
Towards Security Analyses of an Identity Federation
Protocol for Web Services in Convergent Networks

Maurice ter Beek
ISTI–CNR, Via G. Moruzzi 1, 56124 Pisa, Italy

Email: maurice.terbeek@isti.cnr.it
Corrado Moiso

Telecom Italia, Via Reiss Romoli 274, 10148 Torino, Italy
Email: corrado.moiso@telecomitalia.it

Marinella Petrocchi
IIT–CNR, Via G. Moruzzi 1, 56124 Pisa, Italy

Email: marinella.petrocchi@iit.cnr.it

Abstract— We describe a formal approach to the analysis of
security aspects of an identity federation protocol for web services
in convergent networks. This network protocol was proposed
by Telecom Italia as a solution to allow end users to access
services on the web through different access networks without
explicitly providing any credentials, while the service providers
can trust the user’s identity information provided by the access
networks and access some user data. As a first step towards a full-
blown formal security analysis of the protocol, we specify three
user scenarios in the process algebra Crypto-CCS and verify the
vulnerability of one of these specifications w.r.t. a man-in-the-
middle attack with the model checker PaMoChSA.

I. INTRODUCTION

Formal methods and tools are popular means for the analysis
of security aspects of computer network protocols. First the
protocol under scrutiny is described in a formal language,
which often results in a more precise definition of its func-
tioning. Subsequently, the security aspects to be analyzed are
specified in a logic. Finally, to decide whether or not certain
security properties are fulfilled by the protocol, an automatic
tool is used to analyze the protocol. The outcome either proves
the protocol correct w.r.t. the security aspects considered or
shows how it falls to one or more attacks [1]–[7].

Research in this active branch of computer security has led
to a variety of formal techniques; some of these are based
on process algebras [8]–[11]; others on proof techniques for
authentication logic [12]–[14]; some exploit type systems and
other static analyses [15], [16]; yet others use automata [17].
A common analysis strategy is to test the behaviour of one’s
protocol specification within a hostile environment, by running
it in a setting in which the presence of honest participants is
complemented with a malicious adversary.

In this paper we formally specify three user scenarios of an
identity federation protocol for (web) services in convergent
networks and we analyse some of its security aspects (like the
possibility of a man-in-the-middle attack). To do so we use
Crypto-CCS, a CCS-like process algebra with cryptographic
primitives [2], [18], [19], in combination with the Partial
Model Checking Security Analyzer PaMoChSA [3], [11], [20]
developed by the Security group of IIT–CNR.

The network protocol we will formally specify and analyze
was proposed in [21] to permit end users to access services
through different access networks (e.g. mobile and fixed ones)
without explicitly providing any credentials, while the applica-
tion level can trust the identity and authentication information
provided by the access networks. As a result, service providers
(SPs) identify a user by using the authentication procedure
performed by the network provider. After identity federation,
a single sign-on suffices for a user to access all services
belonging to the same “circle of trust” of SPs while keeping
personal data private. This is an advantage over introducing
(and remembering) one’s credentials time and again. The
protocol may thus grant users anonymous access to services
and at the same time allow the application level to limit access
to authorized users. Moreover, without knowing who the user
is, SPs can still obtain her/his location or age or charge her/his
account. The protocol is related to recent solutions specified
by the Liberty Alliance project [22], in which case the task to
authenticate a user is delegated to an identity provider.

The paper is structured as follows. After this introduction,
we recall the network protocol of [21] in detail in Section II. In
Section III we then describe our analysis approach, after which
we formally specify three user scenarios of the protocol in
Section IV. A first security analysis of the protocol is presented
in Section V. Finally, Section VI contains our conclusions and
some indications for future work.

II. PROTOCOL DESCRIPTION

In this section we recall the relevant features of the identity
federation protocol proposed in [21] as a solution to handle the
identity and authentication information of end users that access
WSs on convergent networks through multiple telecommunica-
tion channels (e.g. ADSL, GPRS/UMTS, SMS). Providers of
telecommunication networks that offer their end users access
to WSs are in a privileged position to pass this information of
the users that actually access their network, to the SPs. When
passing information obtained within their security domain to
the application level, the network providers do need to take
the following security aspects into account:

1) privacy of sensitive user information (e.g. network address);
2) guarantee a user’s identity, without explicitly discovering it.

