
ar
X

iv
:c

s/
02

07
01

1v
1 

 [c
s.

LO
]  

4 
Ju

l 2
00

2

Improving Web Database Access Using Decision Diagrams∗

Denis V. Popel†, Nawar Al Hakeem
Department of Computer Science,

University of Wollongong, Dubai Campus,
P.O. Box 20183, Dubai, U.A.E.

popel@ieee.org

Abstract

In some areas of management and commerce, especially
in Electronic commerce (E-commerce), that are accelerated
by advances in Web technologies, it is essential to support
the decision making process using formal methods. Among
the problems of E-commerce applications: reducing the
time of data access so that huge databases can be searched
quickly; decreasing the cost of database design. . . etc. We
present the application of Decision Diagrams design using
Information Theory approach to improve database access
speeds. We show that such utilization provides systematic
and visual ways of applying Decision Making methods to
simplify complex Web engineering problems.

1 Introduction

In this paper, we present the application of Deci-
sion Making methods to solve the problem of optimizing
database access. At present, developments in Decision
Making and Logic Design present new opportunities to pro-
vide database designers with computer-generated represen-
tations of their problems [1, 4]. Effective use of these ca-
pabilities requires managing how information is extracted
from databases and using visual displays in order to enhance
human performance in design tasks. Research on data rep-
resentations is fundamental to the progress in optimization
of interactive database applications [2].

Database access optimizers are the great tools of mod-
ern Web services to achieve high performance. Such an
optimizer chooses an optimal strategy for queries process-
ing from alternative ones. Commercial database systems
have incorporated access optimizers in the last decade [6].
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However, new interest in optimal sequence of queries for
knowledge discovery, on-line interactive services and com-
plex multi-media objects has caused renewed research in
optimization. Such database access optimizers have been
proved inadequate to the needs of these applications [5, 8].

The user interacting with an E-commerce application has
a number of alternatives of which one must be chosen. The
objective is to choose the best alternative (product/service)
as a result of a sequence of decisions [7]. When a situa-
tion requires a series of decisions, a decision table approach
cannot accommodate the multiple layers of decision mak-
ing. Thus, a graph-based approach is needed. Decision
Trees (DTs) and its extension Decision Diagrams (DDs) can
describe these situations and add structure to the problem.
DDs require less memory for representation than DTs since
the DD is a reduced DT [1, 10]. DDs provide an effective
method of decision making because they: layout clearly the
problem so that all choices can be viewed, discussed and
challenged; provide a framework to quantify the values of
outcomes.

Most of the tools of modern research in optimization of
Web database access - not only querying theory but also
DTs, DDs and other widely used techniques - use the as-
sumption of maximizing the achievement of some goal un-
der specified constraints, and presume that all alternatives
are known [3]. These tools have proven their usefulness in
a wide variety of applications. We consider DD representa-
tion of a Web-linked database using Information Theoretic
approach to minimize the uncertainty through optimiza-
tion which becomes a proper heuristic to extract knowledge
from the Web [2]. Our previous results explore utilization
of DTs for optimizing interactive network services [9].

The rest of the paper is organized as follows. In Sec-
tion 2, we review database notation, introduce basic termi-
nology, and state the key assumptions of our work. In Sec-
tion 3, we describe DDs and information theory concepts,
show the relation between DDs and database information.
Then, we describe the algorithms to optimize database ac-
cess in Section 4. In Section 5, we present case-study results
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Figure 1. An example of cars database

on decision making benchmarks and conclude in Section 6.

2 Database Records and Queries

The Web E-commerce applications are based on interac-
tive queries that explore certain products stored in a Web-
linked database information. Two different principles are
used when producing a query: (i) generating the queries
with difficult and sometimes non-trivial questions that take
a lot of time to answer; (ii) generating simple queries that
contain questions with possible alternative answers. We
employ the second principle and propose a new optimiza-
tion strategy to achieve further performance during the exe-
cution of queries. Determining the optimal sequence can be
solved using DDs and information theoretic measures.

