
Modelling an Isolated Compound TCP Connection
Alberto Blanc and Denis Collange

Orange Labs
905 rue Albert Einstein

Sophia Antipolis, France
{Email: alberto.blanc,denis.collange}@orange-ftgroup.com

Konstantin Avrachenkov
I.N.R.I.A.

2004 route des lucioles
Sophia Antipolis, France

Email: k.avrachenkov@sophia.inria.fr

Abstract—Compound TCP (CTCP) was designed by Tan at
al. to improve the efficiency of TCP on high speed networks
without unfairly penalizing other connections. In this work we
analyze an isolated CTCP connection, identifying and classifying
significantly different CTCP operating regimes depending on the
system parameters. We show that in the “constant window” phase
the congestion window can in fact have significant oscillations
with non-negligible effect on the performances. These oscilla-
tions can also induce additional jitter in the cross traffic. We
calculate the average throughput and average backlog size at the
bottleneck link. These performance metrics depend on the CTCP
operating regime. Under certain circumstances, an isolated CTCP
connection on a high speed link utilizes around 75% of the link
capacity.

I. INTRODUCTION

With the increasing popularity of faster access links like
Fiber To The Home, the current Standard TCP is not always
ideal. As indicated by Floyd [7] the current Standard is not
able to reach these rates in realistic environments, i.e. with
typical packet loss rates. Many new transport protocols have
been proposed and are currently being studied to replace it.
Some of them are already implemented in the latest versions
of some operating systems, like Compound TCP on Windows,
and Cubic (and others) on Linux. Others are implemented
in network equipment. At least for the next few years, the
protocols already implemented will play an increasing role in
the resource sharing between flows in the Internet. Yet the
behavior, the performance, and the impact on the network of
these protocols are not well-known. A method to evaluate the
new protocols has just been specified [8], and test scenarios are
still under discussion. For most of these new protocols there
are only experimental or simulation studies, with conflicting
results. Analytical models, describing their behavior and im-
pact on the network, exist only for a few protocols and for
simple cases. In this paper we develop an analytical model
of Compound TCP, to analyze in detail its behavior for an
isolated connection.

Compound TCP (CTCP) has been presented by Microsoft
Research in [13] and [14] in 2006. It is currently submitted
as a draft to the IETF Network Working group with minor
differences [11]. CTCP is enabled by default in computers
running Windows Server 2008 and disabled by default in
computers running Windows Vista [6]. It is also possible to
add support for CTCP to Windows XP. An implementation of
CTCP, based on [11], [14], is also available for Linux [1].

As the proposal of CTCP is still recent, there are only a
few published evaluations of it. The only analytical model of
CTCP in [14] assumes a constant window size in the third
phase of Figure 1. To the best of our knowledge there are
no complete theoretical models of CTCP that can be used to
analyze in details the behavior of this new protocol. While we
have shown in [5] that the sending window oscillates during
this phase, and that these oscillations may have a significant
impact on the performance of CTCP. Other evaluations are
based on experiments. However, except the one of Li [10],
all the other experimental evaluations [2], [3], [9] use Linux
implementations of CTCP whose behavior differs from the
Windows implementation, according to [2].

The main objective of the authors of CTCP [14] is to
specify a transport protocol which is efficient, using all the
available bandwidth, fair and conservative, limiting its impact
on the network. They propose to combine the fairness of a
delay-based approach with the aggressiveness of a loss-based
approach. The sending window (w) is defined as the sum of
two components: the classical New Reno congestion window
(wc) and a delay-based window (wd).

