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Abstract—Nowadays, the advanced technologies make amounts
of data growing in a fast paced way. In many application fields,
this trend concerns specially dimensions of the data. It is the case
where features are about thousands and tens of thousands, while
the number of instances is much smaller. This phenomenon is
known as the curse of dimensionality and it results in modest
classification performance and feature selection instability. In
order to deal with this issue, we propose a new feature selection
approach that makes use of background knowledge about some
dimensions known to be more relevant, as a means of directing
the feature selection process. In this approach, prior knowledge
about some features is used to learn new relevant features by
a semi supervised approach. Experiments on three high dimen-
sional data sets show promising results on both classification
performance and stability of feature selection.

I. INTRODUCTION

The rapid technological developments in different life do-
mains increase the amounts of data characterized by large
number of features. Unfortunately, standard machine learning
methods are not designed to handle such data setting where
the number of samples is small while the number of features
associated with the raw data is in the order of thousands or
tens of thousands. Feature solution can be a solution to deal
with this issue as it reduces data dimensionality by removing
irrelevant and redundant features [1]. However, the curse of
dimensionality phenomenon has also a negative impact on
stability of feature selection which is defined as the sensitivity
of a method to variations in the training set [2].

Feature selection techniques often use an evaluation func-
tion that measure the relevance of the features to the prediction
(filter model) or on the performance of a specific predictor
(wrapper model) [3]. Filters use only properties of the data to
select features, thus they produce a feature set which is not
tuned to a specific type of predictive model. Filters yield an
explicit best feature subset or feature’s ranking by assigning
a score to each feature independently. Mutual information is
among the most known measures to rank features [4]. Ranking
methods ignore redundancy and inevitably fail in situations
where only a combined set of features is predictive of the
target function. However, they are usually fast and useful in
most real-world problems.

Wrapper methods use a predictive model to score feature
subsets. Each new subset is used to train a model, which is
tested on a hold-out set. Counting the number of mistakes
made on that hold-out set (the error rate of the model) gives
the score for that subset. As wrapper methods train a new
model for each subset, they are very computationally intensive,
but usually provide the best performing feature set for that
particular type of model.

Wrapper methods use the error rate of a predictive model
to score a feature subset. This score is obtained by training a
specific classification model built with a given feature subset
and testing it on the hold-out set. Training a new model for
each subset makes wrappers very computationally intensive,
but usually provide the best performing feature set for that
particular classification model. Recursive Feature Elimination
(RFE) [5] is a wrapper selection method for linear Support
Vector Machine (SVM). In each round it measures the quality
of candidate features by training SVM and eliminating features
with the lowest weights.

In most feature selection methods, it is usually assumed that
all features are equally relevant before the selection procedure.
However, some knowledge about the relevance of a fraction
of the features can be available in many areas. This can be
considered as a partial supervision on the dimensions of a
feature selection procedure given that the available knowledge
concerns only a fraction of the features. Traditional feature
selection algorithms ignore this type of prior knowledge.

In this paper, we propose a robust wrapper feature selection
method based on prior knowledge. This method makes use of
a partial supervision on some features assumed a priori to be
more relevant. Prior knowledge about these dimensions known
to be more relevant is incorporated as a means of guiding the
feature selection process. Iteratively we make use of the initial
prior knowledge and the previously selected features to expand
a subset of highly relevant features in a pre-processing phase
of feature selection.

The reminder of the paper is organized as follows. Section
2 presents the concept of feature selection by incorporating
prior knowledge. We describe our proposed feature selection
approach based on prior knowledge in Section 3. In Section



4, we conduct an experimental study on three high dimen-
sional data sets and with comparison to two feature selection
techniques. Section 5 concludes this paper.

