
© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works. This paper is accepted at the IEEE International Conference on Artificial Intelligence Circuits and Systems
(AICAS) 2023.

Enhancing Fault Resilience of QNNs by Selective Neuron Splitting
Mohammad Hasan Ahmadilivani1, Mahdi Taheri1, Jaan Raik1, Masoud Daneshtalab1,2, and Maksim Jenihhin 1

1Tallinn University of Technology, Tallinn, Estonia
2Mälardalen University, Västerås, Sweden

1{mohammad.ahmadilivani, mahdi.taheri, jaan.raik, maksim.jenihhin}@taltech.ee
2masoud.daneshtalab@mdu.se

Abstract—The superior performance of Deep Neural Networks
(DNNs) has led to their application in various aspects of human life.
Safety-critical applications are no exception and impose rigorous
reliability requirements on DNNs. Quantized Neural Networks
(QNNs) have emerged to tackle the complexity of DNN accelerators,
however, they are more prone to reliability issues.

In this paper, a recent analytical resilience assessment method is
adapted for QNNs to identify critical neurons based on a Neuron
Vulnerability Factor (NVF). Thereafter, a novel method for splitting
the critical neurons is proposed that enables the design of a
Lightweight Correction Unit (LCU) in the accelerator without
redesigning its computational part.

The method is validated by experiments on different QNNs and
datasets. The results demonstrate that the proposed method for
correcting the faults has a twice smaller overhead than a selective
Triple Modular Redundancy (TMR) while achieving a similar level
of fault resiliency.

I. INTRODUCTION

Artificial Intelligence (AI) has shifted the paradigm of com-
puter science in the latest decade with Deep Neural Networks
(DNNs), one of AI’s illustrious instruments, demonstrating
remarkable precision levels [1]. This has led to their adoption
in several safety-critical applications like autonomous driving
[2]. As DNN accelerators become more prevalent in safety-
critical applications, hardware reliability of digital circuits has
become increasingly more noticeable. The reliability of DNNs is
determined by the ability of their accelerators to function correctly
[3] in the presence of environment-related faults (soft errors,
electromagnetic effects, temperature variations) or faults in the
underlying hardware (manufacturing defects, process variations,
aging effects) [4].

Various emerging techniques are explored to improve the
computational efficiency of DNNs’ complex architectures, such
as reducing the bit precision of parameters, which has led to
the emergence of Quantized Neural Networks (QNNs). However,
the effectiveness of such techniques raises concerns about the
reliability of QNNs, particularly in safety-critical applications.
Soft errors, a type of fault caused by charged particles colliding
with transistors, can cause a logic value to flip, dramatically
influencing the functionality of QNNs [5], [6].

Throughout the literature, protecting DNNs against soft errors
is primarily achieved through architecture-level methods such
as hardened PEs or Triple Modular Redundancy (TMR) [7].
However, to alleviate overheads, there is a need, first, to identify
the critical neurons within a neural network before applying
the mentioned mitigation techniques to harden them against the
faults.

Reliability assessment serves as the initial step towards
exploiting an effective protection mechanism. Fault Injection

The work is supported in part by the EU through European Social Fund in the
frames of the “ICT programme” (“ITA-IoIT” topic), by the Estonian Research
Council grant PUT PRG1467 “CRASHLESS”, Estonian Centre for Research
Excellence EXCITE and by Estonian-French PARROT project “EnTrustED”.

(FI) is a conventional method for reliability assessment that
is vastly adopted for DNNs. However, identifying the critical
points in a QNN requires an exhaustive FI that is prohibitively
complex due to their large number of parameters. To address this
issue, analytical resilience assessment approaches are proposed
to evaluate the reliability of DNNs by analyzing them at the
algorithm level [8].

In previous works, the criticality of neurons has been identified
based on their contribution scores to outputs [9]–[12]. Hence,
there is no clear resilience evaluation metric for selecting the
critical neurons in the literature, and recent works extract the
criticality based on the ranked scores. To tackle the drawbacks
of the state-of-the-art in DNNs’ resilience analysis methods, a
prior study has proposed a method called DeepVigor [13], which
provides vulnerability factors for all bits, neurons, and layers
of DNNs accurately. However, it does not consider QNNs. In
this work, we adapt and optimize DeepVigor for identifying
critical neurons in QNNs. The resilience analysis enables us to
design a method for correcting soft errors in the datapath of
DNN accelerators.

