
 
Performance Evaluation of the V-BLAST System  

under Correlated Fading Channels 
  

 
Trung Q. Duong(*), Hoang Trang (**), Een K. Hong (*), Sung Y. Lee(*) 

(*)School of Electronics and Information. Kyung Hee University – Republic of Korea 
dqtrung@oslab.khu.ac.kr 

(**)HoChiMinh City University of Technology – Vietnam  
 

 
Abstract 

 
The MIMO system (multiple antennas at the 
transmitter and receiver) is capable of very high 
theoretical capacities. As an important space-time 
code, V-BLAST (Vertical-Bell Lab Layered Space-
Time) code has been researched recently. However, 
most research in this area has assumed that the 
antennas are decorrelated to each other at both ends. 
Unfortunately, in practice, this assumption is not 
satisfied. This paper introduces a model for 
correlated channel matrix, and as a result the 
degradation of BER performance can be simulated 
without the constraint of the number of antennas. In 
addition, the stochastic property of SNR of the 
received signal is demonstrated, and the analytical 
upper bound of the average probability of error for 
Zero-Forcing V-BLAST under correlated Rayleigh 
fading channels is derived. The simulation will verify 
the analysis. 

 
 
1. Introduction 
 

It has been shown in recent research that the 
deployment of multiple antennas at both sides of a 
transmitter and receiver provides a larger capacity 
compared to single antenna systems [1], [2], and [3]. 
As an important space-time code, V-BLAST (Vertical-
Bell Lab Layered Space-Time) code was proposed in 
[3]. This high capacity can be obtained under the 
assumption that the channels at the transmitter and 
receiver are uncorrelated. However, in a real fading 
environment, signals are not independent The effect of 
correlated fading has been investigated in [4], [8], [9], 
and [10]. The performance loss due to correlation in 
V-BLAST was investigated in [5]. An experimental 
study verified that MIMO radio channels suffer from 
correlated fading in [11]. Existing works attain no 

general channel matrix model under correlated fading 
for the V-BLAST system. This paper introduces a 
correlated channel matrix model, and therefore it is 
easily applied in simulation. Furthermore, we derive 
the stochastic property of SNR of the received signal 
and the upper bound of error probability is given.  
This paper is organized as follows. In section II, the 
V-BLAST system and Zero-Forcing criterion are 
briefly reviewed. In section III, the general model for 
the correlated fading channel matrix is introduced. In 
section IV, we investigate the stochastic property of 
the SNR of received signal. The results are compared 
by simulation in section V and a concluding remark is 
given in section VI⋅ 
 
2. Zero-Forcing V-BLAST System 
Overview 
 

In this section, the V-BLAST architecture and 
Zero-Forcing are reviewed. The V-BLAST system is 
considered with Tn  transmitted and R Tn n≥  

received antennas. The data is demultiplexed in Tn  
data sub-streams of equal length (called layers). These 
sub-streams are mapped into M-PSK or M-QAM 
symbols 1 2, ,...,

Tnt t t  and simultaneously transmitted 

over Tn  antennas. In order to outline the V-BLAST 
system, one time slot of the time-discrete complex 

base band model is examined. Let   1... T

T

nt t t⎡ ⎤= ⎣ ⎦  

define the 1Tn ×  vector of transmit symbols, then the 
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corresponding 1Rn ×  vector of receive symbols 

1... R

T

nr r r⎡ ⎤= ⎣ ⎦  is given by 
 

.r H t n= +   (1) 
 

In 1  (1), 1... R

T

nn n n⎡ ⎤= ⎣ ⎦  stands for the white 

Gaussian noise of variance 2
nσ  observed at the Rn  

receive antennas while the average transmit power of 
each antenna is normalized to one i.e. 

