
HAL Id: hal-04002018
https://hal.science/hal-04002018

Submitted on 23 Feb 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Access control with prohibitions and obligations
Philippe Balbiani, Fatme Harb, Ali Kaafarani

To cite this version:
Philippe Balbiani, Fatme Harb, Ali Kaafarani. Access control with prohibitions and obligations.
International Conference on Computer Systems and Applications (AICCSA 2006), ACS/IEEE, Mar
2006, Dubai, United Arab Emirates. pp.(electronic medium), �10.1109/AICCSA.2006.205134�. �hal-
04002018�

https://hal.science/hal-04002018
https://hal.archives-ouvertes.fr


Access control with prohibitions and obligations

Philippe Balbiani
Université Paul Sabatier, Irit-CNRS
31062 Toulouse Cedex 9, France

Fatima Harb
Université Paul Sabatier, Irit-CNRS
31062 Toulouse Cedex 9, France

Ali Kaafarani
Université Paul Sabatier, Irit-CNRS
31062 Toulouse Cedex 9, France

Abstract

Most of access control mechanisms use the matrix model
to represent protection states of computer systems. Firstly,
we present a variant of the access control matrix model ob-
tained by incorporating explicit prohibitions saying, e.g.,
that “it is not permitted that subject s performs action a on
object o”. Secondly, we present a variant of the access con-
trol matrix model obtained by incorporating explicit obli-
gations saying, e.g., that “it is obligatory that subject s per-
forms action a on object o”. We then turn to the question
whether the expressive power of the matrix model grows
when enriching access control with explicit prohibitions or
explicit obligations. In connection with these enriched mod-
els, we also discuss the solvable and unsolvable cases of
one of the major themes of computer security, namely the
classical safety problem for access control matrices.

1 Introduction

The matrix model was first defined by Lampson [13]. It
is based on the idea of associating with each subject s and
each object o of a protection system a set M [s, o] of ac-
tions, the relationship a ∈ M [s, o] being read “subject s
has permission to perform action a on object o”. Most of
access control mechanisms use the matrix model to repre-

sent protection states of computer systems. We shall focus

our attention on the HRU model introduced by Harrison,

Ruzzo, and Ullman [12] because this model summarizes in
the majority of cases the design features of such-and-such

protection system. Within the HRU model, protection sys-

tems consist of commands. As subjects execute commands,

the protection state of the system, i.e. its access control

matrix, changes. The original classical safety problem for

the HRU model can be stated in the following way: given

a protection system Π, an action a, and a protection state

Q, determine if there is at least one protection state Q′ con-

taining a and reachable by Π in a finite number of steps
from Q. The safety question is undecidable for generic
protection systems but it becomes decidable if protection

systems are restricted in some way. Can the borderline be-

tween solvable and unsolvable cases of the safety problem

be drawn sharply and on the basis of which criteria? This

matter is analysed in a number of books [5; 6; 15] and pa-
pers [10; 11; 12] partly or entirely devoted to HRU.

Additional topics related to the HRU model include re-

sults concerning a number of interesting variants obtained

by extending HRU in various ways. Revisiting the re-

sults obtained so far, Sandhu [16] and Soshi [19] expanded
the HRU model by typing subjects and objects. The pa-

pers [7; 9; 17] formulated a model for access control within
which the permission for a subject to have legal access to an

object depends both on the roles assigned to the subject and

on the permissions allocated to the object; in this connection

see [8]. Role-based access control has recently attracted a
great deal of attention. However, nothing is known about

role-based protection systems for which the safety problem

is decidable. An interesting extensions of HRU is HRUwith

explicit prohibitions saying, e.g., that “it is not permitted

that subject s performs action a on object o”. The essen-
tial ingredients of this variant of the HRU model have been

introduced by Sandhu and Ganta [18]. Nevertheless, noth-
ing is known about protection systems with explicit pro-

hibitions for which the safety problem is decidable. The

description of HRU-like models incorporating explicit obli-

gations has been suggested in several places including [2].
The safety problem for access control matrix models allow-

ing obligations saying, e.g., that “it is obligatory that subject

s performs action a on object o” has never been considered.

The bulk of this paper is devoted to the problem of try-

ing to characterize the borderline between decidable and

undecidable cases of the safety problem for HRU with ex-

plicit prohibitions or explicit obligations. On the one hand,



when we add explicit prohibitions, decidability of safety re-

mains open for mono-operational protection systems and

monoconditionalmonotonic protection systems. Hence, we

present various fragments of HRU with explicit prohibi-

tions mainly defined in terms of additional restrictions on

the syntactic structure of commands. On the other hand,

we demonstrate that safety for HRU with explicit obliga-

tions becomes decidable for mono-operational protection

systems and monoconditional monotonic protection sys-

tems. We follow here the approach developed by Harrison,

Ruzzo, and Ullman [10; 11; 12] for mono-operational HRU
protection systems and monoconditional monotonic HRU

protection systems. Let us review briefly the contents of the

paper. The main part of section 2 is devoted to the origi-

nal classical safety problem for the HRU model which we

explain from scratch. In sections 3 and 4, we present our

variants of the access control matrix model obtained by in-

corporating explicit prohibitions or explicit obligations. We

conclude the paper with a number of open matters.

