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Abstract Today, we have to deal with many data (Big data) and we need
to make decisions by choosing an architectural framework to analyze these
data coming from different area. Due to this, it become problematic when
we want to process these data, and even more, when it is continuous data.
When you want to process some data, you have to first receive it, store it,
and then query it. This is what we call Batch Processing. It works well when
you process big amount of data, but it finds its limits when you want to
get fast (or real-time) processing results, such as financial trades, sensors, user
session activity, etc. The solution to this problem is stream processing. Stream
processing approach consists of data arriving record by record and rather than
storing it, the processing should be done directly. Therefore, direct results are
needed with a latency that may vary in real-time.

In this paper, we propose an assessment quality model to evaluate and
choose stream processing frameworks. We describe briefly different architec-
tural frameworks such as Kafka, Spark Streaming and Flink that address the
stream processing. Using our quality model, we present a decision tree to sup-
port engineers to choose a framework following the quality aspects. Finally,
we evaluate our model doing a case study to Twitter and Netflix streaming.

1 Introduction
More and more data is produced today, and different techniques have been

developed in order to process this data. Due to modern Big Data applications,
like sensors, stock-trading or even user web traffic [6] data has to be processed
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in real-time. The technique that can handle this problem is called : stream
processing [5].

So we have assisted to the rise of Stream processing frameworks, such as Samza
and Flink, which are becoming more and more popular, for offering a model
to ingest and process data at near real-time [7].

However, with several stream processing frameworks and technologies associ-
ated available, a problem arise : how to choose the right framework ? Each
framework has its own features and is more or less different from another
framework.

So, depending on the context, you choose the best solution. But another prob-
lem occurs here : on what criteria are you basing on to answer this question 7
In this paper, we provide a quality model for a decision taking. This model
enforced by what we call variables/criteria, can help you through a decision
and we see if it is suitable to choose stream processing framework.

We identify and explain in details four criteria that are important for the
framework decision making. Further, we quickly present the selected frame-
works with their pros and cons. The criteria and the frameworks have been
chosen following a study of stream processing papers. We analyzed these pa-
pers, and picked based on an average, the most redundant.

The rest of the paper is organized as follow, we analyze the related work that
has been done (ii), and then answer to the previous questions by identifying
what are the different criteria you have to base (iii) and by introducing the dif-
ferent chosen stream processing frameworks (iv). We propose a decision model
tree supported by the previous parts, that you can base on to choose the right
framework technology (v).

2 State-of-the-art/ Related Work

A stream processing system requires four major elements: (1) Best under-
standing of the streaming applications architecture (2) identification of key
requirements of distributed stream processing frameworks (DSPF) that can
be used to evaluate such a system, (3) survey existing streaming frameworks,
(4) evaluation and a comparative study of the most popular streaming plat-
forms. We divide the related work based on the three elements mentioned
above.

2.1 Architecture of streaming applications

Streaming applications architecture is not too much different from web archi-
tectures. Streaming sources are communicating using arbitrary protocols. So
that, a gateway layer is set up to connect sources to streaming application and
resolve the heterogeneity of sources protocols. A message queues are set up as
a middleware to provide a temporary buffer and a routing layer to match the
accepted event sources and the applications [I1].



Title Suppressed Due to Excessive Length 3

2.2 Requirements of distributed stream processing frameworks

There are eight rules [12] that serve to illustrate the necessary features required
for any system that will be used for high-volume low-latency stream processing
applications.

Rule 1: Keep the Data Moving by achieving a low latency

— Rule 2: Query using higt level language like SQL on Streams (StreamSQL)
Rule 3: Handle Stream Imperfections (Delayed, Missing and Out-of-Order
Data)

— Rule 4: Generate Predictable Outcomes

Rule 5: Integrate Stored and Streaming Data

— Rule 6: Guarantee Data Safety and Availability

Rule 7: Partition and Scale Applications Automatically

— Rule 8: Process and Respond Instantaneously

2.3 Existing streaming frameworks

Several streaming frameworks have been proposed to allow real-time large
scale stream processing. In this section sheds the light on the most popular
big data stream processing frameworks:

2.3.1 Apache Spark [15]

Developed at UC Berkeley in 2009 [19], is a platform for distributed data
processing, written in Java and Scala. In spark, streaming computation is
treated as a series of deterministic batch computations on small time intervals.