{ } T

H
nE tt I= , and { } 2

R

H
n nE nn Iσ=  (2) 

The R Tn n×  channel matrix H  
 

1,1 1,

,1 ,

T

R R T

n

n n n

h h
H

h h

⎛ ⎞
⎜ ⎟

= ⎜ ⎟
⎜ ⎟
⎝ ⎠

 (3) 

 

includes complex fading gains jih  expressing the tap 

gains between transmit antenna i  and receive antenna 
j   

In [3] the decorrelating matrix D in the Zero-
Forcing criterion was given by 
 

( ) HH
ZF HHHHD 1−+ ==   (4)  

 

At the i th−  detection step, the receive vector is 
linearly weighted with the nulling vector which is the 
i th−  row of D , and the result is given by:  

 

( ) ( ) ( ). .i i i
y D r D H t n= = +   (5) 

 

i i iy t n= +   (6)  
 

iy  is considered as the decision statistic for the i th−  

sub-stream ( )it , where .i in D n=  is the noise 

enhancement. By using the quantization operation 
[ ].Q  appropriately, the i th−  sub-stream can be 

likely estimated  
 

[ ]i it Q y=    (7) 

 
3. MIMO Correlated Fading Channel 
Matrix Model 
 

                                                           
1 In this paper, (.)T and (.)H represents for the matrix transposition 
and Hermitian transposition, in that order.  Ia denotes the a× a 
identity matrix 

In this section, we introduce a general model for a 
channel matrix under the correlated fading 
environment. This model can be easily used in 
simulation to validate analysis. 

In [9], the spatial fading correlation matrix for a 
Rayleigh fading channel H  is denoted as 
 

( ) ( )HR E vec H vec H⎡ ⎤= ⎣ ⎦   (8) 
 

If H  is a R Tn n×  matrix, then ( )vec H  

defines 1R Tn n ×  vector by stacking the columns of 
H under each other.  

In richly-scattered propagation environments we 
can assume that the correlation among received 
antennas is independent of the correlation between 
transmitted antennas (and vice versa) i.e. only 
immediate surroundings of the antenna array impose 
the correlation between array elements and have no 
impact on the correlations observed between the 
elements of the array at the other end of the link. 
Therefore, R  can be described in [11] as follows 
 

TX RXR R R= ⊗  (9) 
 

with ⊗ defining the Kronecker product; TXR  and 

RXR  represent the transmitted and received 
correlation matrix, respectively. It is very clear that R , 

TXR and RXR are symmetrical complex correlation 
matrices i.e. Hermitian matrices. According to [12], 
we can write  
 

HR PXP=   (10) 
 

where P is a unitary matrix, and X is a diagonal 
matrix. Applying the square-root transformation to X , 
so from (10) it follows that  
 

1/ 2 1/ 2 HR PX X P=   (11) 
 

Since the transpose of a diagonal matrix is also 
itself, we get 
 

1/ 2 / 2H HR PX X P=   (12) 
 

( )( )1/ 2 1/ 2 1/ 2 / 2H HR PX PX R R= =   (13) 
 

The equation (13) also holds for TXR and RXR . 
Substituting (13) for (9), we attain  
 

( ) ( )1/ 2 / 2 1/ 2 / 2H H
TX TX RX RXR R R R R= ⊗   (14) 

 

By using some properties of the Kronecker 
product in [13], we can write (14) as follows 
 



( )( )1/ 2 1/ 2 / 2 / 2H H
TX RX TX RXR R R R R= ⊗ ⊗   

since ( )( ) ( )A B C D AC BD⊗ ⊗ = ⊗  

( )( )1/ 2 1/ 2 1/ 2 1/ 2 H

TX RX TX RXR R R R R= ⊗ ⊗   (15) 

 since ( ) ( )HH HA B A B⊗ = ⊗  
 

Let H be R Tn n×  independent and identically 
distributed (iid) Rayleigh matrix with complex 
Gaussian elements with zero means and unit variances 

i.e. ( ) ( ){ }H
E vec H vec H I= . Then the 

correlation matrix in (15) can be described as follow 
 

 

