
Implementation of DDARC: Software Architecture for Debugging Distributed 
Programs 

Sushma Rail, D.Sampath2 and Srivathsa.N.S3 

Supercomputer Education and Research Centre 
Indian Institute of Science 

Bangalore, India 

Abstract 

Debugging and testing is a larger part of the effort 
spent in a software development cycle. Debugging a 
program is time consuming and is a continuous cycle of 
code modification and testing. The task of debugging 
depends on the environment, the language, the operating 
system: the problem: and more interestingly even the 
individual program. In this paper, we present a detailed 
implementation of software architecture for debugging 
distributed programs. The debugger based on the 
proposed architecture supports debugging based on a 
mechanism for controlling multiple processes, presenting 
the process states, grouping of processes for ease in 
controlling the distributed programs developed on PVM 
based computing paradigm. 

1. Introduction and Related Works 

The technological advancement in computing and 
development in microprocessor architecture along with 
networking systems opens up a new trend in developing 
high performance reliable cluster computers and 
distributed systems. Debugging sequential program is 
itself a challenging task and distributed programs pose 
more challenge due to various issues in controlling, 
reporting and detecting errors in program execution. 
There are independent efforts at the research and industry 
laboratories towards developing models and' tools for 
debugging distributed programs based on conventional 
and new approaches [7,8]. 

The approach adapted in the development of 
debuggers for distributed programs differs [1,3] mainly 
from the single-image abstraction supported at different 

levels of distributed system's abstraction either at 
hardware, low level software layer (like OS kernel), 
middle layer software architectures (like PVM, MPI, 
COMA, et al). In recent times, various research groups 
[4,5,10,11,12] have realized the importance of testing and 
debugging procedures for successful implementation of 
software systems in distributed computers. 

1.1 Issues in Debugging Distributed Programs 

There are number of reasons which make debugging a 
distributed program more difficult compared to a 
sequential program. They are: 

Distributed programs have many foci of control; 
Without a synchronized global clock, it would be 
difficult to determine the precise order of events 
occurring in distinct and concurrently executing 
process [2,6]. 
Distributed asynchronous programs are inherently 
non-deterministic. Therefore it is difficult to 
reproduce errors and test possible but improbable 
situations during debugging. 
Monitoring a distributed system alters its behavior. 
This is called probe effect in monitoring distributed 
programs. 
In a distributed program the number of processes are 
large and hence a method has to be evolved by which 
the details can be presented in a appropriate manner. 
Interaction between the system and user of debugging 
tool is more complex. 

Design of a debugger for distributed programs have to 
address various issues associated with problems 
mentioned above. The debugger discussed in this paper is 
implemented for PVM based distributed programs; 

" Currently at DDORG, Bangalore 
Currently at DBS Bank, Singapore 
Currently at Sun Microsystem, Bangalore 

0-7695-1165-1/01$10.00 0 2001 IEEE 220 



therefore, we briefly explain the PVM environment in the 
following section. presented. 

finally in Section 6, the conclusion and future works are 

1.2 PVM: Parallel Programming Environment 

The proposed debugger in this paper is implemented 
for PVM based parallel programs under UNIX operating 
system environment. PVM supports execution of software 
systems on different machinednodes in a user- 
configurable pool, and presents a unified, general, and 
powerful computational environment of concurrent 
applications. User programs written in C, C++ or 
FORTRAN access PVM through library routines for 
functions such as process initiation, message transmission 
and reception, and synchronization via barriers or 
rendezvous. PVM operates on a collection of computers 
(UNIX is most popular) connected by one or more 
networks, which is called the virtual machine. It is 
comprised of two main components, namely daemon 
processes and libraries, which are explained in the 
following paragraphs. 

