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Abstract

In the information-theoretic literature, Wyner’s model
has been the starting point for studying the capacity limits
of cellular systems. This simple cellular model was adopted
and extended by researchers in order to incorporate flat
fading and path loss. However, the majority of these ex-
tensions preserved a fundamental assumption of Wyner’s
model, namely the collocation of User Terminals (UTs). In
this paper, we alleviate this assumption and we evaluate
the effect of user distribution on the sum-rate capacity. In
this context, we show that the effect of user distribution is
only considerable in low cell-density systems and we argue
that “collocated” models can be utilized to approximate the
“distributed” ones in the high cell-density regime. Subse-
quently, we provide closed forms for the calculation of the
interference factors of “collocated” models given the sys-
tem parameters. In addition, the asymptotics of the per-cell
sum-rate capacity are investigated. Finally, the presented
results are interpreted in the context of practical cellular
systems using appropriate figures of merit.

1. Introduction

The first concrete result for the information-theoretic ca-
pacity of the Gaussian Cellular Multiple Access Channel
(GCMAC) was presented by Wyner in [7]. Using a very
simple but tractable model for the cellular uplink chan-
nel, Wyner showed the importance of joint decoding at the
BS receivers (hyper-receiver) and found the closed forms
of the maximum system capacity under the assumption of
multicell processing. This model triggered the interest of
the research community in the cellular capacity limits and
was extended in [5] to include flat fading environments.
One major assumption shared in these two models was that
the cell density is fixed and only physically adjacent cells
interfere. Letzepis in [3] extended the model by assum-
ing multiple-tier interference and incorporating a distance-
dependent path loss factor in order to study the effect of cell

density. However, the assumption of collocation of all UTs
in a single cell was maintained to keep the model tractable.

In this paper, we extend these models in order to in-
corporate the effect of user distribution. Instead of assum-
ing collocated UTs, we consider that UTs are spatially dis-
tributed within the cell and each channel gain is affected by
a distance-dependent path loss factor. To relate the mod-
els involving collocated UTs with our model, we propose
an approach to calculate (rather than arbitrarily vary) the
equivalent interference factors to be used in models assum-
ing collocated UTs. The calculation of the interference fac-
tors is based on the cellular system parameters, such as cell
density, path loss exponent and user distribution. Finally,
the presented results are interpreted in the context of practi-
cal cellular systems using appropriate figures of merit.

The rest of the paper is organised as follows. In the next
section, we present the proposed model and we describe the
derivation of the information theoretic capacity of the cel-
lular system. In section 3, we show how the equivalent in-
terference factors can be calculated, followed by the study
of the asymptotic capacity of the system. In section 4, the
presented results are interpreted in the context of practical
cellular systems. The last section concludes the paper.

2 Channel Model and Analysis

In the following formulations, D is the coverage range
of the linear cellular system, N is the number of BSs, K
is the number of UTs per cell and η is the power-law path
loss exponent. Under these assumptions, Π = N/D repre-
sents the cell density of the cellular system, ∅ = Π−1 =
D/N represents the cell diameter of the cellular system and
R = ∅/2 represents the cell radius. Throughout this paper,
E[·] denotes the expectation, (·)∗ denotes the complex con-
jugate, (·)† denotes the Hermitian matrix and � denotes the
Hadamard product. � (t/T ) is the rect function, where T is
the width of the pulse. The figure of merit studied in this pa-
per is the per-cell sum-rate capacity achieved with multicell
joint decoding and it is denoted by Copt.