To this aim, the protocol makes use of a token injector
mechanism to translate the identity and authentication infor-
mation provided by a secure access network to the Internet
application level (with a lower level of security). The token
injector thus plays the identity provider role as described in
the Liberty Alliance specifications [23].

The token injector intercepts all the data traffic that orig-
inates from a terminal connected to the secure network and
that, over an insecure network, has an application server as
destination. It then adds some token carrying the identity
information of the end user to the intercepted messages. The
format of such tokens must be compatible with the application
protocol used in the interaction and the identity information
must be such that the application can use it to identify one of
its users. See Figure 1 for a sketch of the described scenario.

Fig. 1. Token injector mechanism.

When a user requests access to a specific WS, the token
injector deployed in the network operator domain intercepts
the HTTP GET (or POST) request and, depending on the
information stored in the operators repositories (such as user
profile, service profile, etc.), inserts a token (i.e. a string of
characters) into the original HTTP packet and forwards it to
the final destination, for instance to a SP. When the application
server receives the new access request, it looks for a token. If
it is present and valid (e.g. issued by a trusted authority, well-
formed, etc.), then it immediately recognizes and welcomes the
associated user without explicitly asking for credentials. The
token is formatted according to the SAML standard [24] and
it can carry additional information, like a description of how
the end user has been authenticated. The token is protected
from various security issues by means of cryptographic tools,
like digital signatures and symmetric encryption to protect
its integrity and confidentiality and sequence numbers against
replay attacks. Likewise, communication between the token
injector and the SP is by means of secure protocols, like SSL
or TLS. The token injector mechanism may also be applied
to add identity tokens to SOAP or SIP protocols and the like,
again according to some available standard. For instance, the
tokens added to SOAP messages could be formatted according
to the OASIS WS-Security specification.

We now provide an example of a user that accesses a
WS through multiple telecommunication channels. Consider
a scenario with two network operators, a Fixed Operator FO
and a Mobile Operator MO, both of which have implemented
the token injector mechanism and have established a trusted

relation with a SP, for instance a travel site. A user that is a
customer of both operators, has an active registration on the
travel site and has already federated her/his account on the
travel site with her/his profile on each of the operators (i.e. two
federations have been activated: one between the SP and the
FO accounts and one between the SP and the MO accounts).
During the process of federation, the token injector generates
an opaque-id (or pseudonym) for the user and sends it to the
SP. This opaque-id is then stored on the repositories associated
to the token injector and to the SP and it is exchanged in
all communication between the operators and the SP, so as
to identify the user in a secure way. Consequently, the user
can access the travel site by PC (ADSL) or mobile phone
(GPRS) without introducing credentials. Instead, the network
authentication is forwarded to the travel site, which identifies
the user. Even though the SP does not know the user’s mobile
phone number, the opaque-id enables it to use the operators
service (as SMS gateway) to nevertheless exchange or request
information about the user. The architecture of the described
scenario is sketched in Figure 2.

Fig. 2. Identity federation in convergent networks.

III. ANALYSIS APPROACH

We adopt the analysis approach of [19]. This approach
is based on the observation that a protocol under analysis
can be described as an open system: a system in which
some component has an unspecified behaviour (not fixed in
advance). Subsequently one assumes that, regardless of the
unspecified behaviour, the system works properly (i.e. satisfies
a certain property). In case of the network protocol of the
previous section, one can imagine the presence of a hostile
adversary trying to interfere with the normal execution of
the protocol, in order to achieve some kind of advantage
w.r.t. the honest participants. Such an adversary is added to
the specification of the network protocol, presented in the next
section, as a component with a behaviour that is defined only
implicitly by the semantics of the specification language.