A daemon process is a process, which reside always in 
memory and waiting for some events to happen in order 
to continue its execution. One daemon process runs on 
each machine configured under the parallel virtual 
machine, which in turn is configured by the user. Each 
daemon process maintains a table of configuration and 
process information relative to the parallel virtual 
machine. User processes communicate with each other 
through the daemon process. They first communicate to 
their local daemon process via the library interface 
routines. Local daemon process then senddreceives 
messages to/from remote host daemons. Each machine 
must have its own architecture dependent version of PVM 
daemon process built and installed. 

Library Interface Routines are simple subroutine calls 
that the application programmer may imbed in concurrent 
or parallel application code. These library routine provide 
facilities to; (a) Initiate and terminate processes; (b) Pack, 
send, and receive messages; (c) Synchronize via barriers; 
and (d) Query and dynamically change configuration of 
the parallel virtual machine. Library routines do not 
communicate directly to other processes, instead they 
send commands to the local daemon process and receive 
status information. Data format conversion (XDR) 
performed automatically between hosts of different 
architectures. 

The rest of paper is organized as follows: In Section 2, 
we present the overall architecture and design of the 
DDARC based distributed debugger. In Section 3, we 
discuss the detailed specification and implementation 
techniques for the GUI module. The implementation 
details of the debugger DDARC is presented in Section 4. 
Subsequently in Section 5, we present the third 
component of the DDARC i.e., the slave module, and 

2. Architecture and Design of DDARC 

Distributed Debugger Architecture (DDARC) is 
designed for debugging distributed programs and the 
specific implementation is carried-out for under PVM 
environment. The overall system is designed in such a 
way that each of the process of the distributed program is 
controlled by a mini conventional debugger or 
commercially available sequential debuggers such as dbx. 
This strategy adapted in the design has helped us to focus 
on all aspects of controlling mechanism and 
implementing trace facility for Inter-Process 
Communication (IPC) rather than re-designing the 
sequential debugging features. The overall system design 
is based on multilevel client-server model. We refer the 
main controlling module as master modzde and the client 
program, which controls the sequential debugging 
features such as dbx as slave module. The main features 
of DDARC are: 
0 Control mechanism for multiple tasks of distributed 

programs. 
0 Graphical user interface to ease the user interaction 

with DDARC. 
Facilities for grouping a set of tasks. 
Event tracing facility to handle the Inter-Process 
Communication based errors. 

TASK WINDOW -N 

DDARC MASTER I 

4 A 

Sequential 
debugger 
like dbx 

Sequential 
debugger 
like dbx 

Figure 1. The multilevel software architecture of 
DDARC 

22 1 



The over all architecture of DDARC is given in Fig. 1. 
In order to support the above functions, the overall system 
is composed of the main modules as presented below. 

Graphical User Interface (GUI): GUI receives the 
information such as task names, p u p  names (where a set 
of tasks are grouped together for ease in controlling and 
monitoring), host names, log-file names and commands to 
the debugger fi-om the user. It creates output windows for 
each task, displays the output of sequential debuggers on 
them. If a task or group is deleted it closes all the 

Master Module: Receives the information sent by 
GUI, process them, creates slave processes on the 
specified machines, and sends the information to slave 
processes through PVM interface mechanism. 

Slave module: Receives the information from master 
through PVM, executes them wi-th the available sequential 
debugger such as dbx and sends the output to master 
through PVM interface mechanism. 

. corresponding task output windows. 

3. Design and Implementation of GUI 
Module 

One of the most important parts of a software system 
to be successful in usage is the User Interface 
components. The GUI provides User Friendly Interface 
for task level debugging, grouping techniques, selection 
of commands through single window and displays the 
results of debugging on different windows for different 
tasks. Graphical User Interface (GUI) provides a single 
window through which user can select task names, group 
names, commands to be send to individual task 
debuggers, and host names on which user wishes to create 
the slaves and subsequently execute the tasks. In order to 
facilitate ease in issuing commands to the master 
debugger by the user, the GUI module provides simple 
and elegant interface design as described below. 