The model under consideration is a linear cellular array

The Fourth Advanced International Conference on Telecommunications

978-0-7695-3162-5/08 $25.00 © 2008 IEEE

DOI 10.1109/AICT.2008.35

249



under power-law path loss and flat fading. The analysis of
the planar cellular array can be found in [1]. In this context,
K UTs are uniformly distributed in each cell of a system
comprising N base stations distributed in a linear segment
of length D. The received signal at cell n, at time index i,
is given by:

yn[i] =
K∑

k=1

bn
k [i]xn

k [i] (1)

+
N/2∑
j=1

K∑
k=1

αn
kj

(
cn
kj [i]x

n−j
k [i] + dn

kj [i]x
n+j
k [i]

)
+ zn[i]

where xn
k [i] is the ith complex channel symbol of the kth

UT in the nth cell and {bn
k}, {cn

kj}, {dn
kj} are indepen-

dent, strictly stationary and ergodic complex random pro-
cesses in the time index i, which represent the flat fad-
ing processes experienced by the UTs. The fading coeffi-
cients are assumed to have unit power, i.e. E[‖bn

k [i]‖2] =
E[‖cn

kj [i]‖2] = E[‖dn
kj [i]‖2] = 1 and all UTs are subject to

an average power constraint, i.e. E[‖xn
k [i]‖2] ≤ P for all

(n, k). The interference factors αn
kj of the kth UT in cell

indexed by n− j and n + j, are calculated according to the
modified power-law path loss model [3, 4]:

αn
kj =

(
1 + dn

kj

)−η/2
(2)

where dn
kj is the distance between the nth BS and the kth

UT in cell indexed by n − j or n + j. In the context
of mathematical analysis, the distance dn

kj can be calcu-
lated assuming that the UTs are distributed on a regular
grid. Dropping the time index i, the aforementioned model
can be more compactly expressed as a vector memory-
less channel of the form y = Hx + z, where the vector
y = [y1... yN ]T represents received signals by the BSs, the
vector x = [x1

1 . . . xN
K ]T represents transmit signals by all

the UTs of the cellular system and the components of vector
z=[z1... zN ]T are i.i.d c.c.s. random variables representing
AWGN with E[zn] = 0, E[‖zn‖2] = σ2. The channel
Matrix H can be written as H = Σ � G, where Σ is a
N × KN deterministic matrix and G ∼ CN (0, IN ) is a
complex Gaussian N × KN matrix, comprising the corre-
sponding fading coefficients. The entries of the Σ matrix
are defined by the variance profile function

ς
(
u, t
)

=
(
1 + d (u, t)

)−η/2
(3)

where u ∈ [0, 1] and t ∈ [0, K] are the normalized indexes
for the BSs and the UTs respectively and d (u, t) is the nor-
malized distance between BS u and UT t.

According to [6], the asymptotic sum-rate capacity Copt

for this model, is given by

lim
N→∞

Copt = lim
N→∞

1
N

I (x;y | H )

= lim
N→∞

E

[
1
N

N∑
i=1

log
(

1 +
γ̃

K
λi

(
1
N

HH†
))]

=
∫ ∞

0

log
(

1 +
γ̃

K
x

)
dF 1

N HH†(x)

= V 1
N HH†

(
γ̃

K

)
= KV 1

N H†H

(
γ̃

K

)
(4)

where γ̃ = KNγ and γ = P/σ2 are the system- and UT-
transmit power normalized by the receiver noise power re-
spectively, λi (X) denotes the eigenvalues of matrix X and

VX(y) � E[log(1 + yλi (X))]

=
∫ ∞

0

log (1 + yλi (X)) dFX(x) (5)

is the Shannon transform [6] of a random square Hermitian
matrix X, whose limiting eigenvalue distribution has a cu-
mulative function denoted by FX(x). For a Gaussian ma-
trix G ∼ CN (0, I), the empirical eigenvalue distribution
of 1

N G†G converges almost surely (a.s.) to the nonrandom
limiting eigenvalue distribution of the Marčenko-Pastur law,
whose Shannon transform is given by

VH†H(y) a.s.−→ VMP(y, K) (6)

where VMP (y, K) = log
(

1 + y − 1
4
φ (y, K)

)

+
1
K

log
(

1 + yK − 1
4
φ (y, K)

)
− 1

4Ky
φ (y, K) (7)

and φ (y, K) =(√
y
(
1 +

√
K
)2

+ 1 −
√

y
(
1 −

√
K
)2

+ 1

)2

. (8)