When the source detects an under-utilized network, it
quickly increases the delay-based component until the sending
window exceeds the estimated bandwidth delay product. Con-
versely, the delay-based component is decreased if the source
detects increasing network delays. The delay-based component
is then adjusted to maximize the efficiency and to minimize the
backlog in network queues. At the i-th round trip the backlog
in network queues is estimated as:

∆i = wi (1− τ̃ /τi) . (1)

where wi is the sending window, τ̃ the smallest round trip
time ever observed and τi the latest sample of the round trip
time. The sending window is then quickly increased if ∆i is
lower than a threshold γ, and decreased otherwise:

wi+1 =

{
wi + αwki , if ∆i < γ

wi − ζ∆i + 1 , if ∆i ≥ γ.
(2)

Where γ was initially a fixed threshold, with proposed value
equal to 30 [14]. It is now dynamically adjusted between 5
and 30, according to the window size on loss events [12],
using the TUBE algorithm. For the sake of simplicity, and

t

w(t)

1 2 3 4

non empty bufferempty
buffer

Figure 1. The four different phases

due to the fact that is has been only recently introduced we
do not explicitly model TUBE in the remainder of the paper.
The authors of CTCP proposed to set α = 1/8, k = 3/4 and
ζ = 1. Unless otherwise specified, we are going to use the
same values for all the numerical examples and simulations.

As depicted in Figure 1 the evolution of the CTCP has four
different phases: during phases 1 and 2 the window is quickly
increased using the first row of (2) (in this case ∆i < γ). The
only difference between phases 1 and 2 is that in phase 2 the
buffer at the bottleneck link is empty while in phase 2 non-
empty. During phase 3 the window is kept constant because
the network is already fully utilized and, finally , in phase 4
the window is increased by one packet each round trip (as in
TCP Reno).

In this work we consider a simple fluid system comprised
of a sender and receiver connected by a FIFO queue, with rate
µ and buffer size b. The sender uses a single CTCP connection
to send data to the receiver. For the sake of simplicity we will
assume that there is no exogenous traffic in the FIFO queue;
that the sender has an unlimited amount of data to send; and
that the advertised window is never a limiting factor. Under
these assumptions the system is deterministic and it is possible
to model the evolution of the window during each phase (see
[4] for a complete description of the model). While this is a
very simple model it already allows us to identify the different
behaviors of CTCP and it can also be used to validate different
implementations.

The remainder of the paper is organized as follows: in
section II we analyze the oscillations during phase 3, in section
III we explore how the four phases of CTCP can be combined
and in section IV we analyze the steady state throughput and
backlog size.

II. OSCILLATIONS DURING PHASE 3

As noted in [5], during phase 3, the algorithm described
in [14] and [12] causes the window to oscillate around a
constant value. Depending on the system parameters it is
possible to have different patterns. In each case a series (two
or more) of increasing phases is followed by one (or more)
decreasing phase(s). We use two integers m:n to indicate the
type of oscillations, with m and n representing the number of
increasing and decreasing phases, respectively.

While considering the window as a constant can be a
useful approximation, it is not always possible to ignore the

oscillations during this phase. In at least two cases it is
important to consider them. First, if the window were kept
constant (such that w = µτ̃ + γ) phase 3 would take place as
long as b > γ, but, because of the oscillations, the window will
reach a value greater than µτ̃+γ causing a buffer overflow and
a premature end of phase 3. Second, even if phase 3 does take
place, the oscillations of the window will cause the backlog
to oscillate as well, which can have a negative impact on the
other traffic going through the same bottleneck link.

While it is possible to use a fluid model to estimate the size
of the oscillations we believe it is easier to use the discrete
event model presented in [5] to precisely characterize these
oscillations. In the remainder of this section, after a brief
presentation of the model used in [5], we will extend that work
and by showing how it is possible to determine the m:n pattern
of the oscillations based on the bandwidth delay product.

Note that all the results presented in this section depend
on properties of the specific Linux implementation we have
used [1]. So some care should be taken in applying them to
other implementations. At the same time we believe that these
issues will be present in any implementation of the algorithm
presented in [12], [14]. Furthermore the rest of the model
depends only on θmax and θ (the maximum and average value
of the window during phase 3) so that it suffices to find these
two values for each implementation.

