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SALSA: Simulated Annealing based Loop-Ordering
Scheduler for DNN Accelerators

Victor J.B. Jung†, Arne Symons∗, Linyan Mei∗, Marian Verhelst∗, Luca Benini†
†Integrated Systems Laboratory, ETH Zürich, Switzerland. ∗Department of Electrical Engineering, KU Leuven, Belgium.

Abstract—To meet the growing need for computational power
for DNNs, multiple specialized hardware architectures have been
proposed. Each DNN layer should be mapped onto the hardware
with the most efficient schedule, however, SotA schedulers struggle
to consistently provide optimum schedules in a reasonable time
across all DNN-HW combinations.

This paper proposes SALSA, a fast dual-engine scheduler to
generate optimal execution schedules for both even and uneven
mapping. We introduce a new strategy, combining exhaustive
search with simulated annealing to address the dynamic nature
of the loop ordering design space size across layers. SALSA is
extensively benchmarked against two SotA schedulers, LOMA [1]
and Timeloop [2] on 5 different DNNs, on average SALSA finds
schedules with 11.9% and 7.6% lower energy while speeding-up
the search by 1.7× and 24× compared to LOMA and Timeloop,
respectively.

Index Terms—DNN, accelerator, scheduling, energy-efficiency,
combinatorial optimization, simulated annealing

I. INTRODUCTION

Convolutional Neural Networks (CNNs) [3] are a very
successful class of machine learning (ML) models. This type of
Deep Neural Network (DNN) consists of a stack of convolutional
layers and reaches state-of-the-art (SotA) performance in the
fields of image recognition, classification, segmentation, etc.
A wide range of specialized hardware (HW) emerged to
accelerate DNN execution [4]. These DNN accelerators vary
from datacenter-class [5] to embedded systems. The efficiency
of a DNN Accelerator is mainly based on the memory hierarchy,
the spatial unrolling, and it heavily relies on efficient schedulers
to find optimal temporal mappings [6] of DNN layers onto
hardware resources.

As previous work has demonstrated, the scheduling of a NN
onto such HW accelerators impacts energy and latency up to
orders of magnitude [7]. A subtle change in the characteristics
of the NN-HW combination can completely modify the optimal
schedule. For example, a change in on-chip memory resources
can alter the optimal data allocation scheme and even the most
efficient workload execution order to minimize energy or latency.

As a result, many design space exploration (DSE) schedulers
[2], [8], [9], [1], have been proposed to automatically find the
optimal schedule given a DNN workload and an accelerator
HW architecture. However, the above-mentioned schedulers
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Fig. 1. Overview of the SALSA implementation.

fail to reach near-optimal mappings in a reasonable time. The
contributions of this paper are the following:

1) We introduce SALSA, a novel scheduler that never
shrinks or prunes the schedule search space while having
an execution time of a few seconds. Using a dual-
engine strategy, SALSA consistently reaches near-optimal
schedules with an average error margin of 0.007%.

2) To prove its superiority, we extensively compare SALSA
with 2 SotA schedulers, LOMA [1] and Timeloop [2].
SALSA always finds schedules with higher or equal
quality than Timeloop and LOMA while consequently
reducing the search time.

We tested SALSA on 5 commonly used DNNs, benchmarked
against Timeloop and LOMA, and evaluated using the SotA cost
model ZigZag [10]. In both benchmarks, SALSA achieves
a consequent reduction of the search time, we report 1.7×
and 24× faster search than LOMA and Timeloop. Most
importantly, SALSA reaches superior schedules leading to
a reduction of the energy needed to execute the model
by 7.6% and 11.9% compared to LOMA and Timeloop,
respectively.

