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Abstract—In this paper we present a memristor-inspired 
computational method for obtaining a type of running 
“spectrogram” or “fingerprint” of epileptiform activity 
generated by rodent hippocampal spheroids. It can be used to 
compute on the fly and with low computational cost an alert-
level signal for epileptiform events onset. Here, we describe the 
computational method behind this “fingerprint” technique and 
illustrate it using epileptiform events recorded from 
hippocampal spheroids using a microelectrode array system.  
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I. INTRODUCTION  

Regenerative medicine is a promising branch of health 
science that aims at restoring brain function by rebuilding 
brain tissue. However, repairing the brain is one of the hardest 
challenges and we are still unable to effectively rebuild brain 
matter. Epilepsy is particularly challenging due to its dynamic 
nature caused by the relentless brain damage and aberrant 
rearrangements of brain rewiring. To overcome the biological 
uncertainty of canonical regenerative approaches, innovative 
solutions are being proposed based on intelligent biohybrids, 
made by the symbiotic integration of bioengineered brain 
tissue, neuromorphic microelectronics and artificial 
intelligence, to effectively drive self-repair of dysfunctional 
brain circuits. The EU project HERMES i  fosters the 
emergence of a novel biomedical paradigm, rooted in the use 
of biohybrid neuronics (neural electronics), which we name 
enhanced regenerative medicine. In this project one of the 
components is an implantable “Neuromorphic Computing 
System” (NCS), based on memristors, that can establish a bi-
directional communication with a graft to be implanted in an 
epileptic brain, replacing damaged epileptic tissue. This 
concept is illustrated in Fig. 1. The NCS interacts with the 
graft to guide its integration within the host brain. As the latter 
might still generate seizures during the regeneration process, 
the NCS learns a cost function to predict the probability of 
seizure build-up and develops a stimulation policy to halt or 
prevent it. Since the NCS has to be a low power implantable 
system, during its training phase, it is supervised by an 
external Artificial Intelligence system (AI) running on high 
power servers. Once the NCS has learned its cost function, the 
AI system is disconnected. With this long-term vision in mind, 
as a first step, an initial goal is to develop an NCS capable of 
interacting with the graft, predicting ictal activity and 
establishing an adaptive stimulation policy to counteract it. In 
order to recognize when seizure generation probability 
increases, while relying on low computational costs, we 
propose here a simple low-computational frequency 
decomposition memristor-operation-inspired computing 
function, which we call the “memristor-transform”. By 
extracting a simple tunable and adaptive cost-function from 
this “memristor-transform”, one can then further develop a 
stimulation policy to halt the seizure or prevent its onset. This 
memristor-inspired computation can be readily implemented 

in highly compact low-power hardware. In this paper we 
present the concept of this “memristor-transform” and 
illustrate it with in vitro microelectrode array (MEA) 
recordings of rodent hippocampal spheroids. 

The rest of the paper is organized as follows. Section II 
describes the in vitro measurement setup, Section III explains 
the computational “memristor-transform”, and Section IV 
illustrates how to apply this concept to four filtered versions 
of spheroid MEA recordings to obtain a “fingerprint” that can 
be used to compute an alert-level signal for an upcoming ictal 
event. 

 
Fig. 1.Enhanced regenerative medicine based on biohybrid constructs. The 
neuromorphic computing system (NCS) guides the integration of the graft 
within the host brain. Artificial Intelligence (AI) supervises the NCS and 
guides its learning. 

 
Fig. 2.Microelectrode array set-up. 

II. MEA SYSTEM DESCRIPTION  

There is a vast literature body on biomedical systems for 
EEG-based seizure detection and prediction [1]-[19], although 
normally their computations are not memristor-inspired. Here 
we focus on direct MEA based in vitro measurements, and 
using a memristor-inspired computation. Fig. 2 illustrates a 
MEA2100-mini-HS60 system for in vitro recordingsii. The 
MEA headstages are connected to a signal collector unit, 
plugged onto an interface board, which connects the system to 
a host PC. In our setup we used only one headstage. All the 
components are from Multichannel Systems, Germany. 

