
An Approach to the Decomposition of Business

Processes for Execution in the Cloud

Lucas Venezian Povoa
1,3

, Wanderley Lopes de Souza
1
, Luís Ferreira Pires

2
, Antonio Francisco do Prado

1

1
Department of Computer Science (DC), Federal University of São Carlos (UFSCar)

São Carlos, Brazil
2
Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS), University of Twente (UT)

Enschede, the Netherlands
3
São Paulo Federal Institute of Education, Science and Technology (IFSP)

Caraguatatuba, Brazil

venezian@ifsp.edu.br, desouza@dc.ufscar.br, l.ferreirapires@utwente.nl, , prado@dc.ufscar.br

Abstract—Although Business Process Management has

emerged as a means to manage and improve business processes,

it may require high costs due to the need for software, hardware

and technical support. Cloud Computing can help achieve

efficient business processes with lower costs, since it provides a

fast and cheap way to acquire computing resources in a pay-per-

use manner. However, due to safety requirements, certain data or

activities of a business process should be kept within the user

premises, while others can be allocated to a cloud. This paper

presents an approach to decomposition of business processes,

which preserves the data constraints, and demonstrates its use

through a case study in the healthcare domain.

Keywords—Graph-based Model, BPM, BPMN, WS-BPEL

I. INTRODUCTION

In the last decades, workflow-based applications have been
successfully applied to solve both scientific and business
problems [1]. Business Process Management (BPM) is often
considered as an extension of the classical approaches to
workflows, and it has been used to design, enact, manage and
analyze business processes [2]. Service-Oriented Architecture
(SOA) has facilitated the use of Business Processes
Management Systems (BPMSs) to help companies reach their
business goals by using business processes to orchestrate
business services. However, the development of scalable
architectures for business processes is still a challenge, since
the use of a single process engine by BPMSs leads to an
excessive centralization of the processes coordination.
Moreover, it is quite expensive to extend this architecture to
cope with scalability issues, due the costs of software,
hardware, and technical support, which can be a prohibitive
factor for medium and small companies.

Cloud computing deals with the scalability and cost issues,
providing a seemingly unlimited set of computational
resources, such as hardware, and software, in a pay-per-use
basis [3]. However, although Cloud computing is turning
Computing into the fifth utility [4], similar to water, electricity,
gas, and telephony, it has trust issues that can limit its
application in certain domains such as in healthcare, where data
confidentiality is regulated by laws. This problem arises mainly
because cloud providers cannot guarantee the required levels of
confidentiality, since they normally do not reveal how data are
handled inside the cloud environments.

This paper proposes an approach to the decomposition of a
monolithic business process into multiple sub-processes to be
deployed on premise or in a cloud, taking into account costs,
performance, and data safety restrictions. The general
applicability of our approach is demonstrated with a case study
of a business process of the healthcare domain. We presented
the initial ideas of our approach earlier in [5], illustrated with
the case study using WS-BPEL. In this paper we improve the
approach, and illustrate it with a model of our case study
process in Business Processes Model and Notation (BPMN).

The remainder of this paper is organized as follows:
Section II gives an overview of our approach; Section III
presents the intermediate model; Section IV describes the
lifting and grounding transformations; Section V discusses the
calculation of an optimal distribution for activities and
associated data; Section VI deals with the decomposition of
business processes; Section VII presents a case study; Section
VIII discusses related work; and Section IX presents our
conclusions and some directions for future work.

II. APPROACH OVERVIEW

Cloud-based BPM, and particularly the distribution of
business process activities and data over the user premises and
a cloud-based BPM environment, has been initially
investigated by Han et al. in [6], who defined the so called
Processes Enactment Engine, Activities, and Data Storage
(PAD) model. This model considers the distribution of
activities and data of a business process, but ignores the
distribution of the process engine itself. This model was
extended by Duipmans et al. in [7] to include the distribution
of the process engine, so that in some circumstances the
communication between the sub-processes could be reduced.

Fig. 1 shows a business process executed partially on
premise and partially in a cloud environment. Fig. 1(a) shows
the message exchange when there is a single process engine, in
this case on premise, while Fig. 1(b) shows the message
exchange when process engines are available on both sides.
Since all data exchange happens through a single process
engine in case only one process is available, the performance of
the process execution tends to decrease. Further, costs tend to
increase in case only one process engine is available due to the
amount of data that needs to be transferred to and from the
cloud.