II. BACKGROUND

A. DNNs, Accelerators & Schedules

A single convolutional layer consists of 7 nested for-loops,
as can be seen in the top-left of Figure 1. The loop dimension
sizes determine the tensor size of the three operands; Input (I),
Weight (W), and Output (O). Other NN layer topologies (fully
connected, pointwise convolutional, matrix-matrix multiplica-
tion, etc.) can use the same representation by fixing specific loop
dimension sizes to 1. In order to speed up the DNN inference



or increase its energy efficiency, various Application-Specific
Integrated Circuit (ASIC) DNN accelerators have been proposed
both in academia and by the industry. Such accelerators typically
include a spatially unrolled array of Processing Elements (PE)
that consist of a Multiply-Accumulate (MAC) unit and local
memories to store the operand data. The PEs are connected
to larger memories higher up in the memory hierarchy stack
through fixed interconnections or a flexible Network-on-Chip
(NoC) [4]. These connections allow the multicasting of operand
data to multiple PEs, consequently parallelizing the computation.
Unrolling a for-loop onto multiple PEs will turn it into a
parallel for-loop (parfor-loop). When executing a DNN onto an
Accelerator, the set of parfor-loops is named spatial unrolling
and indicates the parallelization pattern. Usually, the number
of PEs is lower than the dimension of the original for-loops;
thus, it is common to split them in order to turn a part of the
original for-loop into parfor-loops.

On top of the spatial unrolling, an optimized temporal
execution schedule is crucial to extract the full potential of DNN
Accelerators. More specifically, a schedule can be decomposed
into two elements: 1.) the loop ordering, which describes the
temporal processing order of the for-loops, and 2.) the memory
allocation, which assigns the operands of each loop to a specific
memory resource. A detailed description of these elements
follows later.

B. Loop Prime Factor Decomposition

The loop ordering of the original nested for-loop representa-
tion would not result in an optimal schedule. By decomposing
the large loop dimensions into multiple smaller loops, and
subsequently re-ordering those smaller loops, better schedules
can be found. At the finest level of granularity, each loop
is decomposed into the number of prime factors of its loop
dimension. The resulting indivisible for-loops are referred to as
Loop Prime Factors (LPF). An example of the decomposition
of an originally nested for-loop to an LPF ordering is shown in
Fig.2 steps A to B.

C. Loop Ordering Search Space

A loop ordering o can be seen as a permutation of a finite set
of elements, where each element represents a for-loop (Fig.2
step B). The loop ordering search space is thus represented
by the Symmetric Group Sn with n the number of loops in o.
The order (number of elements) of Sn is n! if every element is
unique. Due to the LPF decomposition, n = 20 is not uncommon
for modern DNN layers. This would require the evaluation of
O(1018) orderings. Therefore, exhaustively going through all
elements in Sn is only tractable for small NN layers where
n < 11.

D. Memory Allocation

Loop ordering has to be combined with the allocation of the
data attributed to these loops to specific memory resources in the
memory hierarchy (Fig.2 step D). Most mapping representations
store the 3 operands (I/W/O) associated with a for-loop at the
same memory level. Such mappings are referred to as ‘even
memory mappings’. A more complex mapping strategy has

been proposed recently [10], named ’uneven memory mapping’.
This strategy allows to unevenly distribute of operand data of
the nested for-loops within shared memories in the hierarchy
in order to more efficiently exploit the data reuse at the cost of
drastically enlarging the mapping search space.

To reduce the large mapping search space, LOMA [1]
proposed a bottom-up memory allocation strategy independent
of the loop ordering. This is possible due to the fact that for a
single loop ordering o, the optimal memory allocation m can be
inferred with a one-to-one relationship in a bottom-up fashion.

E. Cost Model

The energy, latency, or any other performance metric of the
inference of a CNN layer on an accelerator depends on four
aspects: 1.) the DNN workload w (size of the 7 loop dimensions);
2.) the accelerator characteristics a (PE array size, memory
organization, memory size, etc.); 3.) the spatial unrolling s
(parallelization strategy across PE array); 4.) the schedule or
temporal mapping m.

This work focuses on temporal DNN mapping optimization,
where the inputs w, a, and s are provided by the user or by an
upper-level search engine.

The optimization objective, returned by the cost model, is
noted V and can represent the energy, latency, Energy-Delay
Product (EDP), etc.
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Fig. 2. Detailed example of SALSA’s Simulated Annealing path. The workload
used in this figure is fictional for the purpose of demonstration, and the Memory
Hierarchy is composed of three levels: DRAM, Shared Buffer, and Registers.