Various Sub-Modules Used in GUI module for 
different functions. 
1. 
It creates an entry window for selecting the task name and 
the corresponding host name on which it is to be created 
and executed. 
2. 
It displays a message for the user to select any of the 
groups, by clicking the mouse on group buttons provided 
in the GUI. On selecting a group it disables that button, 
so that the user can select any of the remaining groups for 
future grouping. 
3. To add task names and host names to string to send 

them to DDARC master: 
It adds the task names, group names and the host-names 
selected by the user to a string separating them with ":" to 
be sent to DDARC master module. 
4. To delete a task: 

To select the task names and host names: 

To select the group names: 

. 

It gets various task names to be deleted, and sends to 
DDARC master module. Also destroys the output 
windows for those tasks. 
5. To create a group: 
It gets the group name, and also the task names which are 
to be added to those groups, and sends them to DDARC 
master module in the form of a string with ":" separating 
them. 
6. To delete a group: 
It gets the group name to be deleted, and sends the group 
name and all the tasks belonging to that group to DDARC 
master. Also closes all the display windows for the tasks 
of the group, which are already terminated. 
7. To create a display window for each task and display 

the information received by the master module: 
It creates output display windows for each task added 
with task name as title, displays the contents of the 
respective log files in those windows. 
8. To receive and send commands: 
It displays a message for the user to select a command. As 
the user selects a command button provided, it sends 
those commands with a new line character appended at 
the end to DDARC master module. 

3.1 Implementation Details of GUI Module 

The Graphical User Interface (GUI) designed for the 
distributed debugger provides a single window interface 
between the user and the distributed debugger so that user 
can control multiple tasks on different machines using a 
single window. GUI has three main sections. The first 
section contains the selection menus. User can follow 
either single task level debugging or group level 
debugging according to the requirements. The TASK 
menu provides the options such as Add Task and Delete 
Task. After the selection of a menu button, GUI will pop 
up a data entry window, in which user can enter the task 
name and the host name on which he wants to execute the 
task. Similarly user can delete a task from the task list 
using Delete Task option. 

The group level debugging allows the user to group 
multiple tasks. The Group menu facilitates the user for 
creation of different groups, addition of tasks to the 
existing groups, deleting of a group or task from a group. 
On selecting the Create Group option, GUI will display a 
message to select any of the groups from GI to Gn. On 
selecting the group, user can add any number of tasks to 
that group or delete tasks from the group. Similarly user 
can delete any of the group which is already created. 
After selecting the tasklgroup and the hosts GUI will pop 
up output windows to each of the tasks. It polls the log 
file if the file exists, and displays its contents on the 
respective task output windows. GUI then displays a 
message to enter commands to the debugger. In order to 
debug at the task level, the user has to select the Tasks 

222 



section of the main GUI window, which will enable the 
system to send the respective command to the debugger. 
And, for the group level debugging the user can press any 
of the buttons in the Groups section of the main GUI 
window. In the case of group level debugging the GUI 
sends the same command to all tasks of a group. The 
commands are sent to the serial debuggers and the results 
of those, which are available in the corresponding log 
files, are displayed on the respective task output windows. 
The flow chart for GUI module is given in Fig 2. 

~ ~ 

Popup display window for each tasks & 
display corresponding log files contents 

terminates the tasks/group of tasks according to the 
command issued by the user. It also creates a log file for 
each of the created task. This module is also designed as 
an interface between the GUI and the actual tasks by 
receiving the command from the GUI and sending it to 
the particular task after preprocessing and parsing. 
Further, this module also communicates outputs from the 
slave processes back to the GUI by storing them in their 
respective log files for the GUI to display on the 
corresponding windows. The Master Module has the 
following functions and composed as sub-activities. 

