
A Generic Reference Software Architecture for Load Balancing
over Mirrored Web Servers: NaSr Case Study

R. Bashroush, I. Spence, P. Kilpatrick, TJ. Brown

Queen’s University Belfast,
18 Malone Road, Belfast BT7 1NN, UK

{r.bashroush, i.spence, p.kilpatrick, tj.brown}@qub.ac.uk

Abstract

With the rapid expansion of the internet and the

increasing demand on Web servers, many techniques
were developed to overcome the servers’ hardware
performance limitation. Mirrored Web Servers is one
of the techniques used where a number of servers
carrying the same “mirrored” set of services are
deployed. Client access requests are then distributed
over the set of mirrored servers to even up the load. In
this paper we present a generic reference software
architecture for load balancing over mirrored web
servers. The architecture was designed adopting the
latest NaSr architectural style [1] and described using
the ADLARS [2] architecture description language.
With minimal effort, different tailored product
architectures can be generated from the reference
architecture to serve different network protocols and
server operating systems. An example product system
is described and a sample Java implementation is
presented.

1. Introduction

Along with the rapid expansion of the internet, the
information delivery system using the World Wide
Web (hereinafter the Web) has also expanded putting
high demand on Web servers. As hardware upgrade
has the physical technological limitations, different
alternative techniques were considered to enhance web
servers’ performance.

Mirrored Web Servers is a widely used technology
with web services that experience high volume client
requests. With mirrored web servers, different
machines, with possibly different speeds and memory
resources, can be deployed instead of a single server
where all carry the same set of services. The mirrored
servers can be distributed geographically or situated on
the same network. Client access requests are then
distributed over the set of clusters to even up the load.

There are several techniques for leading clients to
the most efficient server [3][4] and [5][6] according to
the constantly changing server and network conditions.

In this paper, we design a generic reference
architecture for load balancing over mirrored web
servers situated in the same LAN with centralized
access via an access serve. We then show an example
system tailored for a given specific network and server
configuration along with the Java implementation.

Section 2 takes us through the different steps
leading to the design of the reference architecture of
the load balancer. Section 3 gives an example system
generated from the reference architecture designed in 2
and the corresponding Java implementation.
Conclusion and future work are finally highlighted in
section 4.

2. Designing the reference architecture

The reference architecture is designed adopting the
NaSr [1] architectural style (Network Architectural
Style for Real-time systems) and described using
ADLARS1 [2], an Architecture Description Language
for Real-time Software families.

 ADLARS is an architecture description language
developed within our research group targeting real-time
software product families. NaSr is a network
architectural style that was also developed within our
research group targeting real-time heterogeneous and
distributed systems. Having multi-server environment
with heterogeneous operating systems makes from
NaSr the perfect style to be used. Dealing with the
system as a family of architectures where each
architecture is a specific instantiation of the reference
architecture for a specific network/server configuration
makes from ADLARS a good architecture description
language.

1 ADLARS was developed within our research group first in 1999 as
part of the Jigsaw project funded by Nortel Networks ®.

The design stage of any software system starts by
capturing the stakeholders/system requirements. There
are two main techniques for capturing requirements:
Requirements Engineering [7] and Feature Modeling
[9][10]. Requirements engineering is usually adopted
by the software engineering research society and the
Feature Modeling technique is usually adopted by the
Product Line Engineering research society. As our
domain of interest is a family of applications rather
than a single system, and as we are using ADLARS,
which is designed for software product families, we
followed the Feature Modeling technique for capturing
the system requirements.

The second step after feature modeling is designing
the system structure and components. For the structure,
we adopted the NaSr style due to the similarity of the
solutions provided by this architectural style and our
domain of concern (concurrent, real-time,
heterogeneous). The design of the system components
(and sub-components) is carried out over three phases.
The overall process is summarized below and details
are given in the following two sections (2.1, 2.2).

Step 1 (feature modeling):
 Phase 0: Designing the feature model of the

system.

Step 2 (system design):
 Phase 1: Designing the ADLARS Tasks and the

Event Categories (system events). This is a
recursive procedure that would require changes to
the feature model and the Tasks recursively.
Different small testing scenarios might be used to
increase confidence in the basic correctness of the
task in development.

 Phase 2: Designing the Components. This is a
recursive procedure that might require changes to
the existing Tasks or feature model (e.g. if you
find that two different Components that you put in
the same Task require two separate threads of
execution, this would require a restructuring of
the design). This may also require changes to the
above layers.

 Phase 3: Designing the Sub-Components (if
needed). This as well might impose changes to the
above layers (Components, Tasks and Feature
model).

2.1. Feature modeling

In phase 0 we use a feature modeling strategy which
is similar to FORM [10] an extension to FODA

(Feature Oriented Domain Analysis) [9] to capture the
system requirements.