( ) ( ) ( ) ( ){ }1/2 1/2 1/2 1/2H H

TX RX TX RXR E R R vec H vec H R R= ⊗ ⊗

  (16) 
 

 

( ) ( ) ( ) ( ){ }1/2 1/2 1/2 1/2
H

TX RX TX RXR E R R vec H R R vec H⎡ ⎤= ⊗ ⊗⎣ ⎦
  (17) 
 

since ( ) ( ) ( )Hvec ABC C A vec B= ⊗ , we get 
 

( ) ( ){ }1/2 /2 1/2 /2
H

H H
RX TX RX TXR E vec R HR vec R HR⎡ ⎤= ⎣ ⎦ (18)  

 

From (8) and (18), the normalized channel matrix can 
be written as 
 

1/ 2 / 2H
RX TXH R HR=  (19) 

 

This analytic result is equal to the correlation 
model introduced in [10]. The spatial correlation of a 
narrow-band flat fading channel depends on the 
physical parameters of the model, which include 
antenna distance, antenna arrangement, angle spread, 
and angle of arrival [9]. However, it is very 
complicated to investigate all these parameters. 
Furthermore, it is hard to cover a wide range of best-
case to worst-case scenarios [14]. In [8], an easy-to-
use exponential correlation matrix model was 
introduced. In addition, Zelst and et al have exposed a 
similar model in [14]. These models are completely 
compatible with the measured model in [11]. 

For exponential model, the components of a 
correlation matrix are given by 
 

i j
ijρ ρ −=   (20) 

 

where ρ is the correlation coefficient of neighboring 
branches. In the case of uniform illumination, the 

correlation coefficient between two adjacent antennas 
is [15] 
 

0 2
c

dJρ π
λ

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
  (21) 

 

where 0J is the zeroth order Bessel function, cλ is the 

carrier wavelength, and d is antenna space. The 
general form of transmitted and received correlation 
matrices are given, respectively.  
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 (23) 
 

where TXρ and RXρ stand for the transmitted and 
received correlation coefficient, in that order. These 
correlated matrices will be applied in the next section 
to demonstrate the upper bound of error probability 
and in the simulation to verify the analysis. 
 
4. Upper bound of average error 
probability. 
 

In this section, we study the statistical property of 
the SNR of the received signal, thereby verifying the 
average error probability. When applying the Zero-
Forcing criterion, the signal to noise ratio of 
k th− received substream is given by  

 

 0
1k

kk

SNRSNR
A−

=
⎡ ⎤⎣ ⎦

  (24) 

 

where HA H H= , 1

kk
A−⎡ ⎤⎣ ⎦ is the kk th− element 

of matrix 1A− , and 0
0

SESNR
N

=  

According to the inverse matrix property we have: 
 



( ) [ ]( )1 det
1

det( )
k k kk

kk

A
A

A
+−⎡ ⎤ = −⎣ ⎦   (25) 

 

where [ ]kkA is the minor of matrix A by deleting the 

k th− row and k th− column of the matrix A. 
 

Hence, 

 
( )
[ ]( )0

det
detk

kk

A
SNR SNR

A
=   (26) 

 

It is very important to determine the statistical 

property of the random variable
( )
[ ]( )

det
detk

kk

A
A

γ =  

It can be described as a positive quadratic form 
 

H
k k kH HHγ =   (27) 

 

 where H is an Hermitian and non negative matrix. 
Using unitary transformation in H , we may express 
 

H H H
k k k k kH HH H U UHγ = = Λ  (28) 

 

where U is a unitary matrix and 
Λ is ( )1 2...

Rndiag λ λ λ , with iλ  being an eigenvalue 

of H . Let kz UH= , and hence H H H
kz H U= , so 

kγ  is described as 
 

H
k z zγ = Λ  (29) 

 

or in the matrix form 
 

1 1

2* * *
1 2

... ... 0
0 ... 0 .

...
... ... ... ... .
0 ... ...