To cope with these problems, our approach to distribute
activities, data, and the process engine on premise and in the
cloud considers performance, privacy, and cost requirements.
Fig. 2 shows that this approach consists of four steps: lifting,
selection, decomposition, and grounding.

(a)

(b)

Fig. 1. Process engine distributed (a) only on premise and (b) on both sides.

Fig. 2. Steps of the proposed approach.

In the lifting step, a monolithic business process
specification is transformed to an intermediate model, taking
into account the variables and data flows amongst the
activities. In the selection step, the optimal distribution of the
business process activities into intermediate model is
calculated, and the location, on premise or in the cloud, of each
activity and associated data is determined. In the
decomposition step, the business process represented into
intermediate model is decomposed, based on the results
obtained in the precedent step, and by applying a set of
decomposition rules. In the grounding step, the resulting sub-
processes represented into intermediate model are transformed
into business sub-process specifications.

III. INTERMEDIATE MODEL

The intermediate model has been designed to support most
business process languages available nowadays, making the
decomposition procedure language-independent. To this end,
we designed our model to be able to represent eighteen
Workflow Control-Flow Patterns (WCP) [8], nine Workflow
Data Flow Patterns (WDP) [9], six Workflow Exception
Handling Patterns (WEP) [10] and two Communication
Patterns (CP) [11]. The intermediate model has been designed
based on directed graphs, and hence we call it Graph-based
Workflow Model (GWM). The GWM constructs are able to

represent business processes specified in WS-BPEL 2.0,
BPMN 2.0, Yet Another Workflow Language (YAWL), Web
Services Choreography Description Language (WS-CDL), and
Architectural Modelling Box for Enterprise Redesign
(AMBER).

In GWM, activities are represented as nodes, and the
relationships between activities are represented as edges.
GWM defines nodes and edges of different types. Particularly
control edges, data edges, communication edges, and exception
edges enable the representation of different types of structures.

GWM also enables the validation of the data constraints in
distributed business processes, and the calculation of the
activity costs, by reasoning on the input and output data of
activities. Eventually, unexpected behavior within an activity
interrupts the normal flow, and triggers an exception of some
type, which is captured by its outgoing exception edge.

In the sequel we present the GWM constructs in terms of
four major concerns that are addressed in business process
models, namely Control Flow, Data Flow, Communication and
Exception Handling. We discuss each major concern in terms
of simpler concerns that correspond to one or more WCP,
WDP, WEP or CP patterns. The corresponding patterns for
each concern are indicated between parentheses. The formal
definition of the GWM is presented in [12].

A. Control Flow

Control flow constructs define the activities coordination,
i.e. order and conditions. GWM supports the following control
flow concerns: Sequence, Conditional Branch, Parallel
Branches, Partial Join, Loop, External Exclusive Choice,
Implicit Finalization, Explicit Finalization, and Multiple
Instances.

In GWM, activities are represented as nodes, and the
relationships between activities are represented as edges. The
Sequence concern (WCP#1) represents the sequential
execution of activities. The execution order is determined by
the directed control edges that link the nodes.

The Conditional Branch concern (WCP#2, WCP#3 and
WDP#40), which is modeled by if and eif nodes, represents the
choice between two alternative branches. The if node splits a
branch into two branches, has one of its outgoing edges labeled
true and the other false, and a condition attached to it. After the
evaluation of this condition, only one of these edges is taken.
The eif node is used to join the conditional branches into a
single outgoing branch. Fig. 3 illustrates this concern.

Fig. 3. Conditional Branch concern.

The Parallel Branches concern (WCP#4 and WCP#5),
which is modeled by par and epar nodes, represents the
execution of multiple branches in parallel. The par node splits
a branch into multiple branches, and has at least two outgoing
control edges. The epar node is used to join the triggered

parallel branches into a single outgoing branch. Fig. 4
illustrates this concern with two parallel branches.

Fig. 4. Parallel Branches concern.