Example 1. To illustrate optimization of Web database ac-
cess, the following example of Internet Shopping is used.
We have chosen thedemo cars database1 to be used by a
hypothetical company that sells cars on the Web (Figure 1).

Our approach is based on converting a Web-linked
database to canonical form such as decision table and rep-
resentation of queries as DD structure (Figure 2). Table 1
shows the correspondence of the terminology for the DD
elements.

The underlying approach typically involves variables
(features),x, and response,f . In the following, we consider
them-valued logic functionf : An→B over the variable set
X = {x1, · · · , xn}, whereA={0,r−1} andB={0,m−1}.
Here,n is the number ofr-valued variables.

1http://www.elshopsoft.com/download/samples/
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Figure 2. Database access optimization as DT
design

Example 2. The company from Example 1 sells the follow-
ing car modifications:

f=0: Ford Tourneo 2.0l - minibus, petrol engine, manual gear,
velour interior, controllable catalizator, fuel spent 10.9, price
28,900;

f=1: Ford Escort 1.8l - town car, diesel or diesel/turbo engine,
manual gear, cherry color, velour or leather interior, fuel
spent 6.4, price 19,900 - 20,300;

f=2: Mercedes V 230 - minibus, petrol or petrol/turbo engine,au-
tomatic gear, white color, velour interior, controllable catal-
izator, fuel spent 11.6, price 36,600;

f=3: Mercedes 300TD - town car, diesel engine, automatic gear,
white color, velour interior, fuel spent 8.4, price 27,500;

f=4: Mitsubishi Pajero 3000 V6 - off-road, desiel/turbo engine,
manual or automatic gear, white color, leather interior, fuel
spent 13.7, price 24,800 - 25,600;

f=5: Mitsubishi L300D - minibus, diesel engine, manual gear,
metallic color, leather interior, fuel spent 9.8, price 25,700;

f=6: Nissan Terrano II - off-road, petrol engine, manual gear,
metallic color, velour or leather interior, controllable catal-
izator, fuel spent 11.1, price 24,600;

f=7: Nissan Primera 2.0SLX - town car, diesel or diesel/turboen-
gine, automatic gear, velour interior, fuel spent 7.9 - 8.2,
price 18,350;

Characteristics of cars described by the multiple-valued
variables:

x1: catalizator - none (0), controllable (1);

x2: color - black (0), cherry (1), metallic (2), white (3);

x3: engine - petrol (0), diesel (1), petrol/turbo(2), diesel/turbo (3);

x4: interior - leather (0), velour (1);

x5: gear - manual (0), automatic (1);



Table 1. Terminology relationship between
logic and database functions

Logic Function Database
Variable x Characteristic of the product
Function f Range of the proposed products
Variable value x = a An alternative
Function value f = b Product identifier

x6: fuel spent - less than 8.0 (0), between 8.0 and 10.0 (1), be-
tween 10.0 and 12.0 (2), greater than 12.0 (3);

x7: price - less than 20,000 (0), between 20,000 and 25,000 (1),
between 25,000 and 30,000 (2), greater than 30,000 (3);

x8: purpose - minibus (0), off-road (1), town car (2).

3 Database and Logic Function

3.1 Database Decomposition

Let us investigate the decomposition of database infor-
mation. This can be represented as decomposition of logic
function f with respect to variablex into uniquely deter-
mined sub-functions so that it is possible to reconstruct
f if the sub-functions are known. For a logic function
f , fc = f|xi=c = f(x1, . . . , xi−1, c, xi+1, . . . , xn) is
called acofactoror sub-function off , whenx is fixed to
c ∈ {0, . . . , r}.

Definition 1. A Decomposition of a functionf is defined
as f = Decomposition(x, f0, . . . , fr), such that for
∀x ∈ X , there existr uniquely determined cofactors
f0, . . . , fr−1.