2.1 Marčenko-Pastur Law Approximation

According to the Marčenco-Pastur Law approximation
in [3], if Σ is a path loss dependent N ×KN deterministic
matrix, the limiting eigenvalue distribution of H†H and its
Shannon transform can be approximated by a scaled version
of the Marčenko-Pastur law

VH†H(γ) 	 VMP

(
qK(Σ)

γ̃

K

)
(9)

where qK(Σ) � ‖Σ‖2
/KN2 with ‖Σ‖ �

√
tr {Σ†Σ}

being the Frobenius norm of the Σ matrix. In the asymp-
totic case and noticing the row-regularity [6, Def. 2.10] of
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M∑
j=1

α2
j =

N

K

∫ K/2

0

ς2


 M∑

j=1

(
1

2Π
F−1

u

(
N

2
K

tj

)
+

1
Π

j

)
�
(

tj
K/N

) dt − 1
2
, where tj = t − j

K

N
(A)

Σ matrix, qK(Σ) is given by

lim
N→∞

qK(Σ) =
1
K

∫ K

0

ς2(t)dt, ∀r ∈ [0, 1]. (10)

According to [3], this approximation holds for UTs collo-
cated with the BS. In [1] we show that this approxima-
tion also holds for the case where the UTs are distributed
within the cells. In this paper, we show how this model can
be used to calculate the appropriate values of the path loss
factors used in the collocated-UTs models. We also study
the asymptotic behaviour of the cellular capacity using this
model and we interpret the presented results in the context
of practical cellular systems.

3 Results

Without loss of generality, the linear cellular array can be
considered circular and Equation (10) can be further simpli-
fied to

lim
N→∞

qK(Σ) =
2
K

∫ K/2

0

ς2 (t) dt. (11)

User distribution effectively alters the distance dn
kj and

therefore it modifies the variance profile function and the
resulting sum-rate capacity given by Equation (4) and (9).

Theorem 1 (from [1] ). Let us assume that the transmit-
ters of each cell are positioned on a grid generated ac-
cording to an invertible Cumulative Distribution Function
(CDF) Fu(r), where r ∈ [0, 1] corresponds to the normal-
ized single-cell distance from the BS. The variance profile
function ς̃(t) w.r.t. the normalized index t of the distributed
UTs is given by

ς̃(t) = ς


 N

2∑
i=−N

2

(
1

2Π
F̃−1

u

(
N

2
K

ti

)
+

1
Π

i

)
�
(

ti
K/N

)

F̃−1
u (r) =

{
F−1

u (r) r > 0
−F−1

u (−r) r < 0
and ti = t − i

K

N

(12)

where t ∈ [0, K/2].

3.1 Interference Factors

On the grounds of Theorem 1, the interference factors αj

in the high cell density regime can be calculated based on

the cellular system parameters, namely the number of BSs
N , the number of UTs per cell K , the power-law path loss
exponent η, the cell density Π and the user distribution CDF
Fu(d).

Corollary 1. In the high cell density regime, the “dis-
tributed” cellular model can be represented by the “collo-
cated” one, using the interference factors αj given by Equa-
tion (A) at the top of the page, where M ∈ [1, N/2] denotes
the number of interfering neighboring cells taken into ac-
count.

Proof. Based on the Marčenko-Pastur approximation in [3]
of Somekh-Shamai’s model [5], the sum rate capacity is
given by

lim
N→∞

Copt 	 KVMP

((
1 + 2α2

)
γ̃/K

)
. (13)

By considering interference from M tiers and by following
the same derivation as in [3], it can be easily proved that the
sum rate capacity is given by

lim
N→∞

Copt(γ) 	 KVMP




1 + 2

M∑
j=1

α2
j


 γ̃

K


 . (14)

By combining Equations (13) and (14), the interference
factors can be calculated by using Equation (A) recur-
sively.

As shown in [1], the sum-rate capacities for the “collo-
cated” and the “distributed” models converge in the high
cell density regime. Therefore, the “collocated” model can
be used to approximate the “distributed” one, by approxi-
mating the interference factors αj using Equation (2)

αj ≈ (1 + j/Π)−η/2. (15)

In the low-cell density regime, these approximations do not
hold, since user distribution affects the produced sum-rate
capacity. However, due to the fast decay of the path-loss
coefficients, a simplified model with a single interfering tier
can be considered.