2.3.2 Apache Storm [18]

is a real-time stream processor, written in Java and Clojure. Storm is a fault
tolerant framework that is suitable for real time data analysis, machine learn-
ing, sequential and iterative computation.

2.3.3 Apache Flink [17]

is an open source processing framework supporting both stream and batch,
It provides several benefits such as fault-tolerant and large scale computation
[14]. Multy functionalities are offred by this plateform such us additional high
level functions such as join, filter and aggregation it allows iterative processing
and real time computation on stream data collected by different tools such as
Flume [20] and Kafka [21].
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Spark Storm Flink Samza
Data format DStream Tuples DataStream | Message
Data sources HDFS, DBMS, | Spoots HDFS, kafka
and Kafka DBMS, and
Kafka
Programming Transformation Bolts Actions Mapreduce
model and action functions Job
(map,groupby]..)
Programming Java, Scala and | Java Java java
languages Python
Cluster manager | Hadoop  YARN, | Zookeeper Hadoop YARN
Apache Mesos YARN.
Apache
Mesos
Latency Few seconds Sub-second | Sub-second | Sub-second
Messaging Exactly once At least once | Exactly once | Exactly once
Machine learning | SparkMLLIB Compatible | FlinkML Compatible
compatibility with with
SAMOA SAMOA
API API
Elasticity Yes Yes No No
Sliding win- | time based time based | time based time based
dows/Windowing and  count and  count
based based
Auto- On demand Pipelined Pipelined On demand
parallelization processing processing
Streaming query | SparkSQL No No Yes (Samza-
SQL AP
Data Partitioning | Yes No No Yes
APl Declaratif Copositionnel| Declartaif Copositionnel
Data transport RPC RPC RPC Kafka

Fig. 1 Frameworks comparative

2.3.4 Apache Samza [10]

is created by Linkedin to solve various kinds of stream processing requirements
such as tracking data, service logging of data, and data ingestion pipelines for
real time services [I4]. It uses Apache Kafka as a distributed broker for mes-
saging, and Hadoop YARN for distributed resource allocation and scheduling

4.

2.4 A comparative between processing frameworks

The comparison between those several frameworks listed above are data for-
mat, types of data sources, programming model, cluster manager, supported
programming languages, latency and messaging capacities [14].

3 Paper Contribution

The work reported reported in this paper can be categorized under the class
of decision help of choosing a stream processing framework. While there is
a rich body of work in designing stream processing applications and huge
comparative between these applications, a system that can help you to choose
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the best application by criteria is still messing from contemporary stream
processing systems.

In this paper we discuss some architectural frameworks such as Storm,
Spark and others that resolve the Stream processing problem and we pro-
vide a a quality model to choose ans evaluate a stream processing framework
basing on some criteria such us latency, guarantees, fault tolerance and data
processing model.

4 Survey of Stream Processing Frameworks

In this section, we will present 4 frameworks that are used actually to resolve
stream processing problem.

4.1 Storm

Storm integrates with any database (e.g: MongoDB) and any queuing system
(e.g: RabbitMQ, Kafka).

Storm works with tuples. A tuple is a named list of values and can contain
any type of object.

Tts API is simple and easy to use due to only three abstractions :

1. Spout : A spout is a source of streams and reads from a queuing broker.

2. Bolt : Where most of computation’s logic goes. Computation logic can be
functions, filters, streaming joins, streaming aggregations etc. So basically,
from an input, and with computation logic you can produce new output
streams.

3. Topology : A network of spouts and bolts.

Storm is scalable, fault-tolerant and have an at-least once guarantee mes-
sage semantic. The cons here are that there is not ordering guarantees and
duplicates may occur.

Another of its strengths is if a node dies, the worker will be restarted on an-
other node. If a worker dies, Storm will restart it automatically.

At the date of writing this article, with Storm SQL integration, queries can
be run over streaming data, but it is still experimental.

Furthermore, Storm provides an exactly-once guarantee with Trident which
is a high-level abstraction. This model is a micro-batch processing model that
add a state and will increase latency.