3.2 Representation of Logic Functions

Any logic functionf can be uniquely determined by a
truth tableonk combinations of variable values. In decision
making applications, the termdecision tableis used instead
of truth table.

Example 3. The decision table for the database from Ex-
ample 1 is given in Table 2 (k = 19).

3.2.1 Decision Diagrams and Graph-Based Notations

Decision Trees (DTs) and Decision Diagrams (DDs) are
graph-based structures which have become the advanced
structures in Logic Design and Decision Making for rep-
resenting and manipulating functions and discrete data

Table 2. Truth table of logic function f from
Example 1

Model x1 x2 x3 x4 x5 x6 x7 x8 f

Ford Tourneo 2,0l 1 0 0 1 0 2 2 0 0
1 1 0 1 0 2 2 0 0
1 2 0 1 0 2 2 0 0
1 3 0 1 0 2 2 0 0

Ford Escort 1,8 0 1 1 1 0 0 0 2 1
0 1 3 1 1 1 1 2 1

Mercedes V230 1 3 0 0 1 2 3 0 2
1 3 0 1 1 2 3 0 2
1 3 2 1 1 2 3 0 2

Mercedes 300TD 0 3 1 1 1 1 2 2 3
Mitsubushi Pajero 0 3 3 0 0 3 1 1 4
3000 V6 0 3 3 0 1 3 2 1 4
Mitsubishi L300D 0 2 1 0 0 1 2 0 5
Nissan Terrano II 1 2 0 0 0 2 1 1 6

1 2 0 1 0 2 1 1 6
Nissan Primera 0 0 1 1 1 0 0 2 7
2,0SLX 0 1 3 1 1 1 0 2 7

0 2 3 1 1 1 0 2 7
0 3 3 1 1 1 0 2 7

[1, 10]. The core of the data structures is a directed acyclic
graph which forms a canonical representation of a given
function.

Definition 2. Decision Diagramis a connected directed
acyclic graph with vertex (node) set and edge set where:

(i) Eachnon-terminalvertex is labeled by a variablex and
assigned as a decision variable. Also, such a vertex
corresponds to a decomposition step of the functionf
into sub-functions (outgoing edges:edge, . . . , edger)
with respect to the variablex.

(ii) A terminalvertex is labeled with the leaf value and has
no successors. But a non-terminal vertex has exactlyr
successors forr-valued variable.

(iii) When reduction is performed: (i) any node with iden-
tical successors DD1,. . . , DDr is removed (Fig-
ure 3(a)); (ii) two nodes with isomorphic DDs are
merged (Figure 3(b)).

(iV) A DD is calledorderedif the variablex appears in
the same order in each path from the root to a terminal
vertex. A DD is calledfree if the order of variablesx
is free along with each path from the root to a termi-
nal vertex. In other words, the term ’free’ means that
different variables and expansion types can occur at
every level of DD.
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Figure 3. Reduction rules for DD design

Free DDs allow more efficient representation while
keeping (nearly) all the properties of ordered DDs [4]. We
deal with free DDs only so the term ’free’ will be omitted.

Example 4. The graph in Figure 4(a) represents an or-
dered DD for the functionf (Example 1). The DD in Fig-
ure 4(b) is free. The effect of reducing the number of DD
nodes is demonstrated.

3.2.2 Relation Between Decision Diagrams and
Database Information

A DT (or generally DD) is a chronological representation
of the decision process by a network that utilizes two types
of nodes: decision nodes, represented bychoicenodes (val-
ues of a function), andchancenodes (variables). Construct-
ing a DD requires building a logical structure for the prob-
lem. Here is a sketch description of how to design a DD:
1. draw the DT using choice nodes to represent decisions,
and chance nodes to represent uncertainty states; 2. evalu-
ate the DT to make sure all possible outcomes are included;
3. reduce DT to DD.