3.2 Asymptotics of Sum-rate Capacity

In order to study the asymptotics of the per-cell sum-rate
capacity, the cell density Π = N/D and the cell diameter
∅ = Π−1 = D/N of the cellular system are kept constant,
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Table 1. Value/Range of parameters for prac-
tical cellular systems

Parameter Symbol Value/Range
Cell Radius R 0.1 − 3 km

Reference Distance d0 1 m
Path Loss at ref. distance L0 38 dB

Path Loss Exponent η {2, 3.5}
UTs per cell K 20

UT Transmit Power PT 100 − 200 mW
Thermal Noise Density N0 −169 dBm/Hz

Channel Bandwidth B 5 MHz

while both N and D grow large. Considering the uniform
user distribution, the sum-rate capacity is given by

lim
N,D→∞

Copt(γ) (a)=

lim
N,D→∞

KVMP

(
2
K

∫ K/2

0

ς2 (t) dt · γ̃

K
, K

)
(b)=

lim
N→∞

KVMP

(
2
K

∫ K/2

0

(
1 + ∅

N

K
t

)−η

dt · γ̃

K
, K

)

(16)

where (a) follows from Equations (4), (9) and (11) and (b)
follows from Equation (12). If γ is finite, then

lim
N,D→∞

Copt(γ) = KVMP

(
γ

(η − 1)R
, K

)
. (17)

According to [6], the asymptotic of the Shannon transform
for K > 1 is given by

lim
x→∞KVMP(y) = log(Ky)− (K−1) log (K − 1/K)−1.

(18)
Therefore, for large values of γ the asymptotic sum-rate ca-
pacity is given by combining Equations (16) and (18),

lim
N,D,γ→∞

Copt = log
(

γK

(η − 1)R

)
− (K − 1) log (K − 1/K)− 1. (19)

Furthermore, the asymptotic sum-rate capacity for a very
large number of UTs per cell converges to

lim
N,D,γ,K→∞

Copt(γ) = log
(

γK

(η − 1)R

)
(20)

since limK→∞
(
1 + 1

K

)K = e.

4 Practical Considerations

The employed power-law path loss model of Equation
(3) provides a variance profile coefficient as a function of

the normalized distance d(t). Similar path-loss models have
been already utilized in the information-theoretic literature
[3, 4]. However, in order to apply the aforementioned re-
sults to real-world cellular systems, a reference distance d0

is required to interconnect the normalized distance d(t) and
the actual distance d̂(t). Assuming that the power loss at
the reference distance d0 is L0, the scaled variance profile
function is given by

ς(d(t)) =

√
L0

(
1 + d̂(t)/d0

)−η

. (21)

In the context of a macro-cellular scenario, the typical pa-
rameters of Table 1 will be considered. Figures 1 and 2
depict the per-cell capacity of the linear cellular system ver-
sus the cell radius R and the UT transmit power PT respec-
tively.
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Figure 1. Per-cell capacity (bit/s/Hz) vs. cell
radius R for the linear cellular system. Pa-
rameters: η = {2, 3.5} and PT = 0.2 W .

4.1 Figures of Merit

In the practical engineering design of cellular systems,
the main figure of merit that determines the capacity rate of
a UT is the SINR = PR

I+NR
where PR is the received power

at the BS of interest, NR is the thermal AWGN at the re-
ceiving BS and I is the inter-cell and intra-cell interference
received from other UTs of the system. However, in the
information-theoretic analysis of multicell processing sys-
tems, the main figure of merit that determines the per-cell
capacity is γ = PT