Individual hippocampal spheroids were taken from the 
incubator immediately prior to the recording and 
accommodated the MEA and let habituate for 20 minutes. 
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Recordings were performed at ~37°C, achieved with the use 
of a custom-made heating lid covering the headstage along 
with the warming of the MEA amplifier base (temperature set 
at 37°C). The recording medium was equilibrated at pH~7.4 
through humidified carbogen delivered via a tubing connected 
to the heating lid and consisted of (mM): NaCl 117, KCl 3.75, 
KH2PO4, 1.25, MgSO4 0.5, CaCl2 2.5, D-glucose 25, 
NaHCO3 26, L-Ascorbic Acid 1. Signals were acquired via an 
8x8 3D MEA (TiN electrodes, diameter 12 m, height 80 m, 
inter-electrode distance 200 m, impedance ~150 kΩ, internal 
reference electrode), sampled at 20 kHz and low-pass filtered 
at 10 kHz before digitization. Each recording session lasted 20 
minutes. For off-line analyses, signals were first averaged to 
an equivalent sampling frequency of 400 Hz.  

III. MEMRISTOR TRANSFORM 

In a recent paper, Liu et al. [20] presented a method based on 
physical memristors for discerning between pre-ictal and 
interictal recordings. For this, they used a public open-access 
benchmark, the Kaggle Seizure Prediction Dataset  [21]. This 
dataset includes 16-channel 400Hz sampling-rate iEEG 
recordings from 5 different dogs. These belong to two 
categories: 

a) Interictal, recorded at least one week before or after a 
seizure 

b) Pre-ictal, recorded in the range of one hour before a 
seizure 

The authors selected 2.4-second clips which, sampled at 400 
Hz (2.5 ms), contain 960 data points on each of the 16 
channels. These 960 data points are grouped into 64 separate 
data segments of 15 data points. This way, for each 2.4s clip, 
there is a total of 16x64=1024 15-data-point segments. Each 
of these 1024 segments is applied to a physical memristor to 
erase it [22]-[23], and a “finger-print” (or feature) matrix is 
built with the conductance change G the memristors had 
experimented. This fingerprint from physical memristors is 
then used to train a classifier to successfully distinguish 
between Interictal and Pre-ictal recordings. In the next 
subsection we disclose the ideal mathematical computation 
the memristors perform to obtain such fingerprints. The 
underlying computation is fairly simple and inspired the 
“memristor-transform” explained in Section IV. Example 1k-
matrices are shown in Fig. 3 for 3 different interictal and pre-
ictal 2.4s clips, using the ideal underlying computations. 

 
Fig. 3.Illustration of “finger-print” matrices, each for one specific 2.4s 16-
channel clip. Half of the finger-prints correspond to interictal recordings, 
and the other half to preictal ones. 

A. Modeling the memristor computations 

Liu et al. exploited the memristor erase operation to compute 
the aforementioned finger-prints. For this, all memristors 

were initially set at high conductance state (“ON” state) and 
then, by using amplitude dependent erase pulses, they 
progressively decreased the conductance for each memristor. 
Let us assume that the decrease in conductance can be 
modelled as [24] 
 

∆𝐺 =∝ (𝑥)𝐺ఊ(௫) (1) 
 
where x is the applied erase amplitude, and coefficients (x) 
and (x) are fitted for each curve. It turns out that a fairly good 
fitting is obtained when (x) and (x) have an amplitude 
dependence given by 
 

𝛾(𝑥) = −𝐴𝑥 + 𝐵 
∝ (𝑥) = −𝐾𝑒௉௫ 

(2) 

 
where A, B, K, and P are fitting parameters. The values we 
obtained for these parameters were A = 7V-1, B = 16.1, K = 
6.31x10-30, P = 32.24V-1. This way, the “memristor-
transform” consists of applying eqs. (1-2) to n consecutive 
samples of a recorded signal, or, as we will see in Section IV, 
to n consecutive samples of filtered versions of a recorded 
signal. Fig. 4 shows the conductance decrease steps when 
applying 15 consecutive constant-amplitude erase pulses. 
The erase pulse amplitude changes between 1.3 V and 1.8 V 
in steps of 0.1 V. 