II. FEATURE SELECTION USING PRIOR KNOWLEDGE

The availability of prior knowledge about how features can
be related to the prediction task will always help feature
selection and its subsequent application. This is the case for
example when the biological relevance of features can be
ascertained. In this case, potentially relevant features can be
favored and by another hand, irrelevant ones can be eliminated.
Prior knowledge is any information about features that can be
used in feature selection to guide the selection process. It is
either obtained from domain experts, relevant publications or
extracted from relevant data sets via transfer learning [6]. The
integration of prior knowledge in the feature selection process
can improve the obtained selection result and thus improve
the classification performance. Some studies in the literature
have explored this direction of incorporating prior knowledge
in feature selection. In the context of SVM, [7] proposed
a framework that incorporates prior knowledge on features,
represented by meta-features, into the learning process. They
assume that a weight is assigned to each feature, as in linear
discrimination, and they use the meta-features to define a prior
on the weights. This prior is based on a Gaussian process and
the weights are assumed to be a smooth function of the meta-
features.

In [8], authors extended three existing feature selection
methods by incorporating prior knowledge about some di-
mensions known to be more relevant in order to improve
the selection stability and the classication performance. They
compared them with their original versions, which do not
integrate prior knowledge, and showed that integrating prior
knowledge increased stability in most cases compared to
classical approaches.

Taskar et al. used meta-features of words for text classifi-
cation when there are features (words) that are unseen in the
training set, but appear in the test set. In their work, features
are words and meta-features are words in the neighborhood
of each word. They used meta features to predict the role
of words that are unseen in the training set [9]. Other ideas
using feature properties to produce or select good features
can be found in the literature and have been applied in
various applications. In [10], Lee et al. used transfer learning
to construct an informative prior on feature relevance. They
assumed that features themselves have meta-features that are
predictive of their relevance to the prediction task. They,
modeled their relevance as a function of the meta-features
using hyperparameters called meta-priors which are learned
from an ensemble of related prediction tasks sharing a similar
relevance structure.

In [11], authors proposed the partially-supervized-12-
approximation to zero-norm minimization algorithm (PS-12-
AROM) to integrate prior knowledge about some genes known
as clinical markers to discriminate DLBCL tissues from
Follicular Lymphomas. Before the feature selection process,

they assign a relevance value for those genes assumed to
be more relevant. The PS-AROM methods modify a linear
model objective function, called 11-AROM [12], by adding a
prior relevance vector 5 = [, ..., B4] defined over the input
dimensions. The optimization problem of PS-12-AROM pe-
nalizes the least those dimensions which are assumed a priori
more relevant and thus guide the feature selection process.
Iteratively, an objective function is solved given the previous
features weight vector w along with the fixed relevance vector
B, and the process is iterated till convergence. The original
12-AROM method is obtained when 8; = 1, V feature a;, in
other words, without prior preference between input features.

While in [11] the feature selection algorithm is modified
by integrating prior knowledge only one time in the feature
selection process, in our proposed approach prior knowledge
is expanded and integrated iteratively into the feature selection
algorithm. Our formulation encompasses a more advanced
framework which takes advantage of prior knowledge to search
in a first step for more relevant features based only on their
neighborhood with features assumed a priori relevant, then in
a second step use the extended set of a priori relevant features
to be integrated in the feature selection which will give the
final feature subset.

III. PROPOSED APPROACH: SEMI-SUPERVISED-L2AROM
(SS-L2AROM)

The proposed feature selection framework, which we called
SS-L2AROM, consists of two phases. The aim of the first
phase is to learn new relevant features by a semi supervised
approach. The extended subset of relevant features will be
used as prior knowledge to be integrated into the second step
to guide the feature selection process. This interactive process
is iterated until an optimal number of features is obtained. We
implement a feature selection algorithm based on the proposed
approach.

Let X be a matrix containing m instances x; =
(%i1,...,2:9) € RY, where d is the number of features,
and y; = (Y1,.--,Ym),¢ = 1,..,m the vector of class
labels for the m instances. Let A be the set of features
a; = (a1,...,aq),j = 1,..,d where d >> m. We denote
by R, C A the set of features that are known to be relevant
based on prior knowledge at iteration n. 8 = [B, ..., B4] is a
vector of background knowledge about the input dimensions,
the higher the value of ; the more relevant the corresponding
feature is a priori assumed.