The Partial Join concern (WCP#9, WCP#19 and WCP#37),
which is modeled by and or or nodes, enables the
synchronization of a subset of parallel branches within a
Parallel Branches concern. The outgoing branch of an and node
is executed only after all its incoming branches have been
executed. The outgoing branch of an or node is executed only
after one of its incoming branches has been executed, which
leads to abortion of the executions of others incoming
branches. Fig. 5 illustrates this concern with and and or nodes.

Fig. 5. Partial Join concern.

The Loop concern (WCP#21 and WDP#40), which is
modeled by a loop node with a condition attached to it,
represents iterative branches. After evaluating the condition,
the iterative branch is taken or abandoned. A loop node can be
placed before or after the iterative branch: in the first case this
branch will be executed zero or more times, while in the
second case will be executed at least once. Fig. 6 illustrates this
concern with the two possibilities for placing the loop node.

(a)

(b)

Fig. 6. Loop concerns with loop node before (a) and after (b) the iterative

branch.

The External Exclusive Choice concern (WCP#16,
WCP#24, CP#2, and WDP#38), which is modeled by xor and
exor nodes, represents the choice of a branch via an interaction
with an external partner. The xor node splits a branch into
multiple branches, which are labeled with operations that can
be invoked by external partners. The exor node is used to join
the multiple branches into a single outgoing branch. Fig. 7
illustrates this concern with three possible branches.

The Implicit Finalization concern (WCP#11), which has no
specific node for modeling its behavior, implicitly finalizes a
workflow instance when no activities are being executed. The
Explicit Finalization concern (WCP#19), which is modeled by
an exit node, explicitly finalizes a workflow instance.

Fig. 7. External Exclusive Choice concern.

The Multiple Instances concern (WCP#12, WCP#13 and
WCP#14), which can be asynchronous or synchronous, defines
a replication rule, via the 3-tuple (s, e, w) for generating
multiple parallel instances of an activity set. The number of
parallel instances is defined by (e – s + 1), if s > e there are no
parallel instances, and w is a Boolean variable which defines
whether the parallel instance executions are synchronized or
not. Fig. 7 illustrates this concern nested at an External
Exclusive Choice concern, where ten instances of a3 are
created.

B. Data Flow

Data flow constructs deal with the data aspects of business
processes. GWM supports three data flow concerns: Local
Variable, Global Variable, and Data Exchange.

The Local Variable concern (WDP#3), which has no
specific node for modeling its behavior, defines variables that
are visible for a set of activities. The Global Variable concern
(WDP#5), which also has no specific node for modeling its
behavior, defines variables that are visible for the entire
business process.

The Data Exchange concern (WDP#9, WDP#15, WDP#16,
WDP#27 and WDP#28), which is modeled by a labeled data
edge, represents the data exchange between internal activities,
or between the business process and its external partners. Fig. 8
illustrates this concern with the data edges labeled v1 and v2.

Fig. 8. Data Exchange concern.

C. Communication

The Receive Message concern (CP#2 and WDP#38), which
is modeled by a rec node labeled with an operation, allows
messages from external partners to be received. Fig. 6
illustrates two instances of this concern, where the rec node is
placed before a Loop concern. The Reply Message concern
(CP#1), which is modeled by a rep node, allows the process to
reply to requests from external partners. Fig. 6 illustrates two
instances of this concern, where the rep node is placed after a
Loop concern.

The Request Service concern (CP#1, CP#2 and CP#4) is
modeled by a req node when a message is sent to an external
partner without an expected response, or by a combination of a

req node and a get node when a message is sent to an external
partner and a response is expected. Fig. 9 illustrates two
instances of this concern, where an external partner is accessed
via operation ope2.

(a) (b)

Fig. 9. Request Service concern (a) with and (b) without response.

D. Exception Handling

The Fault Handling concern (SFF-CWC-COM, SFF-CWC-
NIL, SFF-RCC-COM. and SFF-RCC-NIL), which is modeled
by exp and eexp nodes, allows the choice between multiple
branches based on an exception of some type. An exception is
received by an exp node, via its incoming exception edge,
which sets the outgoing exception branch to be taken based on
a matching exception. When none of the outgoing exception
branches matches the received exception, an optional outgoing
exception branch can be taken by default, which has the
incoming edge labelled as otherwise. The eexp node is used to
join the exception branches into a single outgoing branch. Fig.
10 illustrates this concern, where the exp node has an outgoing
exception branch for the exp1 exception, and a default outgoing
exception branch.