III. RELATED WORK

In recent years, a plethora of tools has been proposed to
generate high-quality schedules. Some constrain the search space
like CoSA [9], and Pluto [11] to speed up the search. Others, like
Interstellar [8] and ZigZag [10] prune some part of the search
space during the search through heuristics. LOMA [1] combines



an exhaustive search with optional user-provided constraints,
providing both unconstrained and constrained search. Timeloop
[2] embeds a random search engine in an unconstrained space,
failing to consistently provide near-optimum schedules in fast
search time. Alternatively, Mind Mappings [12] trains a DNN
to substitute the cost model and make the search space smooth
and differentiable in order to apply Stochastic Gradient Descent.

It is important to highlight that, besides the search strategy, the
representation of a schedule varies between frameworks. This
makes it hard to extensively compare results and performances.
All the above-mentioned frameworks implement an even map-
ping representation (see Section II-D). ZigZag’s and LOMA’s
representation also allows uneven mappings. Consequently, its
mapping search space becomes more complex.

SALSA overcomes these bottlenecks by implementing a
flexible and fast scheduler that allows for both even and uneven
mappings generation by separating loop ordering and loop
memory allocation in two independent processes. This also
allows one to use SALSA with other scheduling representations,
e.g., plug in another memory allocation strategy or cost
model. As SALSA’s loop ordering algorithm doesn’t use expert
knowledge of the cost model or memory allocation, it is robust
to drastic changes in the search space.

IV. SALSA SCHEDULING APPROACH

To cope with the changing size of the search space from one
layer to another, SALSA implements a dual search strategy, as
shown in Figure 1. The simulated annealing path is shown in
detail in Figure 2.

A. Runtime Approximation and Search Method Selection

To decide which of the Exhaustive or Simulated Annealing
paths is the fastest (Fig.1), we evaluate and compare their
runtime. The Simulated Annealing path’s runtime is constant
(depends on a fixed hyperparameter) while the Exhaustive path’s
execution time T is evaluated as follows:

T (n, k) = τ
n!∏m

i=1 ki!
(1)

Where n is the number of elements in the loop ordering, ki
is the multiplicity of the i-th element, m is the number of
unique elements in the loop ordering, and τ is an HW-dependent
constant.

Figure 3 shows how the exhaustive search time exponentially
increases with the number of LPFs in a loop ordering while
the simulated annealing search time remains constant. We
will demonstrate that, even though more LPFs imply a larger
permutation space, simulated annealing performs well across
all DNN-HW combinations in a constant time.

B. Exhaustive Search

The exhaustive search branch is implemented using LOMA’s
scheduler [1]. After the exhaustive loop ordering generation,
each unique ordering undergoes a bottom-up memory allocation
and, finally, a cost model evaluation (both explained next). Most
importantly, this exhaustive search engine guarantees to find
the global optimum for any preferred optimization criterion at
the cost of a potentially infeasible search time.
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Fig. 3. Graph illustrating the required search time for different search strategies
for varying numbers of LPFs for AlexNet Layer 2. Note the logarithmic y-axis.

C. Simulated Annealing Search

In most cases, the exhaustive path would be too time-
consuming, and thus the simulated annealing path is taken.
Despite its simplicity, simulated annealing [13] and its different
variants are widely used and prove to be efficient in combina-
torial optimization. Each iteration of the simulated annealing
pass will go through the subsequent steps depicted in Figure 2:

1) Sampling New Ordering: In order to sample new orderings
(Fig.2 step C), we model a neighborhood of nearby states that
can serve as the next candidate state [13]. SALSA defines the
neighborhood of a loop ordering o as follows:

No := {swap(o, i, j) | i ∈ [0, n), j ∈ [0, n), i 6= j} (2)

with swap(o, i, j) the action of swapping the LPFs at indices i
and j of the ordering o of size n. With this neighborhood, any
point in the search space can be reached in n− 1 steps.

2) Memory Allocation & Cost Model Evaluation: Firstly,
we allocate the memory accordingly to the new loop ordering
generated by the previous stage (Fig.2 step D). SALSA then
uses a cost model to get the performances associated with the
candidate state (Fig.2 step E). In this paper, results using the
ZigZag as well as the Timeloop cost model will be shown.

