the
seizure signature set is updated accordingly over time and the
seizure detection performance will improve. This process also
indirectly improves the quality of the seizure signature set. As
a result, while the network does not need to be retrained, it can
reach a higher contrastive performance over time. In practice,
as we will discuss in the next section, only 5 real seizure
and 5 non-seizure signatures are sufficient to reach a detection
performance comparable with the fully-supervised state-of-the-
art techniques [25]. Thus, this capacity of EpilepsyNet for self-
evolution enables incremental improvement of seizure detection
performance, without incurring any energy overheads.

III. EXPERIMENTAL EVALUATION AND RESULTS

A. Experimental Setup

1) Dataset: We evaluate our proposed approach based on
the CHB-MIT Scalp EEG Database [27] for both training and
inference. Here, we only consider two channels (T7F7 and
T8F8) to show the feasibility of running the proposed network
on the e-Glass wearable system [22]. Furthermore, we do not

consider patients 6, 14, and 16, because they have very short-
lasting seizures. For the pre-processing, a bandpass filter with
the pass band of 1–30 Hz is applied to the raw EEG signals.
Then, we window the filtered signal with the window length of
4 seconds, i.e., 1024 samples with a Z-score standardization.

2) Implementation Details: The dataset comprises training
sets (70%), validation sets (15%), and testing sets (15%).
Furthermore, we set batchsize to 16, learning rate to 1e−3,
epochs to 40 for the synthesis network, and set batchsize to
4, learning rate to 5e−4, epochs to 50 for the contrastive
network with λ1 = λ2 = λ3 = 1 and M = 6.0. We use
the Adam optimizer. EpilepsyNet is implemented in Pytorch
and the network is trained on an NVIDIA® V100 Tensor Core.

3) Evaluation Metrics: To evaluate the performance of
EpilepsyNet, we use three metrics called Sensitivity (Sens =

TP
TP+FN ), Specificity (Spec = TN

TN+FP ), and Geometric mean
(Gmean =

√
Sens× Spec). The seizure data are regarded

as P (Positive) and the non-seizure data are regarded as N
(Negative). TP is the number of correctly detected seizure
samples. TN is the number of correctly detected non-seizure
samples. Furthermore, FP and FN denote the number of false
positives and false negatives, respectively.

B. Experimental Results
1) Performance: Here, we evaluate the seizure detection per-

formance of our proposed EpilepsyNet approach and compare
the results with the state-of-the-art techniques.

Basic Inference: Initially, we only have the synthetic seizure
data in the seizure signature set. Therefore, in EpilepsyNet, we
exclusively use the non-seizure and synthetic seizure data in
the training and signature sets. We also consider the case where
we train the network using real seizure data, but the network
still uses the synthetic seizure signature set and denote it by
EpilepsyNet + Real Seizure. We perform the experiments four
times and report the average results in Table I. The results
show that our network, without using any real seizure data, has



TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT EXPERIMENTAL SETUPS.

Type Approach Real Seizure Real Seizure Real Seizure Re2Cons Sens(%) Spec(%) Gmean(%)In Training In Signature Sets In Evaluation

Basic EpilepsyNet + Real Seizure ✓ × ✓ ✓ 63.3 89.4 73.3
EpilepsyNet × × ✓ ✓ 60.7 91.5 72.2

Incremental
iEpilepsyNet + Real Seizure ✓ ✓ ✓ ✓ 80.7 79.8 80.2

iEpilepsyNet - Re2Cons × ✓ ✓ × 76.2 77.7 76.8
iEpilepsyNet × ✓ ✓ ✓ 78.9 79.7 79.2

SoA Fully-Supervised CNN [25] ✓ – ✓ – 71.4 91.5 80.8

Fig. 2. Performance improvement in incremental inference.

a comparable performance with the case when we use the real
seizure data in the training process.