In the feature model tree of our system (not shown
due to space limitation) shows that the load balancer
should be capable of reading system/server status (info
about memory, CPU, TCP connections, etc.) and
reporting this information, every fixed time interval or
on status change, to the access server that keeps a
record of each mirror available. The access server
should be capable of computing a load index out of the
status information received from each mirror and sort
the list of mirrors in a descending order of efficiency,
where the most efficient mirror would be at the top of
the list ready for handling the next client request.

2.2. System design

After going recursively through phases 1, 2 and 3,

the final architecture of the load balancer consisted of
four components (or Tasks as called in ADLARS) in
addition to the two default components, the Connection
Manager CM and the Service Translation Center STC.
The components are as follows (Figure 1):

- webServerMirror: reads the status of the mirrored
server it is running on (CPU utilization, memory
usage, etc.) and reports it to the access server.

- newMirrorInit: listens to any newly added mirror to
the system and creates a new webServerListener
to handle its communication.

- webServerListener: listens to the status report sent
from a specific webServerMirror it is assigned
to and updates the sortedMirrorList with the
latest information.

- sortedMirrorList: contains a list of all available
mirrors sorted with the most efficient server
first.

Figure 1. The load balancer architecture

To better understand the design, let us look at the
different possible scenarios:

- New mirror added: when a new mirror is added to

the network
- Normal operation: when the available mirrors

update the access server with their status
- Mirror down: when a mirror becomes unavailable

and should receive no more requests (due to
overload for example).

- Mirror recovery: when a mirror that was down for
some reason (overload, power fault, system
restart, etc.) is back and operational.

In the first scenario, New mirror added, the newly

added mirror (represented by webServerMirror1 lets
say, which is an instance of webServerMirror) sends an
initialization message carrying its machine
specifications (CPU speed, memory size, etc.) to the
newMirrorInit component. The newMirrorInit
component creates a new instance of the
webServerListener component, webServerListener1 for
example, to handle the communication of
webServerMirror1. It also forwards the initialization
message of webServerMirror1 to webServerListener1
and modifies the STC to forward all incoming
messages from webServerMirror1 to
webServerListener1. webServerListener1 would then
create a record for webServerMirror1 in the
sortedMirrorList component with a load index
computed from the information given in the
initialization message and according to a given rule
(depending on the rule chosen in the specific product
architecture, see next section for an example).

In the second scenario, Normal operation, a
webServerMirror should update its corresponding
webServerListener with its status every fixed interval
of time or upon request (depending on the protocol
used in the specific product architecture deployed).
When the status message is received, a load index is
recomputed for that specific mirror, and the
sortedMirrorList resorts its list with the new value. If a
status update message is not received within a time-out
interval, the mirror is considered down.

In the third scenario, Mirror down, a mirror is
considered down by setting the appropriate tag in the
sortedMirrorList so that it is not included within the
sorted list of mirrors, and as a result, no further
requests can be forwarded to it.

Finally, in the Mirror recovery scenario, a mirror
that is tagged as down, would recover from whatever
reason prevented it from sending its status update
message (overload, power failure, etc.) by sending its

status message. From the new status message, the
corresponding sortedMirrorList would re-compute the
mirror load index, unset it’s down tag in the
sortedMirrorList and re-sort the list of mirrors
including the recovered mirror so that it can start
receiving client requests again according to its position
in the list.

The following section presents an example system
along with its Java implementation.

3. An example architecture and
implementation

In this section, we present an example system we
generated from the reference architecture described
above.

The system was developed to work over Windows
NT® and Solaris® mirrored servers connected over a
TCP/IP local network.

The formula used to evaluate the load index over a
given mirror is shown in the equation below which was
taken from [11].

Load Index = LINK*K + IO*L + IDLE*M + CPU*N

LINK: Number of TCP connections
IO: Disk load
IDLE: CPU idle status
CPU: Load average
K-N: constants
K=0.2, L=1, M=0.3, N=0.5

From these requirements specification, we arrived to

the following five Java classes divided into two
applications: mirrorThread.java, that runs on the
different mirrored servers and: mirrorClass.java,
arrayList.java, mirrorInit.java, and
mirrorListener.java which run over the access server.

mirrorThrea.java is the program (has the main
function) that runs over the mirrored servers. It reads
the system information by executing the appropriate
command (see feature model for details) via the java
command System.execute(“”); and then sends this
information to the mirrorListener.java class running on
the access server via a UDP packet.

mirrorInit.java, is the program (contains the main
function) that runs over the access server. When
started, it creates and runs a thread of arrayList.java
and listens on a known (to the mirrors) UDP port
number for newly added mirrors. The arrayList.java
(extends Thread) contains an array of mirrors each of
which is an instance of mirrorClass.java class that
contains all the details about a specific mirror. It also
includes a synchronized function that can be executed

by mirrorListener.java to update the list of mirrors
upon the receipt of new status reports.