We can determine the best decision from the graph by
starting from the root and going forward. From the above
graph our decision is as follows: 1. ask the consumer sev-
eral questions to discover his interest; 2a. if answers leadto
a particular product, then select the product (final decision);
2b. otherwise repeat questions.

Definition 3. i-path is a path from the root of DD to a ter-
minal node assigned with logic valuei. x-path is a path
from the root of DD to a terminal node assigned with no
value.

Each i-path defines a sub-set of variable’s values that
uniquely correspond to a record in the initial database [9].

Example 5. Let us consider the functionf given by DD
(Figure 4(b)). Its path in bold corresponds to targetf = 7

(7-path). It means that during the Internet Shopping we will
follow this path and chooseNissan Primera 2.0SLX.

The major problem is to choose the variable for DD de-
sign that will optimize Web database access by minimizing
levels of DD for quick search and reducing size of DD for
efficient memory allocation. This problem can be solved
using information theoretic measures as optimization crite-
ria.

3.3 Information Theory and Optimization

In order to quantify the content of information for a fi-
nite field of eventsA = {a1, a2, · · · , an} with probabilities
distribution{p(ai)}, i = 1, 2, · · · , n, Shannon introduced
the concept of entropy [11].Entropyof the finite fieldA is
given by (logarithm is base 2)

H(A) = −

n∑

i=1

p(ai) · log p(ai), (1)

Suppose, there are two finite fields of eventsA andB
with probability distribution{p(ai)}, i = 1, 2, · · · , n, and
{p(bj)}, j = 1, 2, · · · ,m, respectively. Letp(ai, bj) be
the probability of the joint occurrence ofai andbj . For any
particular valueai, thatA can assume, there is a conditional
probabilityp(ai|bj) thatB has a valuebj. It is expressed

by p(ai|bj) =
p(ai,bj)∑
n
i=1

p(ai,bj)
. Theconditional entropyof A

givenB is defined by

H(A|B) = −

n∑

i=1

m∑

j=1

p(ai, bj) · log p(ai|bj). (2)

Here, we deal with two finite fields: set of values of func-
tion f and set of values of variablex. We calculate the
probability p|f=b = k|f=b/k, wherek|f=b is the number
of assignments of values to variables (patterns) for which
f = b andk is the total number of assignments. Other
probabilities are calculated in the same way.

Example 6. Consider the functionf from Example 1. The
probabilities of its output values arep|f=0 = p|f=7 = 4/19,
p|f=1 = p|f=4 = p|f=6 = 2/19 and p|f=2 = p|f=3 =
p|f=5 = 1/19. The entropy of the function isH(f) =
−2·4/19 ·log2

4/19−3·
2/19 ·log2

2/19−3·
1/19 ·log2

1/19 =
2.64 bit. The conditional entropy of the functionf with re-
spect to variablex1 is H(f |x1) = 9/19 · 1.24 + 10/19 ·
1.61 = 1.43 bit, and alsoH(f |x2) = 1.08 bit, H(f |x3) =
1.00 bit, H(f |x4) = 1.80 bit, H(f |x5) = 1.53 bit,
H(f |x6) = 1.01 bit, H(f |x7) = 0.84 bit, H(f |x8) =
0.99 bit.

We utilize the presented information theoretic measures
for optimization of database access. Thecriterion to choose
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Figure 4. Samples of (a) ordered and (b) free DDs, and resulta nt DDs produced (c) by greedy
algorithm InfoGreedy and (d) by iteration algorithm InfoIter (second iteration) for the function f from
Example 1

a decomposition variablex for the arbitrary level of DD is
that the conditional entropy of the function with respect to
this variable has to be minimal:

H(f |x) = min(H(f |xi) | ∀ xi). (3)

As a measure of cost, we use the number of levels and the
number of nodes in the final DD. This choice is motivated
by the major optimization objectives in Internet Shopping,
related to reduction of number of queries and overall mem-
ory size for DD allocation.