3) Transition Probability Computation & Next Node Selection:
Once the cost V ′ of the sampled state m′ is returned by the
cost model, SALSA computes the probability of accepting the
candidate state m′ using the following formula:

P(m,m′) = exp(
V
V ′ − 1

T
) (3)

where V and V ′ are respectively the optimization objective
of the states m and m′. The temperature T is a hyperparameter
handling the balance between intensification and diversification
to avoid getting stuck in local optima while focusing the search
on promising regions of the search space.

The evolution of T depends on the number of iterations I
and respect the following geometric progression: Ti+1 = ρTi
where ρ = 0.999
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V. EXPERIMENTAL RESULTS AND BENCHMARKING

A. Experimental Setup

SALSA is implemented in Python and benchmarked across
other schedulers available in the SotA. In our study, we use
the 5 following NN: AlexNet, ResNet34 [14], ResNet50 [14],
DarkNet19 [15], and MobileNetV2 [16]. The accelerator a is an
Eyeriss-like architecture [4], consisting of a 14 by 12 PE array.
Besides a MAC unit, each PE includes a scratchpad for weights,
inputs, and outputs. Above the PE array resides a global buffer
for storing inputs and outputs, followed by a DRAM that holds
all three operands. The spatial dataflow s is fixed in accordance
with the architecture.

The total energy consumption of executing a layer is used as
V . Experiments were run on a quad-core CPU @3.6GHz, and
with I = 1000, ρ = 0.999 and T0 = 0.05.

B. Experimental results

To assess the efficiency of the simulated annealing path of
SALSA, we show the energy distribution of mappings using both
SALSA and Timeloop (Fig. 4). Note that this energy distribution
pattern is consistently found across layers of all studied DNNs.
Compared to the random-pruned search of Timeloop, SALSA’s
simulated annealing energy distribution is centered on higher-
quality states, providing better schedules in a shorter time.

The stochastic nature of SALSA’s simulated annealing
motivates an exhaustive search on ResNet34 in order to study
the capability of SALSA to consistently reach near-optimal
schedules. We used LOMA to exhaustively find the best loop
ordering for each unique layer of ResNet34, then we ran
SALSA’s simulated annealing engine 500 times per layer. We
find that SALSA reaches the global optimum 99.9% of the
time. Even when SALSA does not find the global optimum, it
still generates high-quality schedules, on average with 0.007%
higher energy than the best mapping.

We also compare SALSA against LOMA with various LPF
Limits (Fig. 6). The LPF Limit parameter indicates the maximum
size of the orderings considered by LOMA, it limits the number
of orderings to evaluate at the cost of the schedule’s energy.
We can clearly notice the trade-off between search time and
energy between LOMA 6 and SALSA. Since the search for the
optimal schedule is done offline, one would always favor lower

energy rather than a reduction of a few seconds in the search
time.

Finally, we extensively benchmark SALSA against LOMA
and Timeloop (Fig. 5). We choose the LPF limitation factor
of LOMA to get a similar search time to SALSA (see Fig.6).
In order to avoid a cost model bias, the schedule found by
Timeloop’s engine is evaluated using ZigZag’s cost model. We
notice that not all layers benefit from SALSA in the same
way: all 3 search engines find similar energy schedules for
simple layers (i.e., with fewer loops to permute). However,
SALSA significantly outperforms LOMA and Timeloop for
more complex layers with a bigger search space, leading to up
to 50% of energy reduction. Additionally, SALSA’s search time
is drastically lower than Timeloop’s for every layer. Overall,
SALSA improves the execution energy by 7.6%, 11.9%, and
speed-up the search runtime by 1.7×, 24×, respectively.
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VI. CONCLUSION

This paper presented SALSA: a dual-engine, rapid scheduler
capable of finding optimal schedules of DNN layers onto an
HW accelerator. The simulated annealing-based engine provides
an efficient heuristic search guided by any desired performance
metric and finds optimal mappings in a short and predictable
time. SALSA consistently finds better mappings than current
SotA schedulers in a shorter time. It is deployed extensively
on 5 DNNs: finding on average 7.6% and 11.9% better energy
schedules while speeding up the search by a factor of 1.7×
and 24× compared to LOMA and Timeloop, respectively. By
significantly speeding up the process of extracting high-quality
temporal mappings, SALSA paves the way for fast spatial
unrolling and accelerator architecture search. SALSA is open-
sourced and available at [17].
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