4.2 Spark

Spark is an hybrid framework which means it can perform batch as well as
stream processing.
Spark natively works with batch, but it has a library called Spark Streaming
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that can allow to work with near real time data. It means that incoming data
are regrouped into small batch and then processed without increasing the
latency too much unlike Storm which provides true streaming processing.
One of its power is that the manner you write batch jobs is the same you
write stream jobs. More than that, it is fault-tolerant and has an exactly-
once semantics.

Spark has its own modules that you can combine :

— Spark SQL

Spark Streaming

Machine Learning

— GraphX (for graph programming)

Spark runs in Hadoop, Apache Mesos, Kubernetes, standalone or in the cloud
and access diverse data sources such as HDFS, Cassandra, etc.

4.3 Samza

Samza is decoupled in three layers [§] :

1. Streaming
2. Execution
3. Processing

4.8.1 Streaming

For the message queuing system, Samza uses Kafka. Kafka is a distributed
pub/sub and it has an at-least once message guarantees. Kafka consumers
subscribe to topic, which allow them to read messages.

4.3.2 Execution

Samza uses YARN to run jobs. It allow to execute commands on a cluster of
machines after allocating containers. This is made possible because of YARN,
which is the Hadoop’s next generation cluster scheduler. So, YARN provides
a resource management and task execution framework to execute jobs.

4.3.8 Processing

It uses the two layers above; input and output come from Kafka brokers. YARN
is used to run a Samza job and supervise the containers. The processing code
the developer write runs in these containers. Samza’s processing model is real
time.

One of Samza’s advantages is that the streaming and execution layers can
be replaced with any other technologies. Also, because of the use of YARN,
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Samza is fault tolerant; Samza works with YARN to transparently migrate
tasks to another machine.

The processing model Samza provides are both batch and stream (real time).
Whatever the code you write, it will be reusable whatever the model. Switching
models needs config change; from HDFS to Kafka to pass from batch to stream
processing.

4.4 Flink

Flink supports batch and real-time stream processing model. It has an exactly-
once guarantee for both models. Flink is fault-tolerant and can be deployed to
numerous resource providers such as YARN, Apache Mesos and Kubernetes;
but also as stand-alone cluster.

One of the advantages of this framework is that it can run millions of events
per seconds by using the minimum of resources, all of this at a low latency.
Flink provides three layered API’s :

1. ProcessFunction : It implements the logic, process individuals or grouped
events and give control over time and state.

2. DataStream : Provides primitives for stream operations such as transfor-
mations. It is based on functions like aggregate, map and reduce.

3. SQL : To ease the writing jobs for analytics on real time data.

5 Criteria used in frameworks

To choose a stream processing framework, we have identified some criteria.
These criteria don’t give you the answer on whether you should use stream
processing or batch processing, but rather helps you take the decision to pick
the right framework. So this step assumes that you already identified the
problem and you came to the idea that should use stream processing model
over batch processing.

We first are going to give the criteria and explain them in details :

— Latency

— Message semantics (guarantees)

— Fault tolerance

— Data processing model (micro-batch or real-time)

5.1 Message semantics

Another term referring to this criteria is Message guarantees. The message
guarantees can take three forms :

— At least-once : could be duplicates of the same message but we are sure
that it has been delivered
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— At most-once : the message is delivered zero or one time
— Exactly-once : the message is guaranteed to be delivered exactly one and
only one time

Before providing message guarantees, system should be able to recover
from faults. [6]

5.2 Fault tolerance

Streaming application run for an indefinite period, so it increases the chance
of having faults. So this criteria is important, because despite the application
has faults.

Fault tolerance guarantees that the system will be highly available, operates
even after failures and has possibility to recover from them transparently. Flink
has the highest availability.

5.3 Latency

Latency is the time between arrival of new data and its processing [10]. La-
tency goes hand in hand with recovery (fault tolerance) because, whenever
the system has errors, it should recover fast enough so the latency doesn’t de-
crease too much (i.e : the processing continue with minimal effect). Also, each
framework can do do some optimization on data such as message batching, to
improve the throughput, but the cost is sacrificing latency.

5.4 Data processing model

To do stream processing, there is two techniques :

— Micro-batch : based on batch processing but rather than processing data
that have been collected over previous time, data is packaged into small
batches and collected in a very small time intervals and then delivered
directly to the batch processing. Spark for example does micro-batch.