Incremental Inference: In the online inference phase, once
a seizure is detected, the synthetic seizure data in the seizure
signature set will be replaced by the real seizure data incre-
mentally. The incremental replacement of seizure signature
data does not require any retraining of the network, hence
not requiring any extra energy. Specifically, by increasing the
number of real seizures in seizure signature set, all the metrics
will be improved incrementally. These results are shown in Fig.
2. As we observe, the Gmean increases from 71.3% to 79.2% in
the incremental inference when we increase the number of real
seizure patterns in the seizure signature set from one seizure
to five seizures. Similarly, the Sens increases from 66.5% to
78.9% and the Spec increases from 77.1% to 79.7%.

Below, we perform several experiments to extensively eval-
uate our proposed approach:

1) iEpilepsyNet (incremental EpilepsyNet): contrastive
learning with the Re2Cons loss function, and with real
seizure data used in signature sets and evaluation, but not
in the training process. As shown in Table I, the Gmean
of iEpilepsyNet achieves 79.2%. In addition, the Sens
reaches 78.9% and the Spec reaches 79.7%. The results
are on par with the fully-supervised state-of-the-art
Convolutional Neural Network (CNN) technique in [25]
as shown in Table I.

2) iEpilepsyNet + Real Seizure: contrastive learning with the
Re2Cons loss function, and with real seizure data used in
training, signature sets, and evaluation. As shown in Table
I, the Gmean of iEpilepsyNet + Real Seizure achieves
comparable 80.2%. The result highlights the fact that

using real seizure data in the training process can only
marginally (less than 1%) improve the seizure detection
performance compared to iEpilepsyNet.

3) iEpilepsyNet - Re2Cons: contrastive learning without the
Re2Cons loss function, and with real seizure data used
in signature sets and evaluation, but not in training. As
shown in Table I, the Sens is 76.2%, the Spec is 77.7%,
and the Gmean is 76.8%. All the evaluation metrics are
lower than those of iEpilepsyNet, which shows the impact
of our proposed Re2Cons loss function.

4) Fully-supervised CNN [25]: a fully-supervised CNN-
based seizure detection using only 2-channel EEG, cor-
responding to the e-Glass wearable system. As shown
in Table I, the iEpilepsyNet, without using any real
seizure data for training, achieves a seizure detection
performance of 79.2% in terms of Gmean, which is
comparable with the performance achieved by this fully-
supervised state-of-the-art CNN technique, i.e., 80.8%.

2) Power Consumption: We deploy our EpilepsyNet in the
e-Glass system [18], which includes: (1) a STM32L476RGT6
ARM Cotex-M4 microcontroller, featuring 1 Mbyte of Flash
memory and 128 Kbytes of SRAM; (2) an ADS1299 EEG
front-end. First, we use the Otii Arc power analyzer and a shunt
resistor, i.e., 5 Ohm to measure e-Glass’ current consumption
in two operating modes: (1) run mode, active while retrieving
data and processing; (2) low-power mode, activating the stop 2
mode while idle (only acquiring data). Second, we use the ARM
Cortex-M data watchpoint and trace component to determine
the inference run time (microcontroller running at 80 MHz). e-
Glass board draws an average of 22.45 mA in run mode, which
is reduced to 6.40 mA in low-power (always-active ADS1299
circuitry consumes approximately 4.6 mA). Inference lasts only
201.11 ms, a 5% duty cycle (4-second window) leading to a
7.21 mA current consumption on average. When using a 225
mA·h LiPo battery, e-Glass can achieve approximately 31.2
hours of battery lifetime (more than one day).

IV. CONCLUSIONS

In this paper, we have proposed EpilepsyNet, the first end-to-
end self-supervised network that can perform seizure detection
for new patients with no need for training the model with their
seizure data. EpilepsyNet enables the possibility of long-term
ambulatory monitoring on resource-constrained edge devices
and wearable systems with a performance on par with the fully-
supervised state-of-the-art networks.
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