The main reasons for using information theoretic mea-
sures to optimize data access are:

1. The behaviour of entropy function is close to the be-
haviour of such parameters as the number of nodes and
the number of levels in DD. The results from [9] show
the dependence of the number of nodes in DT expres-
sion upon the entropy function.

2. The choice in each particular case is mainly justified by
theuncertaintyof decision making whose estimation is
closely related to entropy measures. This implies that
the sequence with less uncertainty (DDs) should be de-
signed taking into consideration the entropy criterion.

3. The results of optimization are very sensitive to vari-
able ordering, e.g. the number of nodes may vary from
linear to exponential [10].

Next, we present a simple example to compare a classical
method and an entropy-based method of variable ordering.

4 Algorithms to Optimize Database Access

Generally, our algorithm to optimize database access
performs as follows,

⋄ Initially, a canonical representation, i.e. truth table,
is generated for the given database information as de-
scribed in Section 3.

⋄ InfoGreedy (greedy strategy) orInfoIter (iteration
strategy) algorithm is applied. The nodes of the DD
are assigned by variables in accordance with the infor-
mation theoretic criterion (Equation (3)). The DT is
optimized via reduction of the number of nodes.

⋄ The sequence of queries is formed according to the
constructed DD.

4.1 Greedy Strategy - Simple Case

First, we describe a greedy algorithm to optimize
database access according to an information criterion. A
sketch of the algorithm is given in Figure 5.

The basic idea here is that we employ recursion when
constructing DDs. The ordering restriction is relaxed, i.e.,
(i) each variable appears once on each path and (ii) the or-
der of variables along each path may be different [4]. Our
greedy algorithm for logic functions minimization is:

Stage 1. At each step of DD design, i.e. attaching a current
node to the DD, the information theoretic measures for
decomposition are calculated for each variable.

Stage 2. The variablex, that corresponds to minimal
H(f |x), is assigned to the current DD node.

Stage 3. Sub-DDs for the sub-functions (outgoing edges of
current DD node) obtained by decomposition with re-
spect to variablex are recursively constructed.

Stage 4. Algorithm terminates if the leaves are archived for
each sub-DD (DD is completed) for the given logic
functionf .



Input Logic function f

Output DD - Decision Diagram

InfoGreedy(f)

{ if(f = c, where c = const) then {
DD ← leaf(c); return;

}
for(∀xi)

Calculate information measures H(f |xi)
Choose variable x where:

H(f |x) = min(H(f |xi) | ∀xi);
Attach node assigned by variable x to DD

DD← node(x);
for(∀fs of decomposition given variable x)

Recursively construct the sub-DDs DDs:

DDs = InfoGreedy(fs);

return;

}

Figure 5. Sketch of the Info algorithm to re-
alize greedy strategy

The obtained DD is shown in Figure 4(c). The number
of non-terminal nodes is four and the maximum number of
levels is three.

4.2 Iteration Strategy

We present below an extension of the greedy algo-
rithm that can be used in practical applications. A con-
cept of ranging variablesx1, . . . , xn using information the-
oretic criterion is supposed to improve the characteristics of
greedy strategy and optimize Web access.

1. During information measures calculation, we store
the list of variablesx ranging by increasingH(f |x):
xj1 , ...xjt , ..., xjn , so thatH(f |xjt) < H(f |xjt+1

)
(Figure 7(b)), in contradiction to lexicographical
(naive) order (Figure 7(a)).

2. At each iteration, we choose the variable from the list
xj1 , ..., xjt , ..., xjn , corresponding to the current itera-
tion.

We add the number of iterations as input data for the
extended algorithm (Figure 6). Such an improvement of the
basic algorithm does not guarantee the minimal solution,
but near the minimal one. It is easy to show that algorithm
InfoIter, with parameterIter = 1, realizes the greedy
strategy. We can obtain the results that will be near the
exact ones by increasing the number of iterations:

Algorithm InfoGreedy ←− InfoIter −→ Exact
Iter = 1 . . . 10 . . . 100 . . . . . .