— Real-time : data is processed on fly as individual pieces, so there is no
waiting. Flink process data in real-time.

As messages are received directly the real-time processing technique has
a lower stream processing latency than micro-batch but it become harder to
have an exactly-once semantics. However, micro-batch provides better fault-
tolerance and thus it can guarantees that the message has been received only
once (i.e : Spark Streaming).

What we understand here is that message semantics are related to the
fault tolerance and the data processing model, and according to how the fault
tolerance is implemented the latency will increase or decrease.
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Stream Processing Framework per Paper

Survey of Big Data A Comparative On Big Data ANew Pilot-Streaming: A REAL TIME DATA  Survey of A Performance
Frameworks for  Study on Stream Architecture for  Stream PROCESSING Distributed Stream Comparison of
i Processing(++)  Real Time Data i

Stream

Framework/Paper An Evaluation of
Data Strea

Different Streaming
Application Frameworks for
Characteristics(+  Big Data

)

Framework
for High-

Processing
Performance
Computing (++)
Storm

Samza
Spark Streaming
Kafka Streams
Flink

Fig. 2 Frameworks per paper

Criteria per Paper

per: A A REAL TIME DATA  ANew An Evaluationof  The 8 Survey of Big Data Pilot-Streaming: A Survey of
Comparison of ~ Study on PROCESSING Architecture for  Data Stream requirements of  Frameworksfor  Stream Distributed Stream
Open-Source  Streaming FRAMEWORKS ~ Real Time Data  Processing Real-Time Stream Different Processing Processing (++)
Stream Stream Systems for Data g

Processing Processing

Characteristics(+ for High-
Platforms ¥ P

erformance
Computing (++)

n
Applications

Latency
Fault tolerance

Message
guarantees

Data processing
(micro-batch or
real-time)

Data storage
Streaming Query
Input data source

Fig. 3 Criteria per paper

6 Quality Model for choosing and evaluating a SPF

After presenting the different frameworks and found the main characteris-
tics/criteria, we came with a model. A model for evaluating the frameworks
and choosing one given a set of criteria. In this section, we explain why we
have chosen these particular frameworks and how we extracted certain crite-
ria. Afterward, we explain how we have prioritized the criteria, and then, with
all these information we present the quality model.

6.1 Methodology

There is several processing frameworks used in production today. But to find
out what framework is used in which company is difficult and take time. So,
our primary support was the research papers. We analyzed various papers
about stream processing, and we defined redundancy as our benchmark.
This means that we made a table with the papers and frameworks, and every
time a paper cited a framework we gave a point to the paper. At the end, we
had a table with the frameworks cited per paper.

We repeated the same process for the criteria. The result is on figure

This paper is a first draft, and we plan to study more papers to have more
criteria and frameworks, and thus, to have better average results.
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6.2 Choosing and prioritizing the criteria

After finding the criteria, we had to prioritize them. Here is the criteria ranked
by importance.

Data model

Fault tolerance
Message semantics
Latency

N

The first decision is what type of stream processing to choose, because
this will have an impact on the other criteria. If you choose a micro-batch
framework, it will be possible to have for each framework an exactly-once
message semantics as opposite to a real-time model.

Latency is of great importance, but, a framework should be able to recover
fast enough, so it does not affect the system too much (with minimum time).
And before providing message semantics it also should be recover from faults
automatically. Because it will influence the other criteria beneath it, this is
why the fault tolerance is in second position.

Depending on whether it is exactly-once or at least-once message semantics,
the latency will change depending this criteria.

6.3 Decision Model Tree

Based on the previous parts, we present the decision model tree to evaluate
and choose a stream processing framework (fig. .

7 Case studies

In this section, we analyze some stream processing application cases. We go
through two companies : Netflix and Twitter.

The goal of this section is to see if our contribution in this paper correspond
to the reality (i.e: real world application). In analyzing how and why these
companies use stream processing frameworks, we can identify the main under-
lying elements and compare them to our criteria. We get all information from
papers and the companies tech blog.

7.1 Twitter

Twitter has actually an in-house framework called Heron. But before that,
they were using Storm. We are going to detail framework evaluation for Storm,
because Heron is an improvement but they are still using what we detail below.