Our proposed approach consists initially of solving a semi
supervised problem where the training set is given by X’ the
transpose of X, i.e the j'h row is a; = (aj1,..,ajm). The
feature a; will be labeled as Relevant (1) if a; € R, and
Unknown (0) otherwise. After this step, and to extend the
set of relevant features, an additional set of features predicted
as relevant P, is obtained and added to R, such that R] =
R, UP,. The second step of our approach consists of applying
on the original matrix X a feature selection algorithm that can
handle prior knowledge on feature relevance using R/, as the
set of a priori relevant features. This step yields a new selected



Algorithm 1 Semi-supervised relevance learning

Algorithm 2 Feature Selection with Background Knowledge

Input:
(X7, By, Rn)

R, =R,
Vaj S R77,
Sa; = k-nn(a;)
if Vg € Sa;, g is relevant then
R;, := R}, Uaj, i.e. a; is relevant
B1,=Update([8,, R,,])
end if
return R, , B3I,

feature set denoted by R,,41. This process is iterated until the
number of final selected features reaches a desired feature set
cardinality. The proposed algorithm is summarized below.

A. Algorithm

The two main steps of our algorithm are detailed in the
following.

1) Pre-processing: For the purpose of our semi supervised
problem, aiming at predicting new relevant features using a
priori relevant ones, we proceed with data transformation in
order to make it fit with the problem. Initially, we take the
transpose of the data matrix X in such way that features
become the training instances. Then, each feature is assigned
a label indicating whether it is a priori relevant (Relevant (1))
or not (Unknown (0)).

2) First phase: Semi-supervised relevance learning: In the
first stage of the ¢th iteration we solve a semi-supervised
problem where we are given a vector, (3,, which describes
whether a feature is known to be relevant or not, to find
additional relevant features if they exist. This is conducted
by applying some semi-supervised algorithm which returns an
updated feature relevance vector f37,.

Now, using a k-nearest neighbor algorithm, distances are
calculated between a priori relevant features and the remaining
features. For each feature a;, which is part of the features
which we do not know whether they are relevant or not, i.e.
aj € R,,, we need to find its k nearest neighbors, Saj. If
all its nearest neighbors are known to be relevant then we
denote also a; as relevant. It is very important that the semi-
supervised algorithm is well-behaved, i.e. it will not continue
producing relevant features in a trivial way until we get the
full feature set. However, it will stop at some point. The s
nearest neighbors to the a priori relevant features are chosen
to extend R, to R . The vector of prior knowledge £, is
updated to 3/, based on the a priori relevant feature subset R/,
such that each component of this vector is assigned a value
of 10 if a feature a; € R/, and a value of 1 otherwise. The
algorithm for the first phase is given in Algorithm 1.

3) Second phase: Application of feature selection algo-
rithm: In the next stage of the algorithm we go back to the
original data matrix X and apply a feature selection algorithm
to handle information about prior feature relevance which will

Input:

X: an m X d dataset

y: m-length vector of class labels

Ry: set of a priori relevant features.

Bo: d-length vector characterizing features as a-priori (10)
relevant or not-known (0)

p: percentage of additional features to include in each step
of the iteration at the feature selection step.

e: tolerance variable determining when the algorithm con-
verged; should be set to a small value, e.g. 0.01.

n=20

Rn = RO
Bn = 50
repeat

(R}, B,] = SemiSup([X”, B, Rn])
k= (1+p) x|R},| (number of features to select)
Rp41 = PS-12-AROM([X, y], 3., k)

n=n+1
. |RnﬁRn+1‘ <
until RaORoa] S €

be presented to the selection algorithm as weights vector. As
discussed before PS-12-AROM [11] is an example of such a
method on which prior knowledge should be also a vector of
weights. We consider it as feature selection technique for the
second phase of our approach.