2 Access control matrix model

A typical feature of the model introduced by Harrison,

Ruzzo, and Ullman [12] is that protection systems are or-
dered pairs Π = (A, C) where A is a finite set of actions
and C is a finite set of commands.
Example The actions of a protection system correspond, for
instance, to those of the Unix system: read, write, etc.
Commands are expressions of the form:

command α(X1, . . . , Xi, Y1, . . . , Yj) is
(a1, Xu1

, Yv1
) . . . (ak, Xuk

, Yvk
) ⇒ π1; . . . πn;

where X1, . . ., Xi are variables of type subject, Y1, . . ., Yj

are variables of type object, a1, . . ., ak denote actions in A,
u1, . . ., uk are integers between 1 and i, v1, . . ., vk are inte-

gers between 1 and j, and π1, . . ., πn are atomic programs,

i.e. expressions of the form “enter a into (X, Y )”, “create
subject X”, “create object Y ”, “delete a from (X, Y )”,
“destroy subject X”, and “destroy object Y ”. The com-
mand α(X1, . . . , Xi, Y1, . . . , Yj) denotes the conditional:

if “a1 is in M [Xu1
, Yv1

]” . . . “ak is in M [Xuk
, Yvk

]”
then begin π1; . . . πn; end

The number of its elementary conditions is k, a non-
negative integer, and the number of its atomic programs is

n, a positive integer. Commands are used to update protec-
tion states, i.e. ordered triples Q = (S, O, M) where S is
a finite set of subjects, O is a finite set of objects, andM is

a function assigning to each subject s in S and each object
o in O a finite setM [s, o] of actions. For technical reasons,
we assume that S and O have no common elements. Q’s
subjects are active entities, such as human beings, whereas

Q’s objects are passive entities, such as files, the relation-

Q o0 o1

s0 a1 a0, a1

s1 a0, a1 a1

s2 a1 a1

Q′ o0 o1 o2

s0 a1 a0, a1

s1 a0, a1 a1

s2 a1 a1 a0, a1

Q′′ o0 o1 o2

s0 a1 a0, a1 a2

s1 a0, a1 a1

s2 a1 a1 a0, a1

Q′′′ o0 o1 o2

s0 a1 a0, a1 a2, a3

s1 a0, a1 a1

s2 a1 a1 a0, a1

Table 1. Protection states Q, Q′, Q′′, and Q′′′.

ship a ∈ M [s, o] being read “subject s has permission to
perform action a on object o”.
Example Table 1 illustrates protection states presented in a
matrix form. The entries in the matrices specify the actions

that each subject has permission to perform on each object.

If all variables in α are replaced by names of concrete
entities, that is, subjects s1, . . ., si for variables X1,

. . ., Xi and objects o1, . . ., oj for variables Y1, . . ., Yj ,

then we shall say that protection state Q = (S, O, M)
makes command α(s1, . . . , si, o1, . . . , oj) possible iff a1 ∈
M [su1

, ov1
], . . ., ak ∈ M [suk

, ovk
]. Let π�

1
, . . ., π�

n be the

atomic programs of α(s1, . . . , si, o1, . . . , oj). If Qz−1 =
(Sz−1, Oz−1, Mz−1) and Qz = (Sz , Oz, Mz) are protec-
tion states then we shall say thatQz is derivable fromQz−1

in one step using π�
z ,Qz−1 �π�

z
Qz, iff one of the following

conditions is satisfied:

• π�
z is “enter a into (s, o)”, s ∈ Sz−1, o ∈ Oz−1, and

the difference betweenQz−1 andQz is thatMz[s, o] =
Mz−1[s, o] ∪ {a},

• π�
z is “create subject s”, s �∈ Sz−1, and the differ-

ence between Qz−1 and Qz is that Sz = Sz−1 ∪ {s}
whereas for all o ∈ Oz ,Mz[s, o] = ∅,

• π�
z is “create object o”, o �∈ Oz−1, and the differ-

ence between Qz−1 and Qz is that Oz = Oz−1 ∪ {o}
whereas for all s ∈ Sz ,Mz[s, o] = ∅,

• π�
z is “delete a from (s, o)”, s ∈ Sz−1, o ∈ Oz−1, and

the difference betweenQz−1 andQz is thatMz[s, o] =
Mz−1[s, o] \ {a},



• π�
z is “destroy subject s”, s ∈ Sz−1, and the differ-

ence between Qz−1 andQz is that Sz = Sz−1 \ {s},

• π�
z is “destroy object o”, o ∈ Oz−1, and the difference

betweenQz−1 andQz is that Oz = Oz−1 \ {o}.

The effects describing each “create” program reflect
the fact that no permission is granted to created sub-

jects and no permission is granted on created objects.

We say that protection state Q = (S, O, M) yields
protection state Q′ = (S′, O′, M ′) under command
α(s1, . . . , si, o1, . . . , oj), Q �α(s1,...,si,o1,...,oj)

Q′, iff Q
makes α(s1, . . . , si, o1, . . . , oj) possible and there are pro-
tection states Q0, Q1, . . ., Qn such that:

• Q0 = Q,

• Qz−1 �π�
z

Qz for all integers z in {1, . . . , n},

• Qn = Q′.

We shall write Q �α Q′ iff there are concrete entities s1,

. . ., si and o1, . . ., oj such that Q �α(s1,...,si,o1,...,oj)
Q′.

Also we shall write Q �Π Q′ iff there is a command α
in Π such that Q �α Q′. Define on protection states the

binary relations �n
Π
, for all non-negative integers n, and ��

Π

as follows:

• Q �0

Π
Q′ iff Q = Q′,

• Q �n+1

Π
Q′ iff there is a protection state Q′′ such that

Q �n
Π

Q′′ and Q′′ �Π Q′,

• ��
Π
=

⋃
{�n

Π
: n is a non-negative integer}.