( START) 

Select the appropriate Choice 
(taskgroup, or command) 

. I I I 

Get information from MASTER 
f 

Display info. received at respective windows 

Is command=quit 

YES 
f \ 
\ STOP ) 

Figure 2. Flow Chart for GUI Module 

4. Design and Implementation of Master 
Module 

DDARC Master module is the central controlling 
module of the overall DDARC system. DDARC master 
module receives the task namelgroup name, machine 
name, log-file name, and the commands to either create a 
tasWgroup or to delete a tasWgroup from the GUI. The 
master module either creates a tasWgroup of tasks or 

Sub-Modules of Master Module: 
1. 

It reads the tasWgroup names, log-fie names, host-names, 
which are sent by the GUI in the form of a string, separate 
by ”:”, parses the string and stores the details in either a 
task structure or group structure. 
2. 
The creates the slave programs on hosts specifiedby the 
GUI, stores the task identifications (Ids) in an array. 
3. To send the information readfrom the GUI to the 

DDARC slave programs created: 
It starts the PVM Daemon process and sends the host 
name or command read from GUI to all the slaves using 
PVM calls. 
4. To read the information send by DDARC slave 

programs: 
It gets the information sent by the slaves through PVM. 
5. To m’te  the information read by the slave programs 

into the logfiles: 
Creates the log files for each task, and writes the 
information read from the slaves into the files. 
6. To read the commands to the debuggerfrom GUI and 

to send them to the respective slave programs: 
Gets the commands continuously and passes them to slave 
programs using PVM calls. 
7. To append the output of slave programs to the 

respective log jiles: 
Gets the outputs of slaves through PVM and appends the 
information read into the corresponding log files. 

To read the inputs from GUI and to store them in a 
Data Structure: 

To create DDARC slave programs on specified hosts: 

The overall design of the Master Modules of DDARC is 
given in Fig 3. The Master module communicates with 
the slave modules through any software system (in this 
work we have used PVM) that enables a collection of 
heterogeneous computers to be used as a coherent and 
flexible concurrent computational resources. 

4.1 Implementation Method for Muster Module 

The master module is the central part of the DDARC 
system, which supports complete controlling mechanism 
for debugging. The implementation detail of the system is 
explained below with the pseudo-code. Master sends the 

223 



information received from the GUI to the respective slave 
programs to execute under sequential debuggers, and 
receives the output of the debuggers sent through the 
slave programs, writes it into the respective log files. 

I 

1 

a 

a 

DDARC MASTER 

&&I 
\ DDARCMASTER l a  

PVM Communication 

i;;.->.&&T=D 
Figure 3. Design of Master Module 

Pseudo Code for DDARC Master Module 
/* The main function of the Master Module */ 
void main (void) 
{ 
while (iiputString!=over) { 

Call GetInputFromGUI(InputString, 
tasklist[Nslaves]) 

0 Initialize SlaveName 
if (Task Level debugging) { 

if (AddTask) { 
0 pvm-spawn (taskname, hostname, taskid) 
0 Update the structure tasklist 

if (Delete Task) { 
FindtheTaskID of givenTask 

0 Killthat task 
0 Update the structure tasklist 

1 

I 
I 
if (Group Level Debugging) { 

if (CreateGroup) { 
for (i=O idslaves; i++) 
{ 
0 Call pvm-spawn(SlaveName, Grouplist, 

0 Update the structure grouplist 
hostname[i], TaskTds) 

I 

I 
if (DeleteGroup) ( 

for (i=O idslaves; i++) ( 
Kill all the spawned tasks 

0 Update the structure grouplist 
1 

There are many other functions, which are part of the 
master modules designed to work in a cohesive manner. 

5. Design and Implementation of Slave Module 

DDARC slave program is designed to control the 
actual debugging feature for the multiple processes of the 
distributed program through sequential debuggers. The 
Slave Module establishes the connection between the 
sequential debuggers and the DDARC master program. 
Each DDARC slave program creates a child process to 
execute a sequential debugger with the given process 
(task). They receive the names of programs to be executed 
from the master through any computational environmental 
which is used to create and execute parallel applications 
and communicates to the child process through a pipe to 
execute under serial debugger. The commands received 
from the master module is directed to the actual 
sequential debugger which controls the task and the 
resultant output from debugging process is passed back to 
the GUI Interface through the master module. The outputs 
from the serial debuggers are sent to the DDARC master 
module. 