Fig. 10. Exception Handling concern.

The Deadline Handling concern (SCE-CWC-COM, SCE-
CWC-NIL, SFF-CWC-COM, SFF-CWC-NIL, SFF-RCC-
COM and SFF-RCC-NIL), which is modelled by ddl and eddl
nodes, allows an alternative branch to be taken when a timeout
for a xor or rec node is reached. A ddl node captures a timeout
exception by means of an exception edge, and triggers an
alternative branch. The eddl node is used to join the alternative
branch. Fig. 11 illustrates this concern with an External
Exclusive Choice concern, which has a deadline td.

Fig. 11. Deadline Handling concern.

The Finalization Handling concern (SFF-CWC-COM, SFF-
CWC-NIL, SFF-RCC-COM and SFF-RCC-NIL), which is
modelled by fin and efin nodes, allows a branch to be taken
after the execution of a set of activities, possibility triggering
an exception. Fig. 12 illustrates this concern with the a3 activity
in combination with the Conditional Branch concern.

Fig. 12. Finalization Handling concern.

IV. LOCATION SELECTION

In order to semi-automatically determine the location of
each activity and the associated data, we built a location
selection framework based on privacy policies, monetary costs,
and performance metrics (e.g., response time, throughput). This
framework simplifies the GWM generated in the lifting step by
reducing the number of nodes. Using this simplified GWM,
and based on the integer optimization model defined by Han et
al. [6], the selection framework calculates the cost of the
business process for each possible alternative combination of
locations of the nodes (on premise and cloud) as follow:

where coste, costm, and costp stand for the execution cost,
monetary cost, and privacy cost, and we, wm, and wp are their
weight factors defined to represent the relative importance of
each of these factors in the total costs calculation. For
calculating these costs, we assume that:

 let A = {a1, a2, …, an} be the set of activities, and D =
{d1, d2, …, dm} be the set of data items in the simplified
GWM;

 let s = (s1 s2 … sn) be the location vector of activities,
where si = 1 means that activity ai is located in the
cloud, and si = 0 on premise;

 let R be the relation sparse matrix of activities and data
items, where R(i,j) = 1 means that activity ai has a
direct relation with data item dj, and R(i,j) = 0 means
that the activity and the data item are unrelated;

 let V be the 3-dimensional sparse matrix for data
exchange, where V(i,j,k) = 1 means that activity ai
sends the data item dj to activity ak, and V(i,j,k) = 0
means that this data item is not sent from activity ai to
activity ak;

 let Q be the sparse matrix for data location with
 () ∑ [()]

 , where data item dj is

located on premise before being sent to activity ai
whether Q(i,j) = 0, and in the cloud if Q(i,j) = 1;

 let Cpremise = (ramp, hddp, cpup, fp, b) be the 5-tuple that
represents the server configuration on premise, where
ramp is the amount of RAM in MB, hddp is the amount
of disk in GB, cpup is the number of vCPUs, fp is the
frequency of each vCPU in GHz, and b is the related
bandwidth in Bps between premise and cloud;

 let Ccloud = (ramc, hddc, cpuc, fc, costt, costh, costs) be the
7-tuple that represents the cloud server configuration,
where ramc is the amount of RAM in MB, hddc is the
amount of disk in GB, cpuc is the number of vCPUs, fc
is the frequency of each vCPU in GHz, costt is the cost
in US$ per byte transferred to the cloud, costh is the cost
in US$ per hour of the cloud server, and costs is the cost
in US$ per byte stored in the cloud; and

 let execc(ai) be the execution time of activity ai in the
cloud defined as execc(ai) = 1/2 (cpup fp / cpuc fc
+ ramp/ramc) execp(ai), where execp(ai) is the
execution time of the activity ai on premise that must be
provided by an external entity (e.g., user or BPMS
component).

Function execc(ai) defines that increasing RAM or
increasing the processing power cause a reduction in the
execution time of activities in the cloud. This assumption is
acceptable because there is no prior knowledge whether an
activity is memory intensive, CPU intensive or disk intensive.