Example If Q, Q′, Q′′, and Q′′′ are the protection states

defined in example 2 and α′, α′′, and α′′′ are the following

commands:

command α′(X, Y ) is
⇒ “create object Y ”; “enter a0 into (X, Y )”;
“enter a1 into (X, Y )”;

command α′′(X, X ′, Y ) is
(a0, X, Y ) ⇒ “enter a2 into (X ′, Y )”;

command α′′′(X, X ′, Y ) is
(a0, X, Y ) ⇒ “enter a3 into (X ′, Y )”;

then Q �α′(s2,o2)
Q′, Q′ �α′′(s2,s0,o2)

Q′′, and

Q′′ �α′′′(s2,s0,o2)
Q′′′. HenceQ ��

Π
Q′′′.

Unlike Harrison, Ruzzo, and Ullman, we go on the as-

sumption that S ∩ O = ∅ rather than the assumption that
S ⊆ O. It is easy to see that this slight change does not
affect any of the results if the concept of safety is defined

in the following way. Given non-negative integer n, protec-
tion system Π = (A, C), action a in A, and protection state
Q = (S, O, M), we say that Π n-leaks a from Q iff there
is a protection state Q′ = (S′, O′, M ′) such that Q �n

Π
Q′

and there are s in S′ and o in O′ such that a ∈ M ′[s, o]. We
shall say that Π leaks a from Q iff there is a non-negative
integer n such that Π n-leaks a fromQ. We also say that Q
is unsafe for Π and a.
Example If Q is the protection state defined in example 2
and Π contains the commands α′, α′′, and α′′′ defined in

example 2 then Q is unsafe forΠ, and both a2 and a3.

We say that protection state Q′ = (S′, O′, M ′) covers pro-
tection state Q = (S, O, M), Q 
 Q′, iff S ⊆ S′, O ⊆ O′,

and for all s in S and for all o in O,M [s, o] ⊆ M ′[s, o]. We
shall say that command α is monotonic iff it does not con-
tain an atomic program of the form “delete” or “destroy”.
Now we prove a simple lemma about monotonic.

Lemma 1 Let α be a monotonic command and Q and Q′

be protection states. If Q �α Q′ then Q 
 Q′.

Proof The result follows from the fact that α does not con-
tain an atomic program of the form “delete” or “destroy”.
�
A protection system is monotonic iff all its commands are

monotonic. We shall say that command α is monocondi-
tional iff it does not contain more than 1 elementary condi-
tion. A protection system is monoconditional iff all its com-

mands are monoconditional. We shall say that command

α is mono-operational iff it does not contain more than 1
atomic program. A protection system is mono-operational

iff all its commands are mono-operational. Let C(−,−) be
the class of all protection systems, C+(−,−) be the class
of all monotonic protection systems, C(1,−) be the class
of all monoconditional protection systems, C+(1,−) be the
class of all monotonic monoconditional protection systems,

C(−, 1) be the class of all mono-operational protection sys-
tems, and C+(−, 1) be the class of all monotonic mono-
operational protection systems.

Example For example, the protection system Π containing
the commands α′, α′′, and α′′′ defined in example 2 is in

the class C+(1,−). It specifies the ways in which protection
states could be modified when subjects create new objects

and give themselves rights a0 and a1 or when subjects grant

rights a2 and a3.

Given a class C of protection systems, the most basic prob-
lem on protection systems in C is the following decision
problem:

Problem: SAFETY(C),

Input: A protection system Π = (A, C) in C, an action a
in A, and a protection state Q = (S, O, M),

Output: Determine if Q is unsafe for Π and a.

The safety question is undecidable for generic protection

systems and it becomes decidable when protection systems

are restricted in some way.



Theorem 1 1. SAFETY(C(−,−)) is undecidable,

2. SAFETY(C+(−,−)) is undecidable,

3. SAFETY(C+(1,−)) is decidable,

4. SAFETY(C(−, 1)) is decidable,

5. SAFETY(C+(−, 1)) is decidable.

Proof See [10; 11; 12]. �
It is not known at present whether SAFETY(C(1,−))) is
decidable or not.

3 Explicit prohibitions

A simple way to strengthen the HRU model is to relax

the limitation on formation of elementary conditions. At

present we can formalize certain positive conditions but not

their denials — we accept, for instance, “a is in M [X, Y ]”
but not “a is not in M [X, Y ]” — and there are a number
of protection systems whose expression requires us to al-

low negative conditions to occur within commands; in this

connection see [18]. A distinctive feature of our treatment
of explicit prohibitions will be to allow negative conditions

to occur within commands’ elementary conditions. A com-

mand is now an expression of the form:

command α(X1, . . . , Xi, Y1, . . . , Yj) is
+(a1, Xu1

, Yv1
) . . . +(ak, Xuk

, Yvk
)

−(ak+1, Xuk+1
, Yvk+1

) . . . −(ak+l, Xuk+l
, Yvk+l

)
⇒ π1; . . . πn;

denoting the conditional:

if “a1 is in M [Xu1
, Yv1

]” . . . “ak is in M [Xuk
, Yvk

]”
“ak+1 is not in M [Xuk+1

, Yvk+1
]” . . . “ak+l is not

in M [Xuk+l
, Yvk+l

]”
then begin π1; . . . πn; end

where π1, . . ., πn are atomic programs of the form “en-
ter”, “create”, “delete”, or “destroy”. It has k positive el-
ementary conditions, l negative elementary conditions, and
n atomic programs. The method we adopt for handling ex-
plicit prohibitions is well established in the theory of deduc-

tive databases with negation [1] but does not appear to have
been considered in the context of protection systems before.