We assume the adversary to act in Dolev-Yao fashion [25]
by using a set of message manipulating rules that model cryp-
tographic functions like encryption and decryption. Encryption
is opaque, i.e. a message encrypted with the public key of
one of the participants cannot be decrypted by anyone but
the person who knows the corresponding private key (unless
the decryption key is compromised of course). As is common

in this branch of computer security, we adopt a black-box
view of cryptography by assuming all cryptographic primitives
involved in the network protocol to be perfect. Like the honest
participants, the adversary is able to send and receive messages
to other participants. However, it can also intercept and forge
messages and, to a certain degree, derive new messages from
the set of messages that it has come to know. This set consists
of all messages the adversary knows from the beginning (its
initial knowledge) united with the messages it can derive from
the ones intercepted during a run of the protocol. To analyze
whether a system works properly, at a certain point in the
run the adversary’s knowledge is checked against a security
property. If the intruder has come to know information it was
not supposed to know, then the analysis has thus revealed an
attack w.r.t. that particular property, i.e. a sequence of actions
performed by the adversary that invalidates the property.

As said before, we will model the network protocol in
Crypto-CCS and analyze a part of it with PaMoChSA. Before
describing the basics of Crypto-CCS, we fix some notation and
terminology related to the security primitives we deal with.

A. Notation and Terminology

The sending of a message msg from sender A to receiver
B over the ith communication channel ci is denoted by

ci A 7→ B : msg

In the sequel we will use the following security primitives:

pki, pk−1
i public and private key of agent i

{ }pk−1
i

message signed by agent i
{ }pki

message encrypted by public key of agent i
{ }KEY message encrypted by symmetric key KEY
ni

j nonce related to j generated by i

A nonce is a parameter that varies with time, e.g. a special
marker intended to prevent the unauthorized replay or repro-
duction of a message. Indeed, a nonce is “generated with the
purpose of being used in a single run of the protocol” [26].
Nonces are commonly implemented as pseudo-random strings.

B. Crypto-CCS

We define those parts of the syntax and semantics of Crypto-
CCS [2], [18], [19] needed to model the network protocol.

Crypto-CCS is a slightly modified version of CCS [27],
including some cryptographic primitives. A model defined in
Crypto-CCS consists of a set of sequential agents able to com-
municate by exchanging messages (e.g. data manipulated by
the agents). Inference systems model the possible operations
on messages and therefore consist of a set of rules of the form:

r =
m1 · · · mn

m0

where m1, . . . ,mn form a set of premises (possibly empty)
and m0 is the conclusion. An instance of the application of a
rule r to closed messages m1, . . . ,mn (i.e. messages without
variables) is denoted as m1 · · · mn `r m0.

The control part of the language consists of compound
systems, basically sequential agents running in parallel. The

terms of the language are generated by the following grammar
(only constructs used in the sequel are presented):

S := S1 ‖ S2 compound systems
A := 0 | p.A | [m1 · · ·mn `r x]A;A1 sequential agents
p := c!m | c?x prefix constructs

where m1, . . . ,mn,m are closed messages or variables, x is
a variable and c is an element of the finite set Ch of channels.
Informally, the Crypto-CCS semantics used in the sequel are:
• c!m denotes a message m sent over channel c;
• c?x denotes a message m received over channel c which

replaces the variable x;
• 0 denotes a process that does nothing;
• p.A denotes a process that can perform an action accord-

ing to p and then behave as A;
• [m1 · · ·mn `r x]A;A1 denotes the inference construct:

if (by applying an instance of rule r with premises
m1, . . . ,mn) a message m can be inferred, then the
process behaves as A (where m replaces x), otherwise
it behaves as A1. This is the message manipulating
construct of the language, e.g. [m pk−1

y `sign x]A;0
is a process that uses the rule sign to obtain a digitally
signed message from plaintext message m and private key
pk−1

y and then behaves as A, or otherwise does nothing;
• S1 ‖S2 denotes the parallel composition of S1 and S2, i.e.

S1 ‖ S2 performs an action if either S1 or S2 does. It may
perform a synchronization or internal action, denoted by
τ , whenever S1 and S2 can perform two complementary
send and receive actions over the same channel.

The language is completely parameteric w.r.t. the inference
system used. In particular, the inference system that is used
below to model the network protocol is shown in Figure 3.

x y
Pair(x, y)

(pair)

Pair(x, y)
x (1st)

Pair(x, y)
y (2nd)

x pk−1
y

{x}
pk−1

y

(sign)

{x}
pk−1

y
pky

x (ver)

x KEY
{x}KEY

(enc)

{x}KEY KEY
x (dec)

x
x (check)

Fig. 3. Inference system for the network protocol.