Consequently, execc(ai) < execp(ai), in case the cloud server
configuration has more processing power than the on premise
configuration (often the case). However, reducing the
execution time of the activities of a business process may not
be a real benefit, if the data transfer time to and from the cloud
for this business process outweighs the achieved reduction.

This time is defined as ∑ ∑ ()

 () | – ()|, where size is the data size in bytes,

provided by an external entity, and the modulo |si – Q(i,j)|
yields 1, if the data item dj needs be transferred to be used by
activity ai, and 0 otherwise. So the execution cost of a business
process is defined as

 ∑[() () (–)]

Usually, the time that a server remains active in the cloud,
the data transfer to and from the cloud, and the data stored into
the cloud are charged by the cloud provider. The monetary cost
for executing business process activities in the cloud is defined
as ∑ [()]

 . Let P be the

sparse matrix, provided by an external entity, where P(i,j) = 1
if data item dj is persistent in activity ai and 0 otherwise. The
monetary cost for storing data in the cloud of a business

process is defined as ∑ ∑ [

 () ()]. The monetary cost for transferring

data into or out of the cloud is defined as
∑ ∑ [() | ()|]

 . So, the

monetary cost of a business process is defined as

Data privacy is another issue for executing business
processes in the cloud. Let c = (c1 c2 … cm) be a constraint
vector for data items, provided by an external entity, where cj =
1 if the data item dj is sensitive and 0 otherwise. So the privacy
cost of a business process is defined as

 ∑∑[()]

After calculating the cost for each alternative combination
of node locations (on premise and in the cloud), the lowest cost
is selected. The vector s associated to this cost is used for
marking the location of each node of the GWM generated in
the lifting step. This marked GWM is used as input to the
decomposition step.

V. LIFTING AND GROUDING

In order to enable the lifting and grounding transformations
between GWM and business processes specified in BPMN or
WS-BPEL, we defined a mapping between the BPMN and
WS-BPEL patterns and the GWM concerns.

Based on this mapping, we defined transformation
algorithms to perform the lifting and grounding, using the
approach proposed by Povoa et al. [5], which converts tree
structures into graph structures and vice-versa. In particular,
the transformation algorithms for BPMN business processes
assume that the input process is well structured, i.e., for every
node with multiple outgoing edges (a split) there is a
corresponding node with multiple incoming edges (a join), and
vice-versa [13].

In order to generalize these transformations, we defined
recursive algorithms for the lifting and grounding, which both
have a general part and specific parts.

The general part of the lifting algorithm takes a tree
structure as input and identifies the root node type, after which
it calls an appropriated specific part for that node type, passing
a sub-tree from the root node as input. All specific parts know
the structure from the root node and proceed towards the child
nodes, generating an equivalent construction in a graph
structure. When a specific part comes across a node type for
which no transformation specification is available in this scope,
it calls recursively the general part, passing to the general part a
sub-tree from the current node.

The general part of the grounding algorithm takes as input a
graph structure (GWM) and identifies its top-level concern in
order to call the specific part that can handle this concern. The
specific parts proceed towards the nested nodes and generate a
business process structure that is equivalent to tree structure
being processed. Recursively, the general part is called when
the specific part finds a node type for which no transformation
specification is known in this scope.

Fig. 13 shows an instance of execution of the lifting
algorithm on the Exclusive Gateway pattern in BPMN and on
the if pattern in WS-BPEL and of the grounding algorithm on
the Conditional Branch concern. In BPMN, the control flow is
defined by child nodes of type incoming and outgoing, which
are shown as dashed lines in Fig. 13, illustrating the control
flow defined by them. In WS-BPEL, the control flow is simply

defined by the order of nodes (the first node is executed first,
and so on).

Therefore, the lifting algorithm for BPMN looks at
outgoing child nodes to decide which is the next node to be
analyzed and at incoming child nodes to check whether the
flow is correct, defining thus the control flow in GWM. The
lifting algorithm for WS-BPEL only follows the order of the
nodes to define the control flow in GWM.

Fig. 13. Lifting and grounding transformations for the Conditional Branch.