The definition of protection states making commands pos-

sible must be modified in the following way. If all vari-

ables in α are replaced by names of concrete entities, that
is, subjects s1, . . ., si and objects o1, . . ., oj , then we shall

say that protection state Q = (S, O, M) makes command
α(s1, . . . , si, o1, . . . , oj) possible iff a1 ∈ M [su1

, ov1
], . . .,

ak ∈ M [suk
, ovk

], ak+1 �∈ M [suk+1
, ovk+1

], . . ., ak+l �∈
M [suk+l

, ovk+l
]. On this account the binary relations �π�

z
,

�α(s1,...,si,o1,...,oj)
, �α, �Π, �

n
Π
, and ��

Π
are defined just as

above in section 2.

Example If Q, Q′, Q′′, and Q′′′ are the protection states

presented in a matrix form by table 1 and α′, α′′, and α′′′

are the following commands:

command α′(X, Y ) is
⇒ “create object Y ”; “enter a0 into (X, Y )”;
“enter a1 into (X, Y )”;

command α′′(X, X ′, Y ) is
+(a0, X, Y ) −(a3, X

′, Y ) ⇒ “enter a2 into
(X ′, Y )”;

command α′′′(X, X ′, Y ) is
+(a0, X, Y ) −(a2, X

′, Y ) ⇒ “enter a3 into
(X ′, Y )”;

then Q �α′(s2,o2)
Q′, Q′ �α′′(s2,s0,o2)

Q′′, but

Q′′ ��α′′′(s2,s0,o2)
Q′′′. MoreoverQ ���

Π
Q′′′.

We generalize the definitions of n-leaks, leaks, and unsafe
to protection systems with explicit prohibitions. If we de-

fine the concepts of covers and monotonic just as above in

section 2 then:

Lemma 2 Let α be a monotonic command and Q and Q′

be protection states. If Q �α Q′ then Q 
 Q′.

Proof The result follows from the fact that α does not con-
tain an atomic program of the form “delete” or “destroy”.
�
We extend the definitions of monoconditional and mono-

operational to protection systems with explicit prohibitions.

If we define the safety problem just as above in section 2

then:

Theorem 2 1. SAFETY(C(−,−)) is undecidable,

2. SAFETY(C+(−,−)) is undecidable.

Proof By items 1 and 2 of theorem 1. �
It would be nice to be able to prove decidabil-

ity of SAFETY(C+(1,−)), SAFETY(C(−, 1)), or
SAFETY(C+(−, 1)), but this is not known. Also, the
decidability of SAFETY(C(1,−)) is not known. What
has been proved, however, is that the safety question

is decidable if protection systems are restricted in the

following way. We shall say that command α is positive
iff it contains neither a negative elementary condition

nor an atomic program of the form “create”, command
α is neutral iff it contains no elementary conditions, and
command α is negative iff it contains neither a positive
elementary condition nor an atomic program of the form

“create”. The most significant result that emerges from the
concepts of positive, neutral, and negative is the following:

Lemma 3 Let α and α′ be monotonic commands and Q
and Q′ be protection states. If α is positive, α′ is neutral or
negative, and Q �α ◦ �α′ Q′ then Q �α′ ◦ �α Q′.



Proof The result follows from the fact that α contains nei-
ther a negative elementary condition nor an atomic program

of the form “create”, “delete”, or “destroy” and α′ contains

neither a positive elementary condition nor an atomic pro-

gram of the form “delete” or “destroy”. �
We will make heavy use, usually without explicit comment,

of the following:

• If command α is monotonic and positive then none of
its elementary conditions is negative and none of its

atomic programs is of the form “create”, “delete”, or
“destroy”,

• If command α is monotonic and neutral then it con-
tains no elementary conditions and none of its atomic

programs is of the form “delete”, or “destroy”,

• If command α is monotonic and negative then none
of its elementary conditions is positive and none of its

atomic programs is of the form “create”, “delete”, or
“destroy”.

A protection system is pure iff all its commands are positive,

neutral, or negative. Let Cp(−,−) be the class of all pure
protection systems, C+

p (−,−) be the class of all monotonic
pure protection systems, Cp(1,−) be the class of all pure
monoconditional protection systems, C+

p (1,−) be the class
of all monotonic pure monoconditional protection systems,

Cp(−, 1) be the class of all pure mono-operational protec-
tion systems, and C+

p (−, 1) be the class of all monotonic
pure mono-operational protection systems. The reason for

the apparently unnatural choice of the concepts of positive,

neutral, and negative will soon become clear.

Theorem 3 SAFETY(C+

p (1,−)) is decidable.

Proof Let Π = (A, C) be a protection system in C+

p (1,−),
Π+ be the set of all positive commands in Π, Π0 be the set

of all neutral commands in Π, and Π− be the set of all neg-

ative commands in Π. Define a binary relation ≺ on A by
a′ ≺ a′′ iff there is a command α in Π+ such that a′ occurs

in α’s atomic programs and a′′ occurs in α’s elementary
conditions. Define on actions the binary relations ≺n, for

all non-negative integers n, and ≺� as follows:

• a ≺0 a′ iff a = a′,

• a ≺n+1 a′ iff there is an action a′′ such that a ≺n a′′

and a′′ ≺ a′,

• ≺�=
⋃
{≺n: n is a non-negative integer}.