Rule (pair) builds the pair of two messages x and y. Rules
(1st) and (2nd) return the components of a pair. Rule (sign)
digitally signs a message x by applying the secret key pk−1

y

of agent y. Rule (ver) verifies a digital signature {x}pk−1
y

by
applying the public key pky of signer y. Rule (enc) encrypts
a message x by applying the symmetric key KEY. Rule (dec)
decrypts a message {x}KEY by applying the symmetric key
KEY. Finally, rule (check) performs checks on the correctness
of authentication statements and on the freshness of nonces.

A system S of two known components S1 and S2 and a
third unspecified component (the adversary) is thus described
as S := S1 ‖ S2 ‖ . To verify a security property of S,
one thus needs to do so w.r.t. every possible third component
(adversary). In [19] a way to do this is given by extending
partial model checking techniques [28].

IV. PROTOCOL FORMALIZATION

In this section we formalize the protocol described in
Section II in the approach lined out in the previous section.

A. Federated Registration

The first, basic scenario that we formalize is that of feder-
ated registration. This process is lined out in detail in Figure 4,
made available by Telecom Italia. Our formalization starts with
message 4: Request of registration + federation.

The entities involved in this scenario are thus a user U,
a service provider SP and a network/identity provider IdP.
U asks for a registration to SP and a federation between
SP and IdP in the sense that—once federated—IdP and
SP may provide U access without directly asking for any
credentials, but by simply relying on the information given by
IdP. Federated registration consists of three main phases: the
authentication phase in which IdP authenticates U, the token
generation and the assembling of a so-called SAML response
to be sent from IdP to SP. For modelling purposes only, we
identify a SAML assertion and a SAML response from now on.

The Security Assertion Markup Language SAML [24] is an
XML standard to exchange information on authentication and
authorization data between security domains (e.g. between IdP
and SP) intended to implement mechanisms for single sign-
ons. A SAML assertion declares a certain subject authenticated
by a particular means at a particular time. For our purposes, it
contains a field Subj with the token idU univocally identifying
U, a field Auth Stat with an authentication statement asserting
that U was authenticated as well as the mechanism under
which she/he was authenticated and, finally, a field Attr Stat =
〈attr list, nIdP

U 〉 with a list of attributes of U related to her/his
service accesses (e.g. country preferences if the service is a
travel agency) and a nonce to avoid replay attacks:

{Subj, Auth Stat, Attr Stat}KEY encrypted SAML assertion

It is important to note that this encrypted SAML assertion
conforms to the SAML standard [24].

In the notation introduced in the previous section, the
scenario of federated registration can be specified as follows:

c0 U 7→ IdP : r
c1 IdP 7→ SP : {r, SAML assertion}K−1

IdP

c2 SP 7→ U : {ok/ko}K−1
SP

First, IdP intercepts U’s request r to SP in which U also asks
IdP and SP to federate. Second, IdP forwards r to SP, together
with a SAML assertion proving that U was authenticated by
IdP and containing the token. The SAML assertion is encrypted
to preserve secrecy of the token and the whole message is
signed by IdP to guarantee authenticity. Third, upon having
examined the SAML assertion, SP grants/denies U access
through a message signed by SP.

Next we present a specification of this federated registration
scenario in Crypto-CCS. This specification is more expressive
than the one in standard notation given above, because all
operations and security checks on the various messages are

explicitly modelled. Each process is parameterized by the
terms or variables it has in its knowledge (from the beginning
or because it received them earlier).