Moreover, BPMN sequenceFlow nodes get properties
derived from the directed edges, which for outgoing edges of
an Exclusive Gateway represents an execution condition. In
WS-BPEL, a condition of an if or elseif pattern is defined in a
condition node.

VI. DECOMPOSITION

In order to perform business process decomposition, we
defined six decomposition rules taking into account that this
process is hosted on premise and have activities to be allocated
in the cloud, or vice-versa.

The first rule allocates the Sequence, Conditional Branch,
Parallel Branches, or Loop concerns as a whole in a new sub-
process. The selected concern in the monolithic process is
replaced by req and get nodes connected via a control edge in
the on premise sub-process. The cloud sub-process starts with a
rec node and ends with a rep node. The rec and req nodes, and
the rep and get nodes are connected by communication edges.
Fig. 14 illustrates this rule for the Sequence concern.

The second rule generates three sub-processes, where two
are hosted on premise and the other one in the cloud, for
allocating the if and eif nodes of a Conditional Branch concern
or the par, epar, and and or nodes of a Parallel Branches
concern to the sub-process in the cloud. In the first step, the
concern is allocated as a whole to the sub-process in the cloud
and replaced by req and get nodes in the sub-process on
premise. Then the branches between if and eif nodes or
between the par, epar, or and and nodes are replaced by req
and get nodes, in the sub-process in the cloud, and allocated

nested at the Exclusive External Choice concern in the new
sub-process on premise.

(a) Monolithic (b) Decomposed

Fig. 14. Decomposed rule applied to the Sequence concern.

The third rule also generates three sub-processes for
allocating the loop node of the Loop concern in the sub-process
in the cloud. Fig. 15 illustrates this rule, where the first step is
exactly the same as in the third rule. Then the iterative branch
of the Loop concern is replaced by req and get nodes in the
sub-process in the cloud, and allocated between the rec and rep
nodes in the new sub-process on premise.

(a) Monolithic (b) Decomposed

Fig. 15. Decomposition by moving the loop node.

The fourth rule combines the first and second rules and is
applied on the Conditional Branch and Parallel Branches
concerns. This rule also generates three sub-processes, where
two are hosted on premise and the other one in the cloud, for
allocating the if and eif nodes and one nested branch of a
Conditional Branch concern or the par, epar, and and or nodes
and a non-empty subset, not equals to the set, of nested
branches of a Parallel Branches concern to the sub-process in
the cloud.

The fifth rule is applied to communication nodes, and
allocates the req and get nodes of the Request Service concern
to the sub-process in the cloud. This rule reduces
communication costs when invoking an external partner that
requires some data item to be moved to the cloud.

The sixth rule moves data items associated to activities that
originally were on one side (i.e., cloud or premise) and have
been allocated to the other side. Fig. 16 illustrates this rule
applied to the data item d1 exchanged between a2 and a3.

Fig. 16(a) shows a monolithic process on premise where
the activity a2, which was allocated to the cloud, sends the data
item d1 to the activity a3. Fig. 16(b) shows the decomposed
process where the activity a2, now in the sub-process in the
cloud, sends the same data item d1 to the activity a3 in the sub-
process on premise. In this example, the a2 outgoing data edge
is connected to the rep node, and two new data edges are
created for exchanging d1: one between the rep and get nodes,
and another one between the get node and activity a3.

(a) Monolithic (b) Decomposed

Fig. 16. Decomposition by moving the Sequence concern exchanging a data.

VII. CASE STUDY

Our case study is based on Picture Archiving and
Communication Systems (PACS) [14], which supports a
business process in the healthcare domain. Its goal is to persist
and analyze breast tomographies, accepting as input a non-
empty tomography set with their diagnostics and identifiers.
Each tomography is persisted along with its diagnostic,
analyzed for searching nodules, and the tomography set with
possible nodes is sent back to the requester. We performed the
decomposition of the PACS process via a prototype of our
approach implemented in Java 7.

Although the PACS process was specified in BPMN and
WS-BPEL [12], this paper deals only with its BPMN
specification. Fig. 17 illustrates the monolithic PACS in
BPMN, and Fig. 18 in GWM, where the last one was obtained
from the first by performing the lifting algorithm.

Fig. 17. Monolithic PACS Business Process in BPMN.