NHR
, where PT is the transmit power of

the UT and NHR is the AWGN thermal noise at the hyper-
receiver. The main reason that SINR does not constitute
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Figure 2. Per-cell sum-rate capacity (bit/s/Hz)
vs. UT transmit power PT (mW) for the linear
cellular system. Parameters: η = {2, 3.5} and
R = {100m, 3Km}

an appropriate figure of merit for multi-cell joint process-
ing analysis is that inter-cell interference is not harmful and
thus the term I can be added to the nominator. Since there
is no harmful interference, there is no need for power con-
trol and thus the UTs constantly transmit with the maximum
available power PT [2, Proposition 6]. In this context, the
transmit power PT remains fixed for all the UTs, whereas
the received power differs for each UT. In addition, since
the objective function is the per-cell capacity, the power
variable affecting the value of this function should have a
constant value throughout the whole cell. Taking this into
account, it is reasonable to calculate the per-cell capacity as
a function of PT or γ, which is a fixed system parameter,
common for all the UTs of a cell. In this context, three ap-
proaches which are described in the following paragraphs
can be employed. For each approach, the per-cell capacity
will be evaluated based on Equation (20) for the aforemen-
tioned macro-cellular scenario.

4.1.1 Cell-edge SNR

In practical engineering design of cellular systems, the ob-
jective is to provide network coverage to all the subscribers.
Therefore, the cellular system has to be designed in a way
that it even allows cell-edge UTs to communicate effec-
tively with the receiving BS. Thus, it would be reasonable
to consider the cell-edge SNR as the figure of merit that
determines the per-cell capacity. Assuming that NHR =
NR = Nc, the cell-edge SNR can be defined as:

SNRCE = γL0 (1 + R)−η
. (22)
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Figure 3. Per-cell sum-rate capacity (bit/s/Hz)
vs. the cell-edge SNR. Parameters: η = 2 and
PT = 100 − 200mW .

Figure 3 depicts the per cell capacity vs. cell-edge SNR.
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Figure 4. Per-cell sum-rate capacity (bit/s/Hz)
vs. the average cell SNR.Parameters: η = 2
and PT = 100 − 200mW .

4.1.2 Average cell SNR

A second figure of merit which could be used to determine
the per-cell capacity is the average cell SNR, which is de-
fined as the average of the received SNRs of all the UTs in
a cell. Assuming that NHR = NR = Nc and uniformly
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distributed UTs, the cell-edge SNR can be defined as

SNRAC = 2γL0

∫ R

0

(1 + r)−η
dr. (23)

Figure 4 depicts the per cell capacity vs. average cell SNR.

4.1.3 Rise over Thermal

In multicell processing systems, the Rise over Thermal
(RoT) is defined as the ratio of the total signal power re-
ceived from all the UTs of the system at a single BS to the
thermal AWGN. More specifically, assuming uniformly dis-
tributed UTs, RoT is given by:

RoT = 2γL0

∫ D/2

0

(1 + r)−η
dr. (24)

For an infinite cellular array, the coverage span D grows to
infinity and therefore

RoT = 2γL0

∫ ∞

0

(1 + r)−η dr =
2γL0

n − 1
. (25)

Figure 5 depicts the per cell capacity vs. RoT. The RoT
curves (thick lines) have been drawn on top of the log(1+x)
curve (thin line).
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Figure 5. Per-cell sum-rate capacity (bit/s/Hz)
vs. RoT (dB) for the linear cellular system.
Parameters: η = {2, 3.5} and PT = 100 −
200mW .

5 Conclusion

The already existing information-theoretic models for
cellular systems are based on the assumption that the UTs

of each cell are collocated. In this paper, we have investi-
gated the optimal information-theoretic capacity under the
assumption of distributed UTs. Based on the presented
results, we can conclude that a cellular model assuming
distributed UTs can be approximated by a model assum-
ing collocated UTs only in the high cell density regime.
In this case, we have proposed an approach for calculat-
ing the interference factors of the “equivalent” collocated
model based on the system’s parameters. Furthermore, the
asymptotic cellular capacity has been studied and plotted by
varying the path loss exponent and the UT transmit power.
Finally, the presented results were interpreted in the con-
text of practical cellular systems using appropriate figures
of merit, such as Rise over Thermal.
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