U0(r)
.=

c0!r. send request,
c2?xsign. receive signature,
[xsign KSP `ver xacc].0 verify signature and stop

IdP0(0, nIdP
U , idU) .=

c0?xr. receive request and
IdP1(xr, n

IdP
U , idU) go to next state

IdP1(xr, n
IdP
U , idU) .=

[idU auth `pair (idU, auth)] create pair,
[(idU, auth) nIdP

U `pair (idU, auth), nIdP
U)] create pair,

[((idU, auth), nIdP
U) KEY `enc

{((idU, auth), nIdP
U)}KEY] encrypt pair,

[xr, {((idU, auth), nIdP
U)}KEY k−1

IdP `sign xsign] sign pair,
c1!xsign.0 send SAML assertion + request and stop

SP0(0) .=
c1?xm. receive SAML assertion + request
SP1(xm) and go to next state

SP1(xm) .=
[xm kIdP `ver xp] verify signature,
[xp `2nd xenc] extract encryption,
[xenc KEY `dec xdec] decrypt,
[xdec `1st xpair] extract pair: token + Auth Stat,
[xdec `2nd xnIdP

U
] extract nonce,

[xpair `1st xidU] extract token,
[xpair `2nd xauth] extract Auth Stat,
[xauth `check xauth] test correctness Auth Stat,
[xnIdP

U
`check xnIdP

U
] test freshness nonce,

[xidU xnIdP
U

`pair (xidU , xnIdP
U

)] build pair to store,
cS !(xidU , xnIdP

U
) store token + nonce pair,

[access k−1
SP `sign xsign] prepare signature to

c2!xsign.0 grant access and stop

For the sake of readability, we did not fully spell out the
digital signatures (i.e. we just applied the private key to the
message to be signed). Moreover, we assumed a direct com-
munication channel between SP and U in order to grant/deny
access, while in reality all communication passes through IdP.

The federated registration process FR is described by the
parallel composition FR .= U0 ‖ IdP0 ‖ SP0.

B. Federated Network Providers

The second scenario that we formalize involves two fed-
erated network providers: a fixed operator FO and a mobile
operator MO. Our starting point is when U initiates the process
of federated registration with SP through MO. From [21] we
inherit the assumption that all communication between FO and
MO is secure: we consider them to share a secret key KEYFM.

12. U fills in the "form"

2. Would you like to federate?

Client (SP)Token Injector
User Identity Provider

(IdP/TI)

Service Provider

1. HTTP Request http://www.SP.com/register.html

answer

YES
Local elaborations

Request interrupted

"Inject" SAML <Response>
in the Request

10. The following two situations may occur:

 Case 1. SP needs no further info and the U

 Case 2. SP needs specific profile info from the service,

 which must be provided by the U, via a "form"

 directly accesses the service (step 15)

11. HTTP Response (200−OK,"form")

13. HTTP Request (POST)

9. SP receives, in SAML <Response>, also the opaque−id

15. HTTP Response (200−OK,access.jsp)

NO

4. Request of registration+federation

3. Local registration

5. Verify authentication of Client on basis of IP address

8. HTTP Request (POST) http://www.SP.com/registerTravel.jsp + SAML <Response>

6. a. IdP/TI generates opaque−id
 b. IdP/TI creates SAML Assertion with <AuthnStatement>

7. c. SAML Assertion may also contain <AttributeStatement>
 d. IdP/TI inserts SAML Assertion in SAML <Response>

14. SP stores the received info

(U)

Fig. 4. Message sequence chart of federated registration.

Furthermore, to avoid dealing twice with the same process
of token generation, we propose a formalization that slightly
enriches the procedure presented in [21], [23]: as soon as one
of the two network providers receives a request from U , it
searches its repository for a token already associated to U.
If this token is found, then it is retrieved and the procedure
continues as in the federated registration scenario (generating
a new nonce each time a SAML assertion is sent to SP). If,
on the other hand, this token is not found, then it is generated
and immediately sent to the other federated network provider,
where the token is stored for subsequent interactions between
U and SP, after which the procedure continues its usual course:

c0 U 7→ MO : r
cMF MO 7→ FO : {idU, U}KEYFM

c1 MO 7→ SP : {r, SAML assertion}K−1
MO

c2 SP 7→ U : {ok/ko}K−1
SP

The Crypto-CCS specifications of processes U and SP are as
in the first scenario. Next we present the specifications for
the processes MO and FO.