It is easy to check that ≺� is decidable. Let a be an action
in A and Q = (S, O, M) be a protection state. If Q is
unsafe for Π and a then there is a protection state Q′ =
(S′, O′, M ′) such that Q ��

Π
Q′ and there are s in S ′ and

o in O′ such that a ∈ M ′[s, o]. Let p be a non-negative

integer and Q0 = (S0, O0, M0), Q1 = (S1, O1, M1), . . .,
Qp = (Sp, Op, Mp) be protection states. Suppose Q0 �α1

Q1 . . . �αp
Qp is a minimal length computation betweenQ

andQ′ using commands inΠ. By lemma 3, we may assume
that there is an integer q between 0 and p such that α1, . . .,
αq are neutral or negative and αq+1, . . ., αp are positive.

We have to consider 3 cases.

q = p. HenceQ is unsafe for Π0 ∪ Π− and a.

q < p and αq+1 contains no elementary conditions.
Hence there are a command α′ in Π+ and an action a′

in A such that α′ contains no elementary conditions,

a ≺� a′, a′ occurs in α′’s atomic programs, and there

is a protection state Q′ = (S′, O′, M ′) such that
Q ��

Π0∪Π− Q′, S′ �= ∅, and O′ �= ∅.

q < p and αq+1 contains elementary conditions. Hence
there are a command α′ in Π+ and an action a′ in A
such that α′ contains elementary conditions, a ≺� a′,

a′ occurs in α′’s elementary conditions, and Q is
unsafe for Π0 ∪ Π− and a′.

We are now almost through with the proof of theorem 3. All

we have to do is show the following:

Claim It is decidable to determine, given a protection sys-

tem Π = (A, C) in C+

p (1,−), an action a in A, and
a protection state Q = (S, O, M), if Q is unsafe for
Π0 ∪ Π− and a.

By definition of unsafe, Q is unsafe for Π0 ∪ Π− and a iff
one of the following conditions is satisfied:

• There are s in S and o in O such that a ∈ M [s, o].

• There is a command α in Π0 such that a occurs in α’s
atomic programs and there is a protection state Q′ =
(S′, O′, M ′) such thatQ ��

Π0 Q′, S′ �= ∅, andO′ �= ∅,

• There are a command α in Π− and an action a′ in A
such that a occurs in α’s atomic programs, a′ occurs

in α’s elementary conditions, and there is a protection
state Q′ = (S′, O′, M ′) such that Q ��

Π0 Q′ and there

are s in S′ and o in O′ such that a′ �∈ M ′[s, o].

It is easy to check that the conditions above are decidable.

This completes the proof of the claim, and hence of the

theorem. �
Are SAFETY(Cp(−,−)), SAFETY(C+

p (−,−)),
SAFETY(Cp(1,−)), SAFETY(Cp(−, 1)), and

SAFETY(C+

p (−, 1)) decidable?

4 Explicit obligations

In this section we enrich the HRU model by introducing

explicit obligations. In what follows, protection states are



Q o0 o1

s0 (a1, 0) (a0, +1), (a1, 0)

s1 (a0, +1), (a1, 0) (a1, 0)

s2 (a1, 0) (a1, 0)

Q
′

o0 o1 o2

s0 (a1, 0) (a0, +1), (a1, 0)

s1 (a0, +1), (a1, 0) (a1, 0)

s2 (a1, 0) (a1, 0) (a0, +1), (a1, 0)

Q
′′

o0 o1 o2

s0 (a1, 0) (a0, +1), (a1, 0) (a2, 0)

s1 (a0, +1), (a1, 0) (a1, 0)

s2 (a1, 0) (a1, 0) (a0, +1), (a1, 0)

Q
′′′

o0 o1 o2

s0 (a1, 0) (a0, +1), (a1, 0) (a2, 0), (a3, 0)

s1 (a0, +1), (a1, 0) (a1, 0)

s2 (a1, 0) (a1, 0) (a0, +1), (a1, 0)

Table 2. Protection states Q, Q′, Q′′, and Q′′′.

ordered triples Q = (S, O, M) where M is a function as-

signing to each subject s in S and each object o in O a total
mapping M [s, o] from the set of all actions to the rational
numbers in [−1, +1], the relationship M [s, o](a) = x be-
ing read “subject s has permission of degree x to perform
action a on object o”. Degrees between −1 and +1 repre-
sent permission levels. The lower a negative degree, the less

recommended the action; the higher a positive degree, the

greater the recommendation to execute the action:

• M [s, o](a) = −1 means that s is forbidden to perform
a on o,

• −1 < M [s, o](a) < 0 means that a on o is inadvisable
to s,

• M [s, o](a) = 0 permits s both to do and not to do a on
o,

• 0 < M [s, o](a) < +1 means that a on o is advisable
to s,

• M [s, o](a) = +1 means that s is obliged to perform a
on o.

Example Table 2 illustrates protection states presented in a
matrix form. The entries in the matrices specify the degrees

of the actions that each subject has permission to perform

on each object. Note that degrees equal to −1 are not rep-
resented.