When an initialization message is sent by an
instance of mirrorThread.java, mirrorInit.java creates
a new instance of mirrorListener.java (extends Thread)
and assigns it the communication with the initializing
mirrorThread.java instance.

4. Conclusion

In this research we were concerned with the study
and application of our latest Software Engineering and
Architecture techniques [13][14] in designing and
implementing software solutions for real-life systems
[12]. We presented a reference software architecture
for load balancing over mirrored web servers. The
generic architecture produced served as a case study in
using the NaSr architectural style [1]. It also helped us
refining the style.

The development of reference architectures is not a
new idea and is used in Software Product Line
Engineering where Software artifacts are created for
product families rather than a specific system
increasing reuse and decreasing the production cost and
marketing time.

The architecture we designed can be used for
quickly developing load balancing systems. By
specifying desired features in the reference
architecture, the tailored product architecture can be
automatically generated using the proper tool. This is
one of the main advantages of using our architecture
description language ADLARS [2]. An example
product system that was generated from the reference
architecture was also presented with a minimal level of
details due to the space limitation.

5. References

[1] R. Bashroush, I. Spence, P. Kilpatrick, and TJ Brown. A
Network Architectural Style for Real-time Systems: NaSr.
Proc. of the 4th Working IEEE/IFIP International Conference
on Software Architecture WICSA’04, Oslo, Norway, June
2004.

[2] T.J. Brown, I. Spence, and P. Kilpatrick. ADLARS: A
Relational Architecture Description Language for Software
Families. Proceedings of the Fifth International Workshop
on Product Family Engineering, Siena, Italy, 2003.

[3] A. Myers, P. Dinda, and Hui Zhang. Performance
characteristics of mirror servers on the Internet. Proc. of the
Conference on Computer Communications (IEEE
INFOCOM), New York, Mar. 1999.

[4] M. Crovella and R. Carter. Dynamic Server Selection
using Bandwidth Probing in Wide-Area Networks. Proc. of
the Conference on Computer Communications (IEEE
INFOCOM), Kobe, Japan, Apr. 1997.

[5] M. Conti, E. Gregori, F. Panzieri. Load Distribution
among Replicated Web Servers: A QoS-Based Approach.
Proceedings of the 2nd ACM Workshop on Internet Server
Performance WISP, Georgia, May 1999.

[6] R.B. Bunt, D.L.Eager, et al. Achieving Load Balance
and Effective Caching in Clustered Web Servers.
Proceedings of the fourth International Web Caching
Workshop, San Diego, CA, Mar-Apr 1999.

[7] R. Abbott and D. Moorhead. Software Requirements
and Specifications. Journal of Systems and Software, 2
(1981), pp. 297-316.

[8] Mehdi Jazayeri, Alexander Ran, Frank van der Linden:
Software Architecture for Product Families: Principles and
Practice, Addison Wesley Longman, 2000.

[9] KC Kang, SG Cohen, JA Hess, WE Novak, AS
Peterson: Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Technical Report, CMU/SEI-90-TR-21,
ESD-90-TR-222, Nov 1990.

[10] KC Kang, S. Kim, J. Lee, and K. Kim: FORM: A
Feature-Oriented Reuse Method with Domain-Specific
Reference Architectures. Annals of Software Engineering,
Vol. 5, pp. 143-168, 1998.

[11] T Ogino, M Kosaka, Y Hariyama, K Matuda, K Sudo.
Study of an Efficient Server Selection Method for Widely
Distributed Web Server Networks. Proceedings of the 10th
Annual Internet Society Conference INET2000, Yokohama,
Japan, July 2000.

[12] R. Bashroush, I. Spence, P. Kilpatrick, and T.J. Brown.
A Real-time Network Emulator: ADLARS Case Study.
Proceedings of the Third Asia Pacific International
Symposium on Information Technology, pages 610-617,
Istanbul, Turkey, Jan 2004.

[13] R. Bashroush, I. Spence, P. Kilpatrick, and TJ Brown.
Towards an Automated Evaluation Process for Software
Architectures. Proc. of the IASTED international conference
on Software Engineering SE 2004, Innsbruck, Austria,
February 2004.

[14] R. Bashroush, I. Spence, P. Kilpatrick, and TJ Brown.
The Contribution of Architecture Description Languages to
the Evaluation of Software Architectures. Proc. of the
National IEEE/IEE/ACM PREP 2004 Conference,
Hertfordshire, UK, April 2004.