MO0(0, nMO
U , idU, KEYFM) .=

c0?xr. receive request and
MO1(xr, n

MO
U , idU, KEYFM) go to next state

MO1(xr, n
MO
U , idU, KEYFM) .=

[idU U `pair (idU, U)] create pair,
[(idU, U) KEYFM `enc {(idU, U)}KEYFM] encrypt pair,
cMF!{(idU, U)}KEYFM . send token to FO,
[idU auth `pair (idU, auth)] create pair,
[(idU, auth) nMO

U `pair ((idU, auth), nMO
U)] create pair,

[((idU, auth), nMO
U) KEY `enc

{((idU, auth), nMO
U)}KEY] encrypt pair,

[xr, {((idU, auth), nMO
U)}KEY k−1

MO `sign xsign] sign pair,
c1!xsign.0 send SAML assertion + request and stop

FO0(KEYFM) .=
cMF?xenc receive encryption,
[xenc KEYFM `dec xdec] retrieve decryption,
cS !xdec.0 store token + identity pair and stop

The whole process is described by U0 ‖ MO0 ‖ FO0 ‖ SP0.

C. Multiple Service Providers

The third and final scenario that we formalize involves
two service providers. To access their services, U issues two
separate requests. Hence IdP must insert two different nonces
and two different tokens in the two SAML assertions:

c1 U 7→ IdP : rSP1

c2 IdP 7→ SP1 : {rSP1 , SAML assertionrSP1}K−1
IdP

c3 U 7→ IdP : rSP2

cacc1 SP1 7→ U : {ok/ko}K−1
SP1

c4 IdP 7→ SP2 : {rSP2 , SAML assertionrSP2}K−1
IdP

cacc2 SP2 7→ U : {ok/ko}K−1
SP2

This specification obviously reflects only one particular order
of arrival and management of the two requests. Due to lack of
space, we omit the Crypto-CCS formalization of this scenario.

V. SECURITY PROPERTIES AND A FIRST ANALYSIS

At the introduction of the identity federation protocol
in [21], some rough guidelines on how to assure a minimal
number of security properties were sketched. For one, it is
noted that the token must be properly protected by means of
cryptographic tools, like digital signatures, symmetric encryp-
tion and nonces, before it is sent from the network provider to
the SP. The reason is obvious: this communication channel
cannot be considered secure, since it is well beyond the
network provider’s security domain.

In the previous section we formally specified three different
user scenarios of this network protocol. To define the structure
of the exchanged messages, we were forced to consider all
relevant security aspects in detail. This led us to use digital
signatures to assure the messages’ authenticity (i.e. to ensure
that they were sent by who claims to have sent them) and
integrity (i.e. to ensure that they were not modified on their
route from sender to receiver), encryption to preserve the
tokens’ secrecy (i.e. to ensure that they cannot be revealed
by unauthorized persons) and nonces to block messages from
being replied (to avoid replay attacks). The user scenarios of
the network protocol that we formalized in the previous section
obviously have many more security aspects of interest.

As a first step towards a full-blown security analysis of the
network protocol, we will verify below the vulnerability of
the first scenario w.r.t. a man-in-the-middle attack. A man-
in-the-middle attack is an adversary’s attempt to intercept
and modify messages between two trusted participants, in
such a way that neither participant is able to find out that
their communication channel has been compromised. We use
model checking to perform the analysis. Model checking is an
automatic technique to verify whether or not a system design
satisfies its specifications and certain desired properties [29].
Such a verification is moreover exhaustive, i.e. all possible
input combinations and states are taken into account. The
level of completeness of a verification of course depends
on the range of properties that are verified. Compared to
testing, model checking generally needs to be performed on an
abstract system (specification) to avoid state-space explosions.
However, more problems are usually found by model checking
the full behaviour of a scaled-down system than by testing
some behaviour of the full system.

A. Analysis of a Man-in-the-middle Attack

In this section we verify whether or not the specification
of the insecure channel between IdP and SP can withstand a
man-in-the-middle attack, i.e. an adversary trying to intercept
a conversation between IdP and SP. This boils down to
verifying the following property: whenever SP concludes the
network protocol apparently with IdP, it was indeed IdP that
executed the protocol. To do so, we introduce two special
actions in our Crypto-CCS specification: commit(SP,IdP) and

Fig. 5. Screenshot of PaMoChSA’s graphical interface.

run(IdP,SP). The former action represents the fact that SP has
indeed terminated the protocol with IdP, while the latter action
represents the fact that IdP indeed started communicating
with SP. The property is then translated into requiring action
run(IdP,SP) to always precede action commit(SP,IdP).