Fig. 18. Monolithic PACS Business Process in GWM.

The value marked in each node of Fig. 18(b) is the on
premise execution time of the corresponding activity, which
was used in the selection step. Furthermore, we considered for

calculating the decomposition cost an on premise server with 2
GB of RAM, 50 GB of disk, 1 virtual CPU (vCPU) with 0.8
GHz of frequency, and a bandwidth of 125 Mbps, and three
distinct cloud server configurations, which are shown in Table
I. We also considered for this calculation a workload composed
by two breast tomographies of 11.7 MB each, two integers of
32 bits, and two textual diagnostics of 64 KB, where both
activities a1 and a2 persist their associated data. Our location
selection framework produced the same result for the three
cloud server configurations, which is illustrated in Fig. 18,
where the highlighted activities have been selected to be
deployed in the cloud.

TABLE I. AMAZON EC2’S CONFIGURATIONS OF CLOUD SERVERS.

Instance name
vCPUs

(Unity)

Frequency

(GHz)
RAM (GB) HD (GB)

Price/hour

(US$)

c1.xlarge 08 2.75 007.00 04 x 420 00.58

m2.4xlarge 08 3.58 068.40 02 x 840 1.64

hs1.8xlarge 16 2.41 117.00 45 x 2048 4.60

After performing the decomposition step on the monolithic
GWM, we obtained the decomposed GWM illustrated in Fig.
19. Finally, the grounding step was applied to this decomposed
GWM to obtain the decomposed PACS in BPMN illustrated in
Fig. 20.

Fig. 19. Decomposed PACS Business Process in GWM.

Fig. 20. Decomposed PACS Business Process in BPMN.

VIII. RELATED WORK

In Nanda et al. [15] new orchestrations are created for each
service employed by a business process, resulting in direct
communication between them instead of having a single

coordinator. The WS-BPEL process is converted to a control
flow graph, which generates a Program Dependency Graph
(PDG) from which the transformations are performed, and the
new generated graphs are reconverted to WS-BPEL sub-
processes. Since each service in the original business process
corresponds to a fixed node to which a sub-process is
generated, this work is not suitable to support our
decomposition requirements because it creates sub-processes
with multiple services.

The approach described by Koop et al. in [16] focuses on
decentralizing the orchestration of processes in WS-BPEL, and
employs the Dead Path Elimination (DPE) model to ensure the
end of the decentralized processes executions. However, since
DPE is an issue that rises only for WS-BPEL, the use of this
model makes this approach dependent of this language. In
contrast, our approach is founded on the GWM, which is
independent of any business process language, and employs a
reusable set of decomposition rules, requiring only the
development of the lifting and grounding transformations for
the chosen business process language.

Duipmans et al. [17] presents an approach for the
decomposition of business processes described in AMBER, a
proprietary specification language. This decomposition is
founded on a graph-based model, and is guided by a
distribution list of activities that must be provided by the user.
However, this model employs only six workflow control-flow
patterns, uses data flow and communication features in an
informal way, and does not consider exception handling
patterns. Our approach considers two standardized business
process specification languages, the decomposition is founded
on GWM, and the distribution of activities is determined by a
location framework. Furthermore, GWM supports fourteen
workflow control-flow patterns, nine data flow patterns, three
communication patterns, and also six exception handling
patterns.

Finally, Fdhila et al. [18] report that most work on the
decentralization of orchestrations focus too much on specific
business process languages. In our work we do not focus so
much on business process languages, and do not only
concentrate on performance issues, but also consider safety
requirements.

IX. FINAL REMARKS

This paper presented an approach to decompose business
processes for cloud deployment. This paper contains three
main contributions: (a) the definition of a language-agnostic
intermediate model, which allows our approach to be
independent of business process languages, and that supports
several control flow, data flow, communication and exception
handling concerns, which allows our approach to cover the
majority of the available business process languages; (b) the
location selection framework that semi-automatically
determines an optimal location for activities and their
associated data, considering allocation data restrictions,
performance, and monetary costs; (c) the definition of a set of
rules for the business process decomposition for generating a
decomposed process that displays a behavior that is equivalent
to the behavior of the original monolithic process. The details
of the proposed approach, which were omitted in this paper due
to the pages limitation, are described in [12].