/ DDARCSLAVE 

Figure 4. Design of Slave Module 

224 



The design of slave DDARC module is given in Fig. 4. 
The slave DDARC module consists of various sub 
modules as give below. 

The sub-madules used in Slave process: 
1. To receive the information sent by the DDARC 

It receives the information sent by the master through 
PVM 
2. To fork a child to execute the tasks specij?ed by the 

DDARC muster with the sequential debugger and to 
establish the connection between it and the child 
forked by it through pipes. 

3. To read the output of the serial debugger: 
Reads the output of the slaves though a pipe 
4. To send the output of the serial debuggers to DDARC 

muster module: 
Sends the information read from the child to DDARC 
master though PVM. 

muster program: 

5.1 Implementation Method for Slave Module 

DDARC Slave program communicates through pipe 
mechanism with the child process. The name of the 
program to be executed, received by the DDARC slave 
program is passed to the debugger through the outgoing 
pipe, and the output of the sequential debugger, is read 
through the incoming pipe. The child closes the write 
descriptor of the pipe ii-om the slave and read descriptor 
of the pipe to the salve. It also closes stdin, and 
duplicates the read descriptor of the pipe from the slave 
(duplicates the stdin). Also the child closes the stdout and 
stderr and duplicates the write descriptor of the pipe to the 
slave program. DDARC slave module (i.e., the parent) 
closes the read descriptor of the pipe from the child and 
write descriptor of the pipe to the child. 

Pseudo code for DDARC Slave Module 
void main (void) { 
0 Find the task id of DDARC-MASTER program 

using PVM library routine pvm-mytid and store in 
Rid. 

Create two pipes Pin and Pout 
Switch (fork 0 ) { 
case -1: 
0 Print the error message 
0 Exit 
case -0: /*Child Process*/ 
0 

0 

0 Call RecvFromMaster (Ptid, PgmName) 
0 

Close write file descriptor of Pin and read file 
descriptor of Pout at the child process. 
Close the stdin, stdout and stderr at the child 
process. 
Dup the read file descriptor of Pin and write file 
descriptor of POut. 

Exec the task PgmName with dbx. 

default: /*Parent Process *I 

0 Call ReadFromDbx (POut[O], Message) 
Call SendToMaster (Ptid, Message) 

do 

Call RecvFromMaster(PTid, Command) 
0 Call CommandToDbx(Pin[ 13, Command) 

Call ReadFromDbx(POut[O], Message) 
Call SendToMaster(PTid, Message) 

while (commando "QUIT") ) 

Close read file descriptor of Pin and write 
file descriptor of POut at the parent process. 

{ 

1 

exit PVM by using PVM library routine 
pvm-exitO 

} 
/* RecvFromMaster */ 
RecvFromMaster (Rid, String) { 
0 Receive the string sent by DDARC-MASTER 

program with TID m i d  using the PVM routing pvm- 
recv() 
Unpack the received character string and store it in 
String using PVM routine pvm-upkstr() 

0 

} 
/* SendToMaster */ 
SendToMaster(Rid, Message) { 

0 Clear the current buffer (if exists) or create a 
new buffer using PVM library routine 
pvm-initsend() 
Pack the output of dbx to be sent to 
DDARC-MASTER using the PVM library 
routine pvm-pkstro 
Send the packed message to DDARC-MASTER 
using the PVM library routine pvm-send() 

0 

} 
/* CommandToDbx Y 
CommandToDbx(FileDesriptor, Char * Command) { 
0 Write the string Command to the pipe referenced by 

the file descriptor File Descriptor. 
1 
/* ReadFromDbx */ 
ReadFromDbx (FileDescriptor, Message) { 
0 Read from the pipe referenced by the file descriptor 