We used the model checker PaMoChSA v1.0 [20] to verify
this property. PaMoChSA requires the following input:

• a file with the protocol specification in Crypto-CCS;
• a logic formula expressing the property to be verified;
• the adversary’s initial knowledge.

We considered an adversary X and set its initial knowledge
to the set of public messages that it knows at the start of the
protocol, i.e. the public keys of IdP and SP and its own public
and private key denoted by pkX and pk−1

X . Consequently, the
input and result of the analysis we performed are as follows:

• Specification file: mitm-1.exp
• Logic formula: ((run(IdP,SP) AND commit(SP,X)) OR

((run(IdP,X) AND commit(SP,IdP))
• Initial knowledge: {pkX , pk−1

X , pkIdP, pkSP}
• Result: No attack found

Figure 5 shows the graphical interface of the tool, with the
loaded experiment and the result.

To verify the logic formula specified above, the tool set out
to find a run of the protocol with the following characteristic:
at the end of the run, the adversary knows either message
(run(IdP,SP) AND commit(SP,X)) (i.e. IdP is convinced to
have talked with SP, while in reality it was SP that has finished
talking with X) or message (run(IdP,X) AND commit(SP,IdP))
(i.e. SP is convinced to have talked with IdP, while in reality

it was IdP that has started talking with X). It took the tool less
than a second to conclude that such a run does not exist. Hence
the network protocol is correct w.r.t. the analyzed security
property, i.e. it does not fall to a man-in-the-middle attack.

VI. CONCLUSION

The result of the security analysis presented in the previous
section strengthens our confidence in the formal specifications
of the three user scenarios that we presented in this paper.
In particular, it leads us to believe that we correctly inserted
digital signatures, encryption and nonces into the network
protocol. This is a clear advantage of the use of formal
methods in the design phase of a protocol: it allows one to
eventually arrive at a well-defined protocol that is guaranteed
to satisfy certain desirable properties. In the future we intend
to extend our security analysis of the identity federation
protocol by considering more user scenarios and all of the
aforementioned security properties, i.e. authenticity, integrity,
secrecy and absence of replay attacks.

Finally, an important component of security analysis has to
do with performance and real-time issues. In the future we
therefore hope to carry out experiments with quantitative ex-
tensions of formal methods and tools, e.g. timed, probabilistic
and stochastic formal specification languages and stochastic
model checkers. To this aim, we will first need to collect
detailed statistical information on the typical use of the identity
federation protocol in practice.

ACKNOWLEDGMENT

This research was supported by the EU project SENSORIA.

REFERENCES

[1] M. Abadi and A. D. Gordon, “Reasoning about Cryptographic Protocols
in the Spi Calculus,” in Proc. CONCUR’97, ser. LNCS, vol. 1243.
Springer, 1997, pp. 59–73.

[2] R. Focardi, R. Gorrieri, and F. Martinelli, “Non Interference for the
Analysis of Cryptographic Protocols,” in Proc. ICALP’00, ser. LNCS,
vol. 1853. Springer, 2000, pp. 354–372.

[3] D. Marchignoli and F. Martinelli, “Automatic Verification of Crypto-
graphic Protocols through Compositional Analysis Techniques,” in Proc.
TACAS’99, ser. LNCS, vol. 1579. Springer, 1999, pp. 148–162.

[4] C. Meadows, “Formal Verification of Cryptographic Protocols: a Sur-
vey,” in Proc. ASIACRYPT’94, ser. LNCS, vol. 917. Springer, 1995,
pp. 135–150.

[5] G. Lowe and A. W. Roscoe, “Using CSP to Detect Errors in the TMN
Protocol,” Software Engineering, vol. 23, no. 10, pp. 659–669, 1997.

[6] V. Shmatikov and U. Stern, “Efficient Finite State Analysis for Large
Security Protocols,” in Proc. CSFW’98. IEEE Press, 1998, pp. 105–116.