 
Fig. 4. Conductance reduction obtained by progressively applying 15 erase 
pulses of constant amplitude. 

IV. PROCESSING OF SPHEROID RECORDINGS WITH THE 

MEMRISTOR-TRANSFORM   

Fig. 5(a) shows a 20-minute recording from a spheroid 
generating a mixed pattern of seven ictal events together with 
interictal events. Fig. 5(b) shows a 90 second zoom-in 
focusing on the 5th ictal event.  Fig. 5(c) illustrates a 7 second 
zoom-in, and Fig. 5(d) a 300 ms zoom-in. Each zoom-in is 
approximately one order of magnitude lower, illustrating the 
richness of mixture of slower to faster signal components. As 
a first-order quick analysis, we would like to extract the 
different timing components for each order of magnitude. To 
do this, we compute running averages at different time-
scales:  

i.  A type of reference signal which computes a DC 
average over the 10 s previous samples. Let us call it f0 
component. 

ii.  A slow variation signal which computes the average 
over the 1 s previous samples. Let us call it f1. This 



average signal should be capable of capturing the slowly 
varying changes of the main events. 

iii.  A faster variation signal which computes the average 
over the 100 ms previous samples. Let us call it f2. This 
one can capture faster variations. 

iv.  And a fastest one, computing the average over the 10 
ms previous samples. Let us call it f3. 

v.  Additionally, we consider also the original 400 Hz 
sampled signal for completeness, which we name f4. 

These five signals {f0, f1, f2, f3, f4}, can be considered low-
pass filtered versions of the original f4 signal. The different 
time-range components can be obtained by computing the 
differences among them. For example, timing characteristics 
in the 1s-to-10s range can be extracted by computing f1-f0; 
timing characteristics in the 100ms-to-1s range can be 
extracted by computing f2-f1; timing characteristics in the 
10ms-to-100ms range can be extracted by computing f3-f2; 
and the fasted timing characteristics can be extracted from f4-
f3. These signals can be interpreted as bandpass versions, or 
as computing the changes of one time-scale average with 
respect to the previous slower time-scale average (like a 
derivative). 
 

 
Fig. 5. (a) 20-minute (1200 s) recording of a spheroid sample, including 
mixed interictal and ictal events. (b) 90 s zoom-in view of 5th event in (a). 
(c)  7 s zoom-in view of (b) focusing on a segment that shows slower 
variations mixed with faster ones. (d) 300ms zoom-in of (d) focusing on the 
higher fequency variations. 
 
Fig. 6 illustrates this. There are three panels, each for 
different time scales: Fig. 6 (a) shows a 60 s view, Fig. 6 (b) 
shows an 8 s view, and Fig. 6 (c) shows a 500 ms view. In 
each panel, the top subplot (x1) shows the original signal f4 
(down sampled at 400 Hz), the center subplot (x2) shows 
“low-passed” signals {f3, f2, f1, f0}, and the bottom subplot 
(x3) shows the “band-pass” signals {f43, f32, f21, f10}. 
In Fig. 6(a) the 60 s view shows the fifth event in Fig. 5(a). 
Here we can see that signal f0 is filtering out most of the faster 
variations and is like a running reference level. Signal f1 
follows closely the slow-varying 1sec-range ups-and-downs 
while it filters out the faster variations. Therefore, f10 
captures the slow 1s-range changes in f1 with respect to f0. 
On the other hand, f21 captures faster changes, as it follows 
the f2 (averaged over previous100ms) changes with respect 