In this paper, we identify critical neurons in QNNs based on a
Neuron Vulnerability Factor (NVF) obtained by fault propagation
analysis through the QNNs. The NVF represents the probability of
misclassification due to a fault in a neuron which determines the
level of criticality for neurons. To the best of our knowledge, for
the first time, a protection technique based on splitting neurons’
operations is proposed that modifies the network in a way that a
Lightweight Correction Unit (LCU) corrects the faults in critical
neurons. The proposed method does not require redesigning the
computational part of the accelerator. The accelerator executes
the modified network, and only its controller needs to be aware
of the critical neurons to be operated on the LCU. Our method
imposes half the overhead of TMR since it corrects faults with
only one additional neuron instead of two.

The contributions of this work are as follows:

• Developing an analytical fault resilience assessment method
for QNNs to identify the most critical neurons based on the
conducted Neuron Vulnerability Factor (NVF);

• Proposing a novel high-level modification method for QNNs
to improve fault resiliency by splitting the operations
of critical neurons, without requiring a redesign of the
computational part of the accelerator;

• Designing an effective Lightweight Correction Unit (LCU)
for selected critical neurons in accelerators, with low
overhead (twice less than that of TMR) and high fault
resiliency (similar to that of TMR).

The paper is organized as follows. The proposed method for
enhancing fault resilience of QNNs is presented in Section II,
experiments are performed and discussed in Section III, and the
paper is concluded in Section IV.

1

ar
X

iv
:2

30
6.

09
97

3v
1

 [
cs

.L
G

]
 1

6
Ju

n
20

23

II. METHOD FOR RESILIENCE ENHANCEMENT OF QNNS

A. Accelerator Model

Fig. 1 illustrates the accelerator model considered in this work
which is inspired by [14]. It consists of a computational part (an
array of Processing Elements (PEs), activation functions, pooling,
and normalization), buffers for parameters (weight and bias),
inputs, and outputs, and the controller. It is assumed that faults
may happen in the computational part of the accelerator, thus, the
Outputs Buffer may contain faulty values of output activations.
The controller is responsible for feeding the inputs, transferring
the outputs, and controlling the function of the accelerator.

To apply the resilience enhancement method to accelerator, a
Lightweight Correction Unit (LCU) is added to the design in
which the controller only needs to be aware of the critical neurons.
Once the outputs of a layer are calculated, the controller transfers
the critical neurons to LCU, replaces its corrected outputs back to
the Outputs Buffer, and continues the operations of the accelerator.
The design of the LCU is proposed in Subsection II-C.

Inputs Buffer

PE PE

PE PE

PE

Activation Function
Pooling/Normalization

Outputs Buffer

PE

PE

PE

C
on

tro
lle

r

LCU

Weights/Bias Buffer

PE

C
om

pu
ta

tio
na

l P
ar

t

critical
neurons

Fig. 1: An abstract view of the accelerator and where the faults may
happen.

B. Identifying Critical Neurons by Resilience Analysis

Algorithm 1 presents the resilience analysis of QNNs to obtain
Neuron Vulnerability Factors (NVF) for all neurons throughout
the QNN in convolution and fully-connected layers. It is assumed
that the neural network is quantized into an 8-bit signed integer
data type, and the output activation of the neuron is analyzed.
The algorithm, first, checks whether or not to analyze an input
for the neuron (lines 3-5) by the gradients of a loss function (L)
that represents the impact of the neuron’s erroneous output on
the golden top class of the network.

Then, it finds minimum positive and maximum negative values
for the neuron (δ), that cause a misclassification in the QNN from
its golden output (lines 6, 7). Thereafter, it maps the obtained δ
to a corresponding possible bitflip location in the data type (lines
8, 9) and counts it as a vulnerable location (lines 10, 11). In
the end, regarding the counted of vulnerable times for each bit,
it calculates the probability of misclassification of the network
by each bitflip in the output of the neuron as the NVF over the
whole inputs (line 15).