The following atomic programs are used to modify protec-

tion states: “increase a of Δ in (X, Y )” where Δ is in
[0, 1], “create subject X”, “create object Y ”, “decrease
a of Δ in (X, Y )” where Δ is in [0, 1], “destroy subject
X”, and “destroy object Y ”. These atomic programs can

be combined into commands, i.e. expressions of the form:

command α(X1, . . . , Xi, Y1, . . . , Yj) is
(a1, Xu1

, Yv1
) ≥ δ1 . . . (ak, Xuk

, Yvk
) ≥ δk ⇒ π1;

. . . πn;

denoting the conditional:

if “M [Xu1
, Yv1

](a1) ≥ δ1” . . . “M [Xuk
, Yvk

](ak) ≥
δk”
then begin π1; . . . πn; end

where δ1, . . ., δk are in [−1, +1] and π1, . . ., πn

are atomic programs of the form “increase”, “cre-
ate”, “decrease”, or “destroy”. It has k elementary
conditions and n atomic programs. Replacing vari-

ables in α by names of concrete entities, that is, sub-
jects s1, . . ., si and objects o1, . . ., oj , we shall say

that protection state Q = (S, O, M) makes command
α(s1, . . . , si, o1, . . . , oj) possible iffM [su1

, ov1
](a1) ≥ δ1,

. . ., M [suk
, ovk

](ak) ≥ δk. On this account the binary

relations �α(s1,...,si,o1,...,oj)
, �α, �Π, �

n
Π
, and ��

Π
are de-

fined just as above in section 2 whereas if π�
1
, . . ., π�

n

are the atomic programs of α(s1, . . . , si, o1, . . . , oj) and
Qz−1 = (Sz−1, Oz−1, Mz−1) and Qz = (Sz, Oz , Mz) are
protection states then we shall say thatQz is derivable from

Qz−1 in one step using π�
z , Qz−1 �π�

z
Qz , iff one of the

following conditions is satisfied:

• π�
z is “increase a of Δ in (s, o)”, s ∈ Sz−1, o ∈

Oz−1, and the difference betweenQz−1 andQz is that

Mz[s, o](a) = Mz−1[s, o](a) × (1 − Δ) + Δ,

• π�
z is “create subject s”, s �∈ Sz−1, and the differ-

ence between Qz−1 and Qz is that Sz = Sz−1 ∪ {s}
whereas for all o ∈ Oz , Mz[s, o](a) = −1 for each
action a,

• π�
z is “create object o”, o �∈ Oz−1, and the differ-

ence between Qz−1 and Qz is that Oz = Oz−1 ∪ {o}
whereas for all s ∈ Sz , Mz[s, o](a) = −1 for each
action a,

• π�
z is “decrease a of Δ in (s, o)”, s ∈ Sz−1, o ∈

Oz−1, and the difference betweenQz−1 andQz is that

Mz[s, o] = Mz−1[s, o] × (1 − Δ) − Δ,

• π�
z is “destroy subject s”, s ∈ Sz−1, and the differ-

ence betweenQz−1 andQz is that Sz = Sz−1 \ {s},

• π�
z is “destroy object o”, o ∈ Oz−1, and the difference

betweenQz−1 and Qz is that Oz = Oz−1 \ {o}.

The effects describing each “create” program reflect the
fact that no permission is granted to created subjects and

no permission is granted on created objects.

Example If Q, Q′, Q′′, and Q′′′ are the protection states

defined in example 2 and α′, α′′, and α′′′ are the following



commands:

command α′(X, Y ) is
⇒ “create object Y ”; “increase a0 of 1.0 in
(X, Y )”; “increase a1 of 0.5 in (X, Y )”;

command α′′(X, X ′, Y ) is
(a0, X, Y ) ≥ 1 ⇒ “increase a2 of 0.5 in (X ′, Y )”;

command α′′′(X, X ′, Y ) is
(a0, X, Y ) ≥ 1 ⇒ “increase a3 of 0.5 in (X ′, Y )”;

then Q �α′(s2,o2)
Q′, Q′ �α′′(s2,s0,o2)

Q′′, and

Q′′ �α′′′(s2,s0,o2)
Q′′′. HenceQ ��

Π
Q′′′.

This justifies the following definition of the concept of

safety. Given non-negative integer n, protection system
Π = (A, C), action a in A, rational number x in [−1, +1],
and protection state Q = (S, O, M), we say that Π n-
leaks a with degree x from Q iff there is a protection state
Q′ = (S′, O′, M ′) such that Q �n

Π
Q′ and there are s in S ′

and o in O′ such that M ′[s, o](a) ≥ x. We shall say that
Π leaks a with degree x from Q iff there is a non-negative
integer n such that Π n-leaks a with degree x from Q. We
also say thatQ is unsafe forΠ and a with degree x. We say
that protection state Q′ = (S′, O′, M ′) covers protection
state Q = (S, O, M), Q 
 Q′, iff S ⊆ S′, O ⊆ O′, and

for all s in S and for all o in O, M [s, o](a) ≤ M ′[s, o](a)
for all actions a. We shall say that command α is mono-
tonic iff it does not contain an atomic program of the form

“decrease” or “destroy”. Now we prove a simple lemma
about monotonic.

Lemma 4 Let α be a monotonic command and Q and Q′

be protection states. If Q �α Q′ then Q 
 Q′.

Proof The result follows from the fact that α does not con-
tain an atomic program of the form “decrease” or “de-
stroy”. �
A protection system is monotonic iff all its commands are

monotonic. We generalize the definitions of monocondi-

tional and mono-operational to protection systems with ex-

plicit obligations. If we define the safety problem in the

following way:

Problem: SAFETY(C),

Input: A protection system Π = (A, C) in C, an action a
inA, a rational number x in [−1, +1], and a protection
state Q = (S, O, M),

Output: Determine if Q is unsafe for Π and a with degree
x,

then:

Theorem 4 1. SAFETY(C(−,−)) is undecidable,

2. SAFETY(C+(−,−)) is undecidable.

Proof Consider a HRU protection system Π. If Π′ is the

protection system with explicit obligations obtained fromΠ
by modifying its commands as follows:

• Replace each elementary condition (a, X, Y ) by the
positive elementary condition (a, X, Y ) ≥ 0,

• Replace each atomic program “enter a into (X, Y )”
by the atomic program “increase a of 0.5 in (X, Y )”,

• Replace each atomic program “delete a from (X, Y )”
by the atomic program “decrease a of 1 in (X, Y )”,

then, obviously, Π and Π′ leak the same actions.