As future work, we intend to develop new decomposition
rules and selection frameworks, in order to cope with multiple
cloud servers in different cloud providers, as well as investigate
effects of executing the decomposed parts in parallel. We are
also interested in integrating our approach to a BPMS for
providing all needed information to perform the decomposition
automatically, which can be an initial step for performing
business process decomposition and deployment on demand.

REFERENCES

[1] Deelman, E.: Grids and Clouds: making workflow applications work in
heterogeneous distributed environments. Int. J. High Perform. Comput.
Appl. 24, 284–298 (2010)

[2] Van der Aalst, W.M.P., Hofstede, A.H.M.T., Weske, M.: Business
process management: a survey. In: Proceedings of the BPM’03, pp. 1–
12. Springer-Verlag, Eindhoven, The Netherlands (2003)

[3] Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R., Konwinski,
A., Lee, G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: A view of
cloud computing. Commun. ACM. 53, 50–58 (2010)

[4] Buyya, R., Yeo, C.S., Venugopal, S., Broberg, J., Brandic, I.: Cloud
computing and emerging IT platforms: vision, hype, and reality for
delivering computing as the 5th utility. Future Gener. Comp. Sy. 25,
599–616 (2009)

[5] Venezian Povoa, L., de Souza, W.L., Ferreira Pires, L., Duipmans, E.F.,
do Prado, A.F.: An approach to business processes decomposition for
cloud deployment. In: 27th SBES, pp. 124–133. Brasília, Brazil (2013)

[6] Han, Y.B., Sun, J.Y., Wang, G.L., Li, H.F.: A cloud-based BPM
architecture with user-end distribution of non-compute-intensive
activities and sensitive data. J Comp. Sci. Techn. 25, 1157–1167 (2010)

[7] Duipmans, E.F., Ferreira Pires, L., da Silva Santos, L.O.B.: Towards a
BPM cloud architecture with data and activity distribution. In.: 16th
IEEE EDOC Workshops, pp. 165–171. Helshinki, Finland (2012)

[8] Russell, N., ter Hofstede, A., van der Aalst, W., Mulyear, N.: Workflow
control-flow patterns: a revised view. BPMcenter.org (2006)

[9] Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.:
Workflow data patterns: identification, representation and tool support.
In: 24th ER, pp. 353–368. Springer, Netherlands (2005)

[10] Russell, N., Aalst, W., Hofstede, A.: Workflow exception patterns. In.:
Advanced Information Systems Engineering. LNCS, vol. 4001, pp. 288–
302. Springer, Heidelberg (2006)

[11] W. Ruh, F.M., Brown, W.: Basic Building Blocks. In: Enterprise
application integration: a Wiley tech brief, pp. 39–60. John Wiley &
Sons (2002)

[12] Venezian Povoa, L.: An approach to business processes decomposition
for execution in cloud environments. (Uma abordagem para a
decomposição de processos de negócio para execução em nuvens
computacionais). Master Thesis. Federal University of São Carlos –
Department of Computer Science. (forthcoming).

[13] Polyvyanyy, A., García-Bañuelos, L., Fahland, D., Weske, M.: Maximal
Structuring of Acyclic Process Models. The Computer Journal. 57(1),
pp. 12-35. (2014).

[14] Oosterwijk, H.: PACS fundamentals. O Tech Incorporated (2004)

[15] Nanda, M. G., Chandra, S., Sarkar, V.: Decentralizing execution of
composite web services. SIGNPLAN Notices. 39, 170-187 (2004)

[16] Kopp, O., Khalaf, R., Leymann, F.: Deriving Explicit Data Links in WS-
BPEL Processes. In.: 2008 IEEE SCC, pp. 367-376. IEEE Computer
Society, Honolulu, Hawaii (2008)

[17] Duipmans, E.F., Ferreira Pires, L., da Silva Santos, L.O.B.: A
transformation-based approach to business process management in the
cloud. Journal of Grid Computing. 1–296 (2013)

[18] Fdhila, W., Yildiz, U., Godart., C.: A Flexible Approach for Automatic
Process Decentralization Using Dependency Tables. In.: 7th IEEE
ICWS, pp. 847-855. Miami, Florida (2009)