to f1 (averaged over previous 1s) changes. Fig. 6 (b) shows a 
7s view. Here we can see that f0 is practically constant.  f1 
follows (with some delay) a clean averaged version of the 
original signal, filtering out all faster transitions. f2 flows 
more closely the original signal but filtering out the very fast 
transitions, which are still present in f3. Consequently, we can 
see that f21 highlights changes in the second to 100ms range, 
while f32 captures changes that are faster than seconds, in the 
100ms ranges. Finally, Fig. 6 (c) shows a 500ms view, where 
we can see that signals f0, f1, and f2 are fairly constants, 
while f3 is able to follow the very fast changes in the original 
signal. This way, f32 tracks the fast variations in the original 
signal, while f43 resembles its derivative.  
Fig. 7 shows a different 200 second section of the recording 
in Fig. 5 (a), but now adding in the bottom subplot the finger-
prints of the memristor-transform illustrated in Fig. 3 applied 
to the four timing components {f10, f21, f32, f43}. These 
fingerprints    highlight    the   amplitudes   of   the   different  
 

(a) 

 
(b) 

 



(c) 

 
Fig. 6. Illustration of timing properties extraction for the signal in Fig. 5(b). 
There are three panels (a-b). Each panel shows a different time scale, and 
each includes three subplots 1-3. Subplots (x1) are the original f4 signals 
sampled at 400Hz rate. Subplots (x2) show signals f3, f2, f1, and f0. 
Subplots (x3) show f43, f32, f21, and f10. Panel (a) shows 60 second view. 
Panel (b) shows an 8 second view. Panel (c) shows a 500ms view. 
 
 
speed/frequency components. One can see that during one 
cycle (blue followed by yellow in Fig. 7) of the slower speed 
component f10, there appear more than one cycle of the 
higher speed components f32 and f43. Additionally, low 
speed component cycles in f10 show rather short separations 
and durations. This contrasts strongly with the interictal 
signals, like the one illustrated in Fig. 8. Here one can see that 
each event has just one cycle for components f10, f21 f32, 
and f43. Also, one can see that event separations are typically 
in the range of 10-20 seconds or more (except the first two). 
This suggests that one could use the event sizes and 
separations of the lower speed components f10 to evaluate 
how spheroids are transitioning from interictal to ictal 
regimes [25]. An additional hint seems to be the number of 
faster component cycles f21-f43 that might appear during one 
low-speed cycle, spread over its duration. This way, one 
could compute a “cost function” or “alert-level signal” that 
depends on event properties, like frequency components 
widths and separation, as well as number of faster cycles 
within a low speed event (see red dashed line in center 
subplot of Fig. 7 and Fig. 8). This alert signal could then be 
used to establish a stimulation policy to halt or prevent ictal 
events while minimizing the number of delivered pulses. 
 

V. CONCLUSIONS AND FUTURE WORK 

We have proposed a computationally efficient 
“memristor-transform” to obtain a frequency dependent 
fingerprint of epileptiform signals. This easy-to-compute and 
informative transform could eventually help in estimating 
probabilities of ictal events onset. This fingerprint resembles 
a type of spectrogram, but with lower computational cost. 
From this fingerprint, a continuous alert-level signal could be 
derived, also with minimum computational cost, for 

computing a probability of an impending ictal event. Future 
work includes experimenting this technique in a closed-loop 
in vitro setup, and devise stimulation policies for interacting 
with the spheroids in real-time and learn how to prevent ictal 
discharges, while minimizing the number of stimulation 
pulses. 

 

 
Fig. 7. Same recording as in Fig. 6, but now adding in the bottom subplot 
the memristor-based computational finger-print. Red oblique lines in 
bottom graph indicate events. Dashed line in center graph is a computed 
“alert” signal. “Alert” signal increases with short inter-event separations 
and high frequency components, while it decays with time by default. 
 
 
 

 
Fig. 8. Young spheroid signal showing interictal-like activity. Alert 
signal only rises a bit at second event, as it is very close to the first one. 
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