File Descriptor and store in a char may message ~ 

1 

6. Conclusion and Future Work 

In this paper we have discussed the issues of 
debugging distributed programs and presented some 
features which are essential for debugging distributed 
programs. Subsequently we have presented the 
architecture of the distributed debuggers designed for 
PVM based parallel programs. We have also presented 
the detailed design functions and some implementation 

225 
e 



techniques for our distributed debugger DDARC. We 
have implemented this debugger on IBM SP-2 distributed 
system under AIX (UNIX variant) operating system. 
Though, the system has been implemented successfully 
and being used it has some limitations: (1) GUI module 
does not provide all the available commands to the user; 
and (2) DDARC Master Module controls all slave 
modules together, therefore it is an overloaded and the 
response time might degrade as the parallel tasks 
increases. As a future work we want to incorporate 
performance-debugging feature with DDARC as one of 
the main advantage of parallel programming is better 
performance and hence we believe that a debugger for 
such environment should support features for 
performance debugging. 

References 

[l]  Araki, K.; Furukawa, Z; Cheng, J.: A General Framework 
for Debugging, IEEE Sofhvare, Volume: 8.3, May 1991, pp. 14- 
20. 

[2] Chandy, K.M, Lamp0rt.L: Distributed Snapshots: 
Determining Global States of Distributed Systems, ACM 
Transactions on Computer Systems, Feb. 1985, pp.63-75. 

[3] Cheung, W.H.; Black, J.P.; Manning E.: A Framework for 
Distributed Debugging, IEEE Soffware, Volume: 7 1, Jan. 1990, 
pp. 106-115. 

[4] Chul-Eui Hong; Bum-Sik Lee; Gi-Won On; Dong-Hae Chi: 
Replay for Debugging MPI Parallel Programs, Proceedings of 
MPI Developer's Conference, 1996, pp. 156 -160. 

[5] Jianxin Xiong; Dingxing Wang; Weimin Zheng; Meiming 
Shen: BUSTER: An Integrated Debugger for PVM, Proc. of 
IEEE Second International Conference Algorithms & 
Architectures for Parallel Processing (ICAPP' 96), 1996, 
pp.124-129. 

[6] Lamport, L.: Time, Clock and the Ordering of Events in a 
Distributed System, Communication of the ACM, 21(7), July 
1978, pp. 558-565. 

[7] LeBlanc,T.J: Parallel Program Debugging, Pry. of 13" 
Annual Intemational Conference on Computer Software and 
Applications Conference (COMPSAC 89), 1989, pp. 65-66. 

[8] Lourenco, J.; Cunha, J.C.; Krawczyk, H.; Kuzora, P.; 
Neyman, M, Wiszniewski, B.; An Integrated Testing and 
Debugging Environment for Parallel and Distributed Programs, 
Proceedings of the 23rd EUROMICRO Conference on New 
Frontiers of Information Technology, 1997, pp. 291-298. 

[9] MPI A Message Passing Interface Standard, June 1985. 

[lo] Pa&, E.H.; Chung, Y.S.; Lee, B.S.; Chae-Woo Yoo: A 
Concurrent Program Debugging Environment using Real-time 
Replay, Proc. of International Conference on Parallel and 
Dism'buted Systems, 1997, pp. 460-465. 

[ l l ]  Scholten, H.; Posthuma, J.: A Debugging Tool for 
Distributed Systems, IEEE Region 10 Conference on Computer, 
Communication, Control and Power Engineering (TENCON 
'93), Vol. 1, 1993, pp. 173 -176. 

[12] Tarafdar, A.; Garg, V.K.: Debugging in a Distributed 
Word: Observation and Control, Proc. of IEEE Workshop on 
Application-Specijic Software Engineering Technology, 1998. 
(AsSET-98), 1998, pp. 151-156. 

226 