A key observation in the analysis is that the 0 to 1 bitflip
is much more critical than 1 to 0 bitflip. Because the former
enlarges the values in the activation and propagates to the output,
while the latter is masked. This observation leads us to the
protection mechanism proposed in the next Subsection. It is worth
mentioning that the resilience analysis method is not limited to
a single-bit flip fault model, and it implicitly considers multi-bit
faults.

By obtaining the NVF of all neurons through the QNN, the
critical neurons can be found based on the values for NVF.
Different thresholds can be set to select the critical neurons and
protect them, considering how many of them are affected by the
protection techniques leading to execution overheads.

Algorithm 1 Resilience Analysis of QNNs

Input: Trained QNN with a set of neurons Q and N outputs,
set of input images X;

Output: NVF of all neurons;
Assume: δ ∈ [-128,127]; Ect is the output score for
the golden top class; Cg is golden classification; Cδ is
classification result after injecting δ; vul map arr pos and
vul map arr neg include counters for each bit corresponds
to each vulnerability range for positive and negative numbers;

1: for neuron ∈ Q do:
2: for input ∈ X do:
3: L = sigmoid(

∑N
j=0(Ect − Ecj))

4: grad = ∇L/outneuron
5: if grad != 0 then
6: rupper = min(δ), δ > 0, s.t. Cg ̸= Cf

7: rlower = max(δ), δ < 0, s.t. Clg ̸= Clf
8: bitupper = int(√rupper) + 1;
9: bitlower = int(

√
|rlower|);

10: vul map arr pos[bitupper]++;
11: vul map arr neg[bitlower]++;
12: end if;
13: end for;
14: vul map arr =

(vul map arr pos+ vul map arr neg) / 2

15: NV Fneuron =
∑8

i=1(
1
8×

∑i
j=1(vul map arr[j]))

size(X)
16: end for;

C. Resilience Enhancement by Splitting Critical Neurons and
LCU

The proposed fault resilience enhancement targets the critical
neurons identified based on a threshold on NVF. The idea is to
split the selected neurons’ operation into two neurons in the QNN
at a high level and correct the critical outputs in the accelerator.
Fig. 2 depicts how a critical neuron is split into two halves. As it
is shown, the input parameters (weights and bias) of the neuron
are halved, keeping the output parameters non-modified, and the
new neurons are replaced with the critical neuron in the QNN.
In this way, the neuron can be split into two neurons without
changing the intermediate values of the further layers and the
neural network’s outputs. Noteworthy, the method is applied to
all identified critical neurons in convolution and fully-connected
layers.

Splitting the critical neurons provides an opportunity for
fault correction using the split neurons without redesigning the

Input Layer
Hidden Layers

Output Layer

∑ φX1
l-1

X2
l-1

Wi2
l/2

Wi1
l/2

N'i
l

bl/2
Wi1

l+1

Wi2
l+1

∑ φX1
l-1

X2
l-1

Wi2
l

Wi1
l

Activation

function
Summation

Ni
l

bl

Wi1
l+1

Wi2
l+1

∑ φX1
l-1

X2
l-1

Wi2
l/2

Wi1
l/2

N"i
l

bl/2
Wi1

l+1

Wi2
l+1

Split

critical neuron

Split

Fig. 2: Operation splitting for a neuron in a QNN involves halving the
input parameters while keeping the output parameters non-modified. A
critical neuron is replaced with its corresponding split neurons in the

QNN.

computational part of the accelerator. The network is modified
in a way that the selected critical neurons from the analysis
are split. The modified network can then be mapped to the
accelerator using the existing controller and mapping algorithm
of the accelerator. However, the controller needs to be aware
of the critical neurons so that it can transfer them to LCU to
perform the correction and write them back to the Output Buffers
(Fig. 1).

LCU is designed to leverage the neuron-splitting method for
correction. The inputs of LCU are two split neurons representing
one critical neuron, and the output is one corrected 8-bit data
that will be written back to the corresponding neurons.