[7] F. J. Thayer, J. C. Herzog, and J. D. Guttman, “Strand spaces: proving
security protocols correct,” Journal of Computer Security, vol. 7, no. 1,
pp. 191–230, 1999.

[8] G. Lowe, “Breaking and fixing the Needham-Schroeder public-key pro-
tocol using FDR,” in Proc. TACAS’96, ser. LNCS, vol. 1055. Springer,
1996, pp. 147–166.

[9] J. C. Mitchell, M. Mitchell, and U. Stern, “Automated Analysis of
Cryptographic Protocols using Murphi,” in Proc. S&P’97. IEEE Press,
1997, pp. 141–153.

[10] A. W. Roscoe and M. H. Goldsmith, “The Perfect Spy for Model-
checking Crypto-protocols,” in Proc. DIMACS Workshop on Design and
Formal Verification of Security Protocols, 1997.

[11] F. Martinelli, M. Petrocchi, and A. Vaccarelli, “Formal analysis of some
secure procedures for certificate delivery,” Software, Testing, Verification
and Reliability, vol. 16, no. 1, pp. 33–59, 2006.

[12] M. Abadi and M. R. Tuttle, “A Semantics for a Logic of Authentication,”
in Proc. SPDC’91. ACM Press, 1991, pp. 201–216.

[13] D. Kindred and J. M. Wing, “Fast automatic checking of security
protocols,” in Proc. 2nd Usenix Workshop on Electronic Commerce,
1996, pp. 41–52.

[14] L. C. Paulson, “Proving Properties of Security Protocols by Induction,”
in Proc. CSFW’97. IEEE Press, 1997, pp. 70–83.

[15] M. Abadi, “Secrecy by Typing in Security Protocols,” Journal of the
ACM, vol. 46, no. 5, pp. 749–786, 1999.

[16] C. Bodei, P. Degano, F. Nielson, and H. R. Nielson, “Static Analysis
for the pi-Calculus with Applications to Security,” Information and
Computation, vol. 168, no. 1, pp. 68–92, 2001.

[17] M. H. ter Beek, G. Lenzini, and M. Petrocchi, “A Team Automaton
Scenario for the Analysis of Security Properties in Communication Pro-
tocols,” Journal of Automata, Languages and Combinatorics, accepted
for publication, 2006.

[18] R. Focardi and F. Martinelli, “A uniform approach for the definition of
security properties,” in Proc. FM’99, ser. LNCS, vol. 1708. Springer,
1999, pp. 794–813.

[19] F. Martinelli, “Analysis of security protocols as open systems,” Theoret-
ical Computer Science, vol. 290, no. 1, pp. 1057–1106, 2003.

[20] Partial Model Checking Security Analyzer PaMoChSA v1.0. [Online].
Available: http://www.iit.cnr.it/staff/fabio.martinelli/pamochsa.htm

[21] M. Bonifati, P. De Lutiis, C. Moiso, E. Morello, and L. Sarchi, “Identity
Federation for Services in Convergent Networks,” in Proc. ICIN’06,
2006, pp. 109–114.

[22] Liberty Alliance Project. [Online]. Available: www.projectliberty.org
[23] T. Wason et al. (2005) Liberty ID-FF Architecture Overview v1.2.

[Online]. Available: www.projectliberty.org/liberty/specifications 1
[24] OASIS Security Services TC. (2005) Security Assertion Markup

Language SAML v2.0. [Online]. Available: www.oasis-open.org/specs/
[25] D. Dolev and A. Yao, “On the Security of Public Key Protocols,” IEEE

Transactions on Information Theory, vol. 29, no. 2, pp. 198–208, 1983.
[26] G. Lowe, “An attack on the Needham-Schroeder public key authen-

tication protocol,” Information Processing Letters, vol. 56, no. 3, pp.
131–136, 1995.

[27] R. Milner, Communication and Concurrency. Prentice Hall, 1989.
[28] H. R. Andersen, “Partial Model Checking,” in Proc. LICS’95. IEEE

Press, 1995, pp. 398–407.
[29] E. M. Clarke, O. Grumberg, and D. A. Peled, Model Checking. MIT

Press, 1999.