Example 7. Let us consider how the algorithmInfoIter
runs for the functionf from Example 1. At the second it-
eration, we obtain DD (Figure 4(d)). We can conclude that

Input Logic function f, number of iterations Iter

Output DD - Decision Diagram

for(iter = 1; iter ≤ Iter; iter ++) {
InfoIter(f) {if(f = c, where c = const) then {

DD← leaf(c); return;

}
for(∀xi)

Calculate information measures H(f |xi)
Range the variables xi by increasing H(f |xi)
Choose variable x from list of ranging couples

Attach node assigned by variable x to DD

DD← node(x);
for(∀fs of decomposition given variable x)

Recursively construct the sub-DDs DDs:

DDs = InfoIter(fs);

return;

}
Store minimal DD, according to cost criterion

}

Figure 6. Sketch of the Info algorithm to re-
alize iteration strategy
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Figure 7. Lexicographical (naive) order and
the order based on ranging the variables in
accordance with their information measures

three requests will be enough to explore all car modifica-
tions proposed by the company. Firstly, we should generate
a query that contains a question about customers’ pay abil-
ities (x7), then either gear preferences (x5) or car purpose
(x8), and fuel spent (x6).

5 Experiments and Practical Benefits

In the first series of experiments with algorithms
InfoGreedy and InfoIter for decision making, Machine
Learning benchmarks were used (Table 3). In this table,
N /level/t means the number of DT/DD nodes, the number
of DT/DD levels and run-time in CPU seconds (Pentium III
650Mhz, 48Mb). We stateIter = 10 for InfoIter.

Observation 1. InfoIter algorithm produces DTs with
about 10% fewer nodes (DDs with about 7% fewer nodes)
and about 12% fewer levels (9% fewer levels for DDs) than



Table 3. Results of InfoGreedy and InfoIter in decision making applications

InfoGreedy InfoIter
DT DD DT DD

r = m k N/level/t N/level/t N/level/t N/level/t

shuttle 4 1695 740/6/8.31 651/6/10.25 740/6/8.31 651/6/10.25
monks1te 4 432 10/3/0.26 10/3/0.26 10/3/0.26 10/3/0.26
monks1tr 4 124 17/5/0.05 15/5/0.19 13/3/0.24 11/3/1.84
monks2te 4 432 10/3/0.26 10/3/0.26 10/3/0.26 10/3/0.26
monks2tr 4 169 85/6/0.02 78/6/0.12 79/6/0.55 71/6/1.13
monks3te 4 432 73/5/0.56 36/4/2.88 5/3/1.68 5/3/1.68
monks3tr 4 122 39/5/0.07 32/5/0.75 22/5/0.62 19/5/2.39
Total 974/33/9.53 832/32/14.71 879/29/11.92 777/29/17.81

InfoGreedy does.

Observation 2. InfoIter with DDs output gives about
12% fewer nodes thanInfoIter with DTs output.

In the second series of experiments, we tested the pro-
posed algorithms for different Internet market examples.
The optimization results provide more friendly and faster
user interactions.

Possible benefits from using DDs are: more compact
database representations and faster access, better optimiza-
tion using different criteria (DD size, levels’ no.), and flex-
ibility in developing and updating electronic catalogs. The
application of Internet shopping is an example where Web
site customers will be able to buy a product using intuitive
navigation due to DDs since hierarchical data representation
is similar to the way decisions are made.

6 Concluding Remarks

In this paper, we addressed the problem of optimiz-
ing database access by using hierarchical organization of
database information. We have developed computer-aided
support for the easy construction of DDs and DTs. The
optimization methods using graph-based structures have
found wide applicability not only in E-commerce applica-
tions but also in logic design, computer-aided diagnosticsin
medicine, and other decision making problems [12].

The algorithms produce efficient DDs using information
theoretic approach. They provide significant improvement
in the number of queries needed to extract information from
a database. The experimental results are encouraging and
the algorithms are easy to construct.
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