The data type (signed integer 8-bit) contains one sign bit and
7 bits for the integer. As the neuron’s operation is split, the range
of output values for each replaced neuron would be divided by
2. Therefore, the Most Significant Bit (MSB) in the integer part
of the output should always be 0. Regarding the observation in
the analysis about bitflips (Subsection II-B), any faulty bit can
be set to zero to be less critical.

Therefore, to output the corrected value, LCU performs two
operations: 1) a bit-wise AND over the two inputs, 2) resets the
MSB of the integer part to 0. In this way, many single and also
multiple faults that occur to the bits will be masked by these two
operations. Since the correction operations are merely an AND
and a bit reset, the correction unit is lightweight. The operation
of the LCU correction is depicted in Fig. 3 performing on the
faulty outputs of PEs running two splits of a critical neuron. The
corrected output is written back to Outputs Buffer as the outputs
of the corresponding PEs.

III. EXPERIMENTS

A. Experimental Setup

The experimented QNNs in this work are fully quantized (all
parameters and activation) to 8-bit signed integer using TFLite
[15]. The experiments in this work have been performed on a 7-
layer MLP and LeNet-5 trained on MNIST as well as an AlexNet

Critical
neuron
1st split

PE

PE

inp1

11010101

11010001 out

LCU operations:
1) out = inp1 AND inp2

2) out(6) = 0inp2

10010001

Critical
neuron

2nd split

Map to PEs Faulty outputs
of PEs (3 red bits)

Corrected output
of LCU (2 green bits)

Fig. 3: An example of how LCU corrects faulty critical neurons.

trained on CIFAR-10. The baseline accuracy of each network on
the test data is 70.1%, 89.1%, and 62.9%, respectively.

The resilience analysis and enhancement (Sections II-B and
II-C) are implemented in PyTorch considering the accelerator
model. The resilience analysis is conducted over the training
set. The critical neurons regarding different thresholds for NVF
are obtained to explore the number of neurons to be protected,
which imposes an overhead as well.

To show the efficacy of the resilience enhancement method, a
statistical FI is performed. In the FI process, one single bitflip
in the output of a random neuron in the network is injected, and
whole inference over the test set is performed, and the overall
accuracy is obtained. To meet the 95% confidence level with a
1% error margin in the statistical FI based on [16], we repeated
the FI process for each MLP-7, LeNet-5, and AlexNet for 6,750,
7,650, and 9,500 random faults, respectively.

As a baseline comparison of the proposed design for LCU,
we also apply a TMR to the critical neurons for the detection
and correction of faults. We adopt two metrics for comparing
the results of methods and expressing the resiliency: 1) accuracy
loss of QNNs over the fault injection, 2) the portion of critical
faults in a fault injection campaign. Critical faults are the ones
that misclassify the network from its golden classification.

B. Experimental Results

1) An Exploration on NVF of QNNs
As mentioned, NVF explores the probability of a faulty

neuron’s output that misclassifies the QNN from its golden output.
Table I presents the number of critical neurons in different NVFs
ranging from 0% (all neurons are critical) to 50% (no neuron
is critical). According to the table, different thresholds of NVF
count a different portion of neurons as critical among QNNs.
However, it is observed that all neurons among QNNs have NVF
of less than 50%. It is noteworthy that a higher threshold for
NVF means a less number of critical neurons to be protected.
This table represents the overhead of any protection mechanism
over the critical neurons.

Table I: Exploration of number and portion of critical neurons over
different thresholds for NVF.