R

R R

k n

n n

z

z z z

z

λ
λ

γ

λ
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⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎡ ⎤=⎣ ⎦⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦⎣ ⎦

 (30) 

 

2

1

Rn

k i i
i

zγ λ
=

=∑  (31) 

 

Since kH  is a complex Gaussian vector, and U is a 

unitary matrix, kH and z possess identical statistics. 

kγ  is a sum-squares of Gaussian random variables, 
thus it is a chi-square random variable. In order to 
identify the degree of freedom of kγ , we have to 

determine the eigenvalues of H . In [7], Winters and 
et al have discovered and proved that H has 

1Tn − eigenvalues equal to zero and 1R Tn n− +  
eigenvalues equal to 1.  
Using this evaluation, we can express kγ  as below 
 

1 2

1

R Tn n

k j j
j

zγ λ
− +

=

= ∑  (32) 

 

Then, the SNR of the k th− received subtream is a 
chi-square error with the degree of freedom 
( )2 1R Tn n− +  and variance 2

kσ . Then it is not 

difficult to prove that the mean of SNR on the 
k th− received substream is  

 

( ) ( ) 2
02 1k R T kE SNR n n SNR σ= − +   (33) 

 

This result is the same as that in [5] and [6] by using 
the Schur complement and Wishar distribution. If 
using random detection order, the received signal is 
individually detected i.e. the average symbol 
probability can be obtained by averaging the 
instantaneous probability of error over all the SNRs as 
in [5] 
 

( )
2
min

, exp
4

k
e k k e

d SNRP E SNR N
⎡ ⎤⎛ ⎞

≤ −⎢ ⎥⎜ ⎟
⎝ ⎠⎣ ⎦

    (34) 

 

where eN is the average number of nearest neighbors, 

and mind  is the minimum distance between any two 
symbol constellation. 
In this paper we only consider the correlation among 
the transmitted antennas; hence we attain 

/ 2H
TXH HR=  (35) 

In addition, the variance of the k th− substream is 
given in [5] 
 

2
1

1
2k

TX kk
R

σ
−

=
⎡ ⎤⎣ ⎦

  (36) 

 

Substituting (36) and (33) for (34), the average error 
probability can be obtained as follows 
 

1

, 2 2
min

1
22 1

4

R Tn n

e
e k

k

NP
dσ

− +
⎛ ⎞
⎜ ⎟

≤ ⎜ ⎟
⎜ ⎟+⎜ ⎟
⎝ ⎠

 (37) 

 

The result indicates that there will be no diversity gain 
if the number of transmitted antennas is equal to the 
number of received antennas. 
 



5. Simulation Results 
 
In the simulation, we investigate the bit error rates 
(BER) of V-BLAST system for the Zero-Forcing 
criterion deploying uncoded BPSK modulation 
through flat correlated Rayleigh fading channel. Fig. 1 
shows the correlation effect at the transmitter on BER 
performance for a Zero-Forcing V-BLAST 
system ( )4, 5T Rn n= = . BER performance of 

uncorrelated case is reduced 3.5 dB for correlation 
coefficient equal to 0.7 and nearly the same for 
correlation coefficient equal to 0.2. The impact of 
correlation at the receiver is given in Fig. 2. It shows 
the same results as in Fig. 1. Furthermore, when the 
number of transmitted antennas is equivalent to the 
number of received antennas we can get no diversity 
gain. 
 

 

Fig. 1. Zero-Forcing V-BLAST ( )4, 5T Rn n= = , 

correlation among the transmitted antennas 

 

Fig. 2. Zero-Forcing V-BLAST ( )3, 5T Rn n= = , 

correlation among the received antennas 

 
6.  Conclusions and Discussion 
 

We have introduced a general model of channel 
matrix for a V-BLAST system under a correlated 
Rayleigh fading environment. This model is easily 
applied in simulation to verify the average error 
probability analysis due to the stochastic property of 
the SNR of the received signal.  
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