PS-12-AROM algorithm is applied in the second step of
our algorithm. Iteratively the minimization problem in PS-
12-AROM algorithm is solved given the relevance vector 3,
obtained in the first step. Iterations terminate when there are
no important differences between the features indicated as
relevant in step n by the vector [3,, and the ones indicated
as relevant in the step n + 1 by B, 41.

A crucial point here is whether there is a monotonic increase
in R, vector, i.e. as we move from step n to n + 1 do
we always have R, C R,4+;? This obviously depends on
the behavior of the semi-supervised learning and the feature
selection algorithm that we have selected for stages one and
two. So we need to study the convergence behavior of the two-
step algorithm. This means that we should trace the quantity
[BunRai1l 59 4 function of n.

[RnURp 1]

At the semi-supervised step we retrieve | R}, | features. Then,
at the feature selection step we allow the feature selection
algorithm to select at least as many features as possible such
that |R,,+1| > |R},|- In order to control the number of features
between the semi-supervised step and the feature selection
step, we set the number of features to select as follows:
|Rn+1| = (1 4+ p) x |R)| i.e. the number of features that
are retained in the feature selection step should be as many as
the ones in R/, plus one small percentage, p. The algorithm
is described in Algorithm 2.

Another important point is to study the convergence prop-
erties of the algorithm. Basically, this means that at some
point the semi-supervised algorithm does not produce anymore



Dataset No. samples ~ No. features ~ No. a priori relevant features

Bladder cancer 31 3036 11
DLBCL 77 7029 2
Lung cancer 181 12533 8

TABLE I: Datasets characteristics

additional relevant features, or produces very few ones. This
convergence criterion is explained in the feature set evolution
subsection of Section 4, where experimental results are also
reported.

IV. EXPERIMENTAL STUDY

In this section we report the experimental setup and results
of our feature selection method proposed in Section 3. This
method is applied to several microarray data sets described
in Section 4.1. Four evaluation metrics, namely the classifica-
tion performance, the stability of the selected genes and the
algortithm convergence test are defined respectively.

A. Datasets

Three high dimensional data sets are used in our experimen-
tal study. The task in the Bladder cancer dataset is the clinical
classification of bladder tumors using microarrays [13]. A list
of 11 a priori relevant features, markers, are collected from
the literature, looking systematically at the Pubmed literature
on markers of recurrence and progression of bladder cancer.

The classification task in DLBCL, standing for diffuse
large Bcells, is the prediction of the tissue types [14], where
two genes previously known as clinical markers are used
to discriminate DLBCL tissues from Follicular Lymphomas:
Transferrin Receptor (TR) and Lactate Dehydrogenase A
(LDHA).

We analyzed the microarray dataset, malignant pleural
mesothelioma and lung adenocarcinoma gene expression
database [15]. This Affymetrix Human GeneAtlas U95Av2
microarray dataset aims to test expression ratio-based anal-
ysis to differentiating between MPM and lung cancer. [16]
collected prior knowledge from any proven information about
lung adenocarcinoma related genes in the literature. Eight
significant genes are considered ( CXCLI, IL-18, AKAPI12,
KLF6, AXL ,MMP-12 ,PKP3 and CYP2A13).

Table I summarizes the characteristics of the three datasets,
namely the number of samples, the initial dimension of the
input space and the number of a priori relevant features.

B. Classification performance and stability

We use 10-fold stratified cross-validation to predict the
classification performance on three data sets with the selected
feature sets, obtained in 10 iterations. Classification accuracy
is defined as the proportion of correct results that a classifier
achieved. This metric is important and always used to evaluate
feature selection algorithms for classification tasks. However,
it is not sufficient given that there is no best way to evaluate
any system, but different metrics give us different insights into
how a feature selection algorithm performs.