QNN MLP-7 LeNet-5 AlexNet
NVF threshold #neurons portion #neurons portion #neurons portion
NVF >= 0% 2816 100% 4684 100% 103168 100%
NVF >= 5% 2513 89.24% 4380 93.5% 46322 44.9%
NVF >= 10% 1382 49.07% 1659 35.41% 15818 15.33%
NVF >= 15% 903 32.06% 222 4.74% 5171 5.01%
NVF >= 20% 503 17.86% 187 3.99% 622 0.6%
NVF >= 25% 272 9.6% 70 1.49% 398 0.38%
NVF >= 30% 184 6.5% 3 0.06% 232 0.2%
NVF >= 35% 85 3.01% 0 0% 147 0.14%
NVF >= 40% 26 0.92% 0 0% 56 0.05%
NVF >= 45% 7 0.2% 0 0% 6 0.005%
NVF >= 50% 0 0% 0 0% 0 0%

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

NVF (%)

A
cc

ur
ac

y
L

os
s

(%
)

MLP-7 (MNIST)

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

NVF (%)

A
cc

ur
ac

y
L

os
s

(%
)

LeNet-5 (MNIST)

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

NVF (%)

A
cc

ur
ac

y
L

os
s

(%
)

AlexNet (CIFAR-10)

Unprotected Proposed TMR

(a) (b) (c)

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

NVF (%)

C
ri

tic
al

Fa
ul

ts
(%

)

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

NVF (%)

C
ri

tic
al

Fa
ul

ts
(%

)

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50

0

5

10

15

20

25

NVF (%)

C
ri

tic
al

Fa
ul

ts
(%

)

Unprotected Proposed TMR

(d) (e) (f)

0 5 10 15 20 25 30 35 40 45 50
0

2.0E3

4.0E3

6.0E3

8.0E3

1.0E4

1.2E4

NVF (%)

#
N

eu
ro

ns

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
0

3.0E3

6.0E3

9.0E3

1.2E4

1.5E4

1.8E4

NVF (%)

#
N

eu
ro

ns

Unprotected Proposed TMR

0 5 10 15 20 25 30 35 40 45 50
5.0E4

1.0E5

1.5E5

2.0E5

2.5E5

3.0E5

3.5E5

NVF (%)
#

N
eu

ro
ns

Unprotected Proposed TMR

(g) (h) (i)

Fig. 4: QNNs comparison in terms of accuracy loss (a-c), critical faults (d-f), and network size (g-i) under different levels of protection:
unprotected, proposed protection, and TMR, considering different thresholds for NVF from 0% to 50%.

2) Resilience Enhancement of QNNs
Fig. 4 illustrates the experimental results of accuracy loss (a-c)

and critical faults (d-f) of the proposed resilience enhancement
and TMR over different NVF thresholds for the QNNs. The
results show how critical neurons are effectively selected and
protected by the proposed method. As shown, all results of
protecting QNNs by the proposed method are very close to those
of selective TMR-based protection. Furthermore, Fig. 4-(g-i)
shows that the QNNs’ size (as measured by the number of neurons
in each network) using the proposed protection is remarkably
smaller than that of the TMR-based protected networks, resulting
in half the overhead due to employing one additional neuron for
correction instead of two.

Assuming a constraint on the accuracy loss to be less than 5%
in Fig. 4, a common NVF for all three QNNs can be considered
as 20% in which the accuracy loss is 4.86%, 3.88%, and 1.56%
in the QNNs protected by the proposed method that is 2.14x,
3.38x, and 3.36x less than the unprotected QNNs, respectively.
Regarding Table I, the resilience analysis suggests protecting
17.86% of neurons in MLP-7, 3.99% of neurons in LeNet-5,
and 0.6% of neurons in AlexNet, respectively. The proposed
protection mechanism results in 1.85x, 2.78x, and 1.97x fewer
critical faults than unprotected QNNs in the MLP-7, LeNet-5,
and AlexNet, respectively.

The proposed neuron splitting and correction method leverages
only two neurons (one additional) for correcting faults, whereas

TMR requires three neurons (two additional) to perform fault
detection and correction. As a result, the overhead of the proposed
method is significantly lower than that of TMR, while providing
similar resilience. According to Table I, to protect QNNs with
an NVF of 20% using TMR, quantized MLP-7, LeNet-5, and
AlexNet require 3,822, 5,058, and 104,412 neurons, respectively,
whereas the proposed method requires only 3,319, 4,871, and
103,790 neurons, respectively. Therefore, the proposed method
reduces the overall size of QNNs by 15.15%, 3.84%, and 0.6%
compared to TMR-based protection, which impacts the memory
footprint and execution time of the accelerator accordingly.