By items 1 and 2 of theorem 1, SAFETY(C(−,−))
and SAFETY(C+(−,−)) are undecidable for HRU
protection systems. Hence SAFETY(C(−,−)) and
SAFETY(C+(−,−)) are undecidable for protection sys-
tems with explicit obligations. �
It turns out that:

Theorem 5 SAFETY(C+(1,−)) is decidable.

Proof Let Π = (A, C) be a protection system in C+(1,−),
Πi be the set of all commands in Π containing an atomic
program of the form “increase”, and Πc be the set of all

commands in Π not containing an atomic program of the
form “increase”. Define a binary relation ≺ on A by
a′ ≺ a′′ iff there is a command α in Πi such that a′ oc-

curs in α’s atomic programs and a′′ occurs in α’s elemen-
tary conditions. Define on actions the binary relations ≺n,

for all non-negative integers n, and ≺� as follows:

• a ≺0 a′ iff a = a′,

• a ≺n+1 a′ iff there is an action a′′ such that a ≺n a′′

and a′′ ≺ a′,

• ≺�=
⋃
{≺n: n is a non-negative integer}.

It is easy to check that≺� is decidable. Let a be an action in
A, x be a rational number in [−1, +1], and Q = (S, O, M)
be a protection state. If Q is unsafe for Π and a with de-
gree x then there is a protection state Q′ = (S′, O′, M ′)
such that Q ��

Π
Q′ and there are s in S′ and o in O′

such that M ′[s, o](a) ≥ x. Let p be a non-negative in-
teger and Q0 = (S0, O0, M0), Q1 = (S1, O1, M1), . . .,
Qp = (Sp, Op, Mp) be protection states. Suppose Q0 �α1

Q1 . . . �αp
Qp is a minimal length computation between

Q and Q′ using commands in Π. Following the line of rea-
soning suggested by Harrison and Ruzzo [11], we may as-
sume that there is an integer q between 0 and p such that
α1, . . ., αq do not contain an atomic program of the form

“increase” and αq+1, . . ., αp contain an atomic program of

the form “increase”. We have to consider 3 cases.

q = p. HenceQ is unsafe for Πc and a.



q < p and αq+1 contains no elementary conditions.
Hence there are a command α′ in Πi and an action a′

in A such that α′ contains no elementary conditions,

a ≺� a′, a′ occurs in α′’s atomic programs, and there

is a protection state Q′ = (S′, O′, M ′) such that
Q ��

Πc Q′, S′ �= ∅, and O′ �= ∅.

q < p and αq+1 contains elementary conditions. Hence
there are a command α′ in Πi and an action a′ in A
such that α′ contains elementary conditions, a ≺� a′,

a′ occurs in α′’s elementary conditions, and Q is
unsafe for Πc and a′.

It is easy to check that the conditions above are decidable.

This completes the proof of the theorem. �
Are SAFETY(C(−, 1)) and SAFETY(C+(−, 1)) decid-
able? To answer this question we need the following:

Lemma 5 Let α be a mono-operational command and Q
and Q′ be protection states. If α is not monotonic and Q �α

Q′ then Q � Q′.

Proof The result follows from the fact that α is a mono-
operational command containing an atomic program of the

form “decrease” or “destroy”. �

Lemma 6 Let α be a mono-operational command and Q
and Q′ be protection states. If α is monotonic and Q �
◦ �α Q′ then Q �α ◦ � Q′.

Proof The result follows from the fact that α is a mono-
operational command containing an atomic program of the

form “increase” or “create”. �
With this established, we now prove the following:

Theorem 6 1. SAFETY(C(−, 1)) is decidable,

2. SAFETY(C+(−, 1)) is decidable.

ProofLetΠ = (A, C) be a protection system in C(−, 1),Πi

be the set of all commands in Π containing an atomic pro-
gram of the form “increase”, and Πc be the set of all com-

mands in Π not containing an atomic program of the form
“increase”. Define a binary relation ≺ on A by a′ ≺ a′′ iff

there is a commandα inΠi such that a′ occurs in α’s atomic
programs and a′′ occurs in α’s elementary conditions. De-
fine on actions the binary relations ≺n, for all non-negative

integers n, and ≺� as follows:

• a ≺0 a′ iff a = a′,

• a ≺n+1 a′ iff there is an action a′′ such that a ≺n a′′

and a′′ ≺ a′,

• ≺�=
⋃
{≺n: n is a non-negative integer}.

It is easy to check that≺� is decidable. Let a be an action in
A, x be a rational number in [−1, +1], and Q = (S, O, M)
be a protection state. If Q is unsafe for Π and a with de-
gree x then there is a protection state Q′ = (S′, O′, M ′)
such that Q ��

Π
Q′ and there are s in S′ and o in O′

such that M ′[s, o](a) ≥ x. Let p be a non-negative in-
teger and Q0 = (S0, O0, M0), Q1 = (S1, O1, M1), . . .,
Qp = (Sp, Op, Mp) be protection states. Suppose Q0 �α1

Q1 . . . �αp
Qp is a minimal length computation betweenQ

andQ′ using commands in Π. By lemmas 5 and 6, we may
assume thatα1, . . ., αp are monotonic. Following the line of

reasoning suggested by Harrison, Ruzzo, and Ullman [12],
we may also assume that there is an integer q between 0 and
p such that α1, . . ., αq do not contain an atomic program

of the form “increase” and αq+1, . . ., αp contain an atomic

program of the form “increase”. We have to consider 3
cases.

q = p. HenceQ is unsafe for Πc and a.

q < p and αq+1 contains no elementary conditions.
Hence there are a command α′ in Πi and an action a′

in A such that α′ contains no elementary conditions,

a ≺� a′, a′ occurs in α′’s atomic programs, and there

is a protection state Q′ = (S′, O′, M ′) such that
Q ��

Πc Q′, S′ �= ∅, and O′ �= ∅.

q < p and αq+1 contains elementary conditions. Hence
there are a command α′ in Πi and an action a′ in A
such that α′ contains elementary conditions, a ≺� a′,

a′ occurs in α′’s elementary conditions, and Q is
unsafe for Πc and a′.