The second important evaluation criterion used in our study
is stability. Stability is defined as the sensitivity of a method
to variations in the training set. The stability of a feature
selection algorithm is the robustness of the feature preferences
it produces to differences in training sets drawn from the same
generating distribution [2]. Stability quantifies how different
training sets affect the feature preferences. [17] cites three
sources that may cause instability of feature selection in
biomarker discovery. Instability occurs because classic feature
selection methods often ignore stability in the algorithm’s
design. The existence of multiple sets of true markers and the
small number of samples in high-dimensional data are two
other sources of feature selection instability. The motivation
for investigating the stability of feature selection algorithms
came from the need to provide application domain experts
with quantified evidence that the selected features are rela-
tively robust to variations in the training data. This need is
particularly crucial in biological applications, e.g. genomics,
DNA-micorarrays, proteomics and mass spectrometry. These
applications are typically characterized by high dimensionality.
The goal is to output a small set of highly discriminatory
features on which biomedical experts will subsequently invest
considerable time and research effort. Measuring stability
requires a similarity measure for feature preferences that will
measure to which extent K sets S of s selected features share
common features. Those sets can typically be produced by
selecting features from different samples of the data. [18]
proposed the following stability index

Stab(S1, .., Sk) = ﬁ z_: Z (I&ﬂSﬂ—%)/(S—%),

i=1 j=i+1

(1)
where d is the total number of features, and S;, S; are
two feature sets built from different partitions of the training
samples. This index satisfies —1 < Stab < 1 and the greater
is its value the larger is the number of commonly selected
features in various sets. A negative stability index means that
feature sets sharing common features are mostly due to chance.

C. Feature set evolution

A crucial point to consider in evaluating our proposed
feature selection algorithm is do we have a monotonic increase
in the selected features (the R, vector)? i.e. as we move
from step n to n + 1 do we always have R,, C R,,41? This
obviously depends on the behavior of the semi-supervised
learning and the feature selection algorithm that we have
selected for stages one and two. The convergence behavior of
the two-step algorithm is measured by the quantity : %
as a function of n. This quantity is equal to zero when there
are no common features between iteration n+ 1 and n and to
1 when there is no difference between the feature sets selected
respectively in iteration n+1 and iteration n, meaning that the
algorithm has converged. Another advantage of studying the
algorithm’s convergence is to use it as a stopping criterion for
the feature selection process. The convergence scores show
that for the three data sets, SS-L2AROM feature selection
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algorithm converges since the selected feature set becomes
stable after a maximum of 6 iterations for Bladder cancer data
set, 10 iterations for DLBCL data set and a maximum of 8
iterations for Lung cancer data set.

D. Experimental results

The proposed algorithm, SS-L2AROM, is compared with
PS-12-AROM, which as described before considers prior
knowledge, and with SVM.RFE, which is a wrapper approach
that does not integrate prior knowledge in the feature selection
process. Table II presents the results of applying of the three
algorithms on the three data sets, where [N denotes the number

of selected features.
Classification and stability results

Bladder cancer

N SS-L2AROM __ PS-L2AROM SVM-RFE

10 83.87- 0.8908 80.65- 0.7458 80.65- 0.7280
20 87.10- 0.8099 87.10- 0.6645 90.32- 0.7539
30 87.10- 0.8107 87.10- 0.6641 93.55- 0.7569
40 90.32- 0.8125 90.32- 0.6403 90.32- 0.7438
50 93.55- 0.8251 93.55- 0.6701 90.32- 0.7510
60 96.77- 0.8264 93.55- 0.6786 93.55- 0.7575
70 96.77- 0.8297 93.55- 0.6900 87.10- 0.7547
80 96.77- 0.8305 93.55- 0.6976 93.55- 0.7452
90 96.77- 0.8343 93.55- 0.7170 90.32- 0.7481
100 96.77- 0.8454 93.55- 0.7229 90.32- 0.7523