The company that has made Storm was acquired by Twitter in 2011. Since,
Twitter modified for their use.
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Data Model

micro-batch real time

Yes
Message
semantcs

atleast-once examyi once at least once exactly once

-

second millisecond millisecond

-

Fig. 4 The decision model tree

Let’s begin with our first criteria : data processing model. At Twitter, due
to choosing Storm, as we described it above, it has a micro-batch processing
model. So, just by using it, the choice of data processing model has been made.
We go now to our second criteria : fault tolerance. When Twitter describes
Storm [I§], they say that one of the argument chosen to design Storm is :
resilient (i.e : fault tolerant); their second criteria and ours correspond. As
they say in the article [I8], on of the feature key is the processing semantics or
message semantics. They describe that their solution has two guarantees : at
least once and at most once. This characteristic correspond to our third criteria
we have mentioned. Further in the article, Ankit et al. report some experiment
they have made that had to show the latency results. As they calculated, their
latency is close to 1ms 99% of the time. Our criteria are justified by the design
and the use of Storm at Twitter.

In this first subsection, we can conclude that our criteria are match with
the main characteristics of design and use of Storm at Twitter.

7.2 Netflix

In their article [22], they describe Keystone which is their stream processing
platform. The solution chosen to do stream processing is Apache Flink. By
choosing Flink, they automatically chosen the real-time processing for the data
model criteria. Then, they gave a summary of common asks and trade-offs and
one of them is failure recovery. This correspond with our criteria. One of the
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asks was that the system is fault tolerant. If we follow our model, the next
step is to choose the message semantics. In the post, their say that according
to the use case loosing some events in the pipeline is acceptable while in other
cases the event have to absolutely processed so it require a better durability.
We see that this sentence is a synonym to our message guarantees criteria. In
another post [23], they describe this time a real use case : to know what is
trending on Netflix. In order to that, they need real-time data of what users
watch, the event is then send to be processed. They describe that one of their
challenges was having a low latency. This last criteria match with ours.

What we can conclude in this section is that these companies followed a
path which correspond with our quality model. All our criteria had been taken
into account by these companies and are part of the core decision on choosing
and using stream processing framework architecture.

8 Discussion

In this section we will discuss the impact of our results, impact as well on
engineers as on researchers. This quality model can be used as a guideline
when wanting to choose a stream processing framework. Answering what type
of criteria is important for a given context will end to the choice of the right
solution; do I need absolutely only one instance of data or is it permissible
to have duplicates ? (i.e: at least once vs exactly once semantics). Answering
to these questions based on the criteria we identified will help the engineers
make the right choice quicker. Further, the use case of our model is not lim-
ited to the choice only. Our model can be extended to serve to design a future
stream processing framework architecture. When designing the solution, the
model can help to see further steps on what will be implemented and thus the
different dependencies it will have : when implementing the fault tolerance,
the latency will increase or decrease given on how it is implemented. More
over, thanks to the model, we see that the fault tolerance will also influence
the message semantics. So based on what we want to have as message guaran-
tees, we will implement the fault tolerance in a different manner. In the other
hand, researchers can use this model when wanting to evaluate a framework
architecture. Also, this model, can be reused in order to compare different
frameworks. When wanted, as part of their research, they can have a quicker
and a better view on the different solution and what brings to them and how
they are different and also similar. More over, when wanted and depending on
their need, they can easily extend this quality model in order to adapt it to
their work : adding a criteria will add complexity, and thus a possible different
path.

9 Conclusion & Future work

With the huge amount of data generated, and given a stream processing con-
text, choosing the right framework architecture is major. In order to do that,
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we first identified and explained what are the different criteria such as data
model and latency... and presented some stream processing frameworks. We
explained our methodology on how we came to choose the ideal framework ar-
chitecture to fulfill user’s needs. Given these, we provided a decision model tree
which is a quality model to choose and evaluate a stream processing frame-
work.

There is more work that has to be done, in order to have more criteria and
frameworks, thus to have a more complete and complex model. We can base
on this model to evaluate and choose a framework architecture, and not only
that, this model can also serve as a guide to designing a new stream process-
ing framework architecture. It can also be used as a support to have quickly
a global view of the different solution and what brings to them depending on
the different criteria.
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