It is easy to check that the conditions above are decidable.

This completes the proof of the theorem. �
At this point, we do not know whether SAFETY(C(1,−)))
is decidable or not.

5 Conclusion

This paper has had as its goal the formulation of a frame-

work for access control with prohibitions and obligations.

We demonstrate that SAFETY, the most basic problem on

protection systems, is decidable for monotonic pure protec-

tion systems with explicit prohibitions, monotonic mono-

conditional protection systems with explicit obligations,

and mono-operational protection systems with explicit obli-

gations. As for future work, we plan to deal with the defi-

nition of timed protection systems and the safety issues in-

volved in their use. Other models incorporate the notion of

time in specifying access control requirements. We should

consider, for instance, the model introduced by [4] within
the context of role-based access control. The temporal con-

straints specified there can be used to implement conditions



like “subject s has either permission to perform action a1

or permission to perform action a2 on object o”. The inten-
sive study of the safety issues relating to the support of such

conditions in timed protection systems is still to be done.

Acknowledgments

We would like to thank Fahima Cheikh and Yannick

Chevalier for their support throughout the writing of this

paper. Thanks also to the project “Développement de

systèmes informatiques par raffinement des contraintes

sécuritaires” of the action “Sécurité informatique” for partly

financing our research.

References

[1] Abiteboul, S., Hull, R., Vianu, V.: Foundations of
Databases. Addison-Wesley (1995).

[2] Abou El Kalam, A., El Baida, R., Balbiani, P., Benfer-
hat, S., Cuppens, F., Deswarte, Y., Miège, A., Saurel,

C., Trouessin, G.: Organization based access control.

In: IEEE 4th International Workshop on Policies for

Distributed Systems and Networks. IEEE Computer

Society Press (2003).

[3] Balbiani, P., Cheikh, F.: Safety problems in access con-
trol with temporal constraints. In V. Gorodetsky, I.

Kotenko, V. Skormin (editors): ComputerNetwork Se-

curity. Springer-Verlag (2005).

[4] Bertino, E., Bonatti, A., Ferrari, E.: TRBAC: a temporal
role-based access control model. ACM Transactions

on Information and System Security 4 (2001) 65–104.

[5] Bishop, M.: Computer Security: Art and Science.
Addison-Wesley (2003).

[6] Denning, D.: Cryptography and Data Security.

Addison-Wesley (1982).

[7] Ferraiolo, D., Barkley, J., Kuhn, D.: A role-based
access control model and reference implementation

within a corporate intranet. ACM Transactions on In-

formation And System Security 2 (1999) 34–64.

[8] Ferraiolo, D., Kuhn, D., Chandramouli, R.: Role-Based
Access Control. Artech House (2003).

[9] Ferraiolo, D., Sandhu, R., Gavrila, S., Kuhn, D., Chan-
dramouli, R.: Proposed NIST standard for role-based

access control. ACMTransactions on InformationAnd

System Security 4 (2001) 224–274.

[10] Harrison, M.: Theoretical issues concerning protec-
tion in operating systems. Advances in Computers 24
(1985) 61–100.

[11] Harrison, M., Ruzzo, W.: Monotonic protection sys-
tems. In DeMillo, R., Dobkin, D., Jones, A., Lipton, R.

(Editors): Foundations of Secure Computation. Aca-

demic Press (1978) 337–363.

[12] Harrison, M., Ruzzo, W., Ullman, J.: Protection in
operating systems. Communications of the ACM 19
(1976) 461–471.

[13] Lampson, B.: Protection. Operating Systems Review
8 (1974) 18–24.

[14] Lipton, R., Snyder, L.: On synchronization and secu-
rity. In DeMillo, R., Dobkin, D., Jones, A., Lipton, R.

(Editors): Foundations of Secure Computation. Aca-

demic Press (1978) 367–385.

[15] Pieprzyk, J., Hardjono, T., Seberry, J.: Fundamentals
of Computer Security. Springer-Verlag (2003).

[16] Sandhu, R.: The typed access matrix model. In: IEEE
13th Symposium on Security and Privacy. IEEE Com-

puter Society Press (1992).

[17] Sandhu, R., Coyne, E., Feinstein, H., Youman, C.:
Role-based access control models. Computer 29
(1996) 38–47.

[18] Sandhu, R., Ganta, S: On testing for the absence of
rights in access control models. In: IEEE 6th Com-

puter Security Foundations Workshop. IEEE Com-

puter Society Press (1993).

[19] Soshi, M.: Safety analysis of the dynamic-typed ac-
cess matrix model. In Cuppens, F., Deswarte, Y., Goll-

mann, D., Waidner, M. (Editors): Computer Security

— ESORICS 2000. Springer-Verlag, Lecture Notes in

Computer Science 1895 (2000) 106–121.