DLBCL

N SS-L2AROM  PS-L2AROM SVM-RFE

10 9221 - 0.8188 9351 - 0.6996  67.53 - 0.4802
20 92.21 - 0.8448 9481 - 0.7756  83.12 - 0.4771
30 94.81 - 0.8581 9091 - 0.8215  88.31 - 0.4756
40 9091 - 0.8863  92.21 - 0.8348  79.22 - 0.4744
50 93.51 - 0.8868  93.51 - 0.8753  81.82 - 0.4734
60 94.81 - 0.8855 9091 - 0.8695  84.42 - 0.4677
70 96.10 - 0.8825  93.51 - 0.8722  87.01 - 0.4717
80 94.81 - 0.8868  94.81 - 0.8796  88.31 - 0.4708
90 94.81 - 0.8800 94.81 - 0.8853  85.71 - 0.4700
100 93.51 - 0.8880  94.81 - 0.8851  88.31 - 0.4663

Lung cancer

N SSTL2AROM  PS-L2AROM SVM-RFE

10 98.34 - 0.8065  98.90 - 0.6508  91.16 - 0.7109
20 99.45 - 0.7941  99.45 - 0.7329  93.92 - 0.7552
30 99.45 - 0.8396  99.45 - 0.8099  96.13 - 0.7282
40 100 - 0.8250 99.45 - 0.7826  95.03 - 0.7191
50 100 - 0.8385 100 - 0.7680 93.37 - 0.7242
60 100 - 0.8605 100 - 0.7825 94.48 - 0.7302
70 100 - 0.8602 100 - 0.7874 95.58 - 0.7353
80 100 - 0.8541 100 - 0.7853 93.92 - 0.7408
90 100 - 0.8565 100 - 0.7789 96.13 - 0.7391
100 100 - 0.8640 100 - 0.7912 97.24 - 0.7377

TABLE II: Classification performance coupled with feature

selection stability on Bladder cancer, DLBCL and Lung cancer

data sets.

For Bladder cancer data set, SS-I2AROM gives the best
classification performance with the best result obtained with
a subset of 60 selected features (96.77%). SS-12AROM gives
also excellent stability results compared to PS-L2AROM and
SVM-REFE and this is visibly clear in Fig. 1. The best stability
value is 0.8908 and obtained with 10 features.

For DLBCL and Lung cancer data sets, SS-12AROM still
yields the best classification results as noticed in Table II. PS-
L2AROM is a competitor algorithm concerning classification

results both on DLBCL and Lung cancer data sets, but not on
stability results where the outperformance of SS-12AROM is
clearly visible specially for Lung cancer data set (see Fig. 3).
The stability behaviour of SVM-RFE is modest for all the
experimented data sets. Thus, in most cases prior knowledge
improves classification performance and stability results.
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From this empirical study, we deduce that algorithms which
incorporate prior knowledge have a better classification accu-
racy than the other feature selection algorithms. This is not
always the case for the stability of feature selection, but our
proposed method, namely SS-12AROM, is also advantageous
in this respect. Consequently, considering background knowl-
edge about features is very important and beneficial to guide
the feature selection process. Moreover, taking advantage of
this prior knowledge to extend the set of a priori relevant
features in a pre-processing phase of feature selection further
improves both classification and feature selection stability.

V. CONCLUSION

We propose a robust feature selection method, SS-
L2AROM, based on semi supervised prior relevance learning.
Prior knowledge about some dimensions known to be more
relevant is incorporated as a means of guiding the feature
selection process. The objective is to make use of a partial
supervision on features assumed a priori to be more relevant,
in order to select a robust feature set in an interactive manner.
Iteratively we make use of the initial prior knowledge and the
previously selected features to learn new relevant features by
a semi supervised approach. The extended subset of relevant
features is used as prior knowledge to be integrated in a
second step to guide the feature selection process until an
optimal number of features is obtained. Our proposed approach
shows encouraging results both for improving the classification
accuracy and for dealing with the instability problem in
feature selection for high dimensional data. Experiments on
three microarray data sets show that the partial supervision
in SS-L2AROM improves both classification and stability
performances compared to PS-L2ZAROM and SVM-RFE. Our
proposed approach fits with any feature selection algorithm
that can integrate prior knowledge.
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