IV. CONCLUSION

This paper proposes a QNN fault resilience enhancement
method. It is achieved by a fault resilience analysis method for
QNNs based on the computation of the vulnerability factor for
all neurons of a QNN. A neuron splitting method is introduced
to modify the network in a way that the critical neurons selected
by the resilience analysis are split into two halves. This method
enables us to design a Lightweight Correction Unit (LCU) within
the accelerator without redesigning its computational parts. The
results indicate that the proposed method significantly enhances
the fault resiliency of QNNs, matching that of selective TMR
methods, but with half the overhead. It means that the proposed
method can improve fault resilience in QNNs, making them more
reliable for safety-critical applications.

REFERENCES

[1] D. Silver et al., “Mastering the game of go without human knowledge,”
nature, vol. 550, no. 7676, pp. 354–359, 2017.

[2] S. Mozaffari et al., “Deep learning-based vehicle behavior prediction for
autonomous driving applications: A review,” IEEE T-ITS, 2020.

[3] Y. Ibrahim et al., “Soft errors in dnn accelerators: A comprehensive review,”
Microelectronics Reliability, vol. 115, p. 113969, 2020.

[4] M. Shafique et al., “Robust machine learning systems: Challenges, current
trends, perspectives, and the road ahead,” IEEE Design & Test, vol. 37,
no. 2, pp. 30–57, 2020.

[5] U. Zahid et al., “Fat: Training neural networks for reliable inference under
hardware faults,” in 2020 IEEE International Test Conference (ITC). IEEE,
2020, pp. 1–10.

[6] N. Khoshavi et al., “Fiji-fin: A fault injection framework on quantized
neural network inference accelerator,” in 2020 19th IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE, 2020,
pp. 1139–1144.

[7] S. Mittal, “A survey on modeling and improving reliability of dnn algorithms
and accelerators,” Journal of Systems Architecture, vol. 104, p. 101689,
2020.

[8] A. Mahmoud et al., “Hardnn: Feature map vulnerability evaluation in cnns,”
arXiv preprint arXiv:2002.09786, 2020.

[9] C. Schorn and other, “Accurate neuron resilience prediction for a flexible
reliability management in neural network accelerators,” in 2018 DATE.
IEEE, 2018, pp. 979–984.

[10] C. Schorn et al., “An efficient bit-flip resilience optimization method for
deep neural networks,” in 2019 DATE. IEEE, 2019, pp. 1507–1512.

[11] A. Ruospo and E. Sanchez, “On the reliability assessment of artificial
neural networks running on ai-oriented mpsocs,” Applied Sciences, vol. 11,
no. 14, p. 6455, 2021.

[12] M. Abdullah Hanif and M. Shafique, “Salvagednn: salvaging deep neural
network accelerators with permanent faults through saliency-driven fault-
aware mapping,” Philosophical Transactions of the Royal Society A, vol.
378, no. 2164, p. 20190164, 2020.

[13] M. H. Ahmadilivani et al., “Deepvigor: Vulnerability value ranges and
factors for dnns reliability assessment,” in 28th IEEE European Test
Symposium. In press, 2023.

[14] E. Ozen and A. Orailoglu, “Just say zero: Containing critical bit-error
propagation in deep neural networks with anomalous feature suppression,”
in 39th ICCAD, 2020, pp. 1–9.

[15] R. David et al., “Tensorflow lite micro: Embedded machine learning for
tinyml systems,” Machine Learning and Systems, vol. 3, pp. 800–811, 2021.

[16] R. Leveugle et al., “Statistical fault injection: Quantified error and
confidence,” in 2009 DATE. IEEE, 2009, pp. 502–506.

	Introduction
	Method For Resilience Enhancement of QNNs
	Accelerator Model
	Identifying Critical Neurons by Resilience Analysis
	Resilience Enhancement by Splitting Critical Neurons and LCU

	Experiments
	Experimental Setup
	Experimental Results
	An Exploration on NVF of QNNs
	Resilience Enhancement of QNNs

	Conclusion
	References