A. Linux Implementation

Once every round trip time the Linux implementation, that
we used for the simulations, instead of using (1), computes
∆i as:

∆i = wi−1 (1− τ̃ /τi) (3)

where wi−1 is the size of sending window the last time the
window was updated (that is one round trip time before). As
the sender uses acknowledgments to estimate the round trip
time any such estimate refers to the packet being acknowl-
edged. Given that this packet was sent one round trip time
ago it is more appropriate to use wi−1 rather than wi.

The round trip time estimate τi is the smallest value of all
samples collected during the last round trip time. This choice
is explained, by a comment in the source code, as a way to
minimize the impact of delayed acknowledgments.

In the case of a single connection with no cross traffic τi
depends only on the window dynamics so that it is possible
to express it as a function of past values of the window. In
particular we have that:

τi =

min
[
wi−2+1

µ , τ̃
]

, if wi−1 > wi−2

min
[
wi−1

τ̃
τi−1

, τ̃
]

, if wi−1 < wi−2

(4)

That is if the window was not reduced at the last update the
first expression is used, while if the window was reduced at
the last update then the second one is used (see [5] for more
details).

∆5,3:1 < γ

True

3:1

True True

5:2 4:2

3:2

False False

False

∆5,5:2 < γ ∆4,3:2 < γ∆4,3:1 < γ

True

m:1

False
start

Figure 2. How to find the type of oscillations

B. Fixed Points

Given an initial value for the window it is possible, using
equations (3), (4) and the window update function wi+1 =
wi +αwki , to explicitly compute the evolution of the window.
For example, in the case of the 3:1 cycle if w1 is the initial
value of the window, the final value will be w4(w1)−∆4(w1)+
1, where w4 is the value after w1 was updated three times, (the
value at the beginning of the fourth step in the cycle). And ∆4

is the value of ∆i at the beginning of the same cycle. The plus
one takes into account the fact that this cycle covers four round
trip times and in three of them the window is incremented
while in the fourth one wd is decremented while wc is still
incremented by one. Using the above equations it is possible
to compute the values of w4(w1) and ∆4(w1) in closed form
but the expressions are lengthy and do not offer any insight
and are not presented here.

As discussed in [5], if a steady state solution does exist it
must satisfy the condition that the final value of one cycle is
the same as the initial value of the following one. If f(w1) is
the final value of a cycle starting with w = w1 we can find
the steady state solution by solving the fixed point equation
f(w1) = w1 for w1. Note that that the expression of f(w1)
depends on the type of oscillations. In general, for the m:1
cases fm:1(w1) = wm+1(w1) − ∆m+1(w1) + 1 and fm:2 =
wm+1(w1)−∆m+1(w1)−∆m+2(w1) + 2 for the m:2 cases.

Given that 0 < k < 1 it is not possible to find a closed form
expression for the solution of fm:n(w1) = w1 (it is possible to
write fm:n in closed form but the expression is somewhat long
and it is not reported here). At the same time it is possible to
use efficient numerical algorithms to find the solution as fm:n

is a continuous function. The following theorem shows that,
in the 3:1 case, such solution does indeed always exist. We
believe that a similar argument can be used for the other cases
as well. For the proof see the companion technical report [4].

Theorem 1: f3:1(w1) = w1 has always one solution in
[µτ̃2 ,∞), provided 0 < k < 1, µτ̃2 > α−

1
k , and µτ̃

2 > α
1

1−k .

C. Different Oscillation Cycles

The fixed point equations presented in the previous section
can be used to calculate the maximum and minimum values
of the oscillations but do not indicate which cycle type will
take place. For any value of the bandwidth delay product
it is always possible to have a certain type of oscillations,
provided the window is reduced by the appropriate amount
at the appropriate time. But CTCP calls for the window to be

case cond. 1 cond. 2 cond. 3 µτ̃ interval
(γ = 30)

2:1 ∆2 < γ ∆3 ≥ γ ∆4 < γ [545, 558]
3:1 ∆3 < γ ∆4 ≥ γ ∆5 < γ [312, 545]
5:2 ∆5 < γ ∆6 ≥ γ ∆7 ≥ γ [546, 573]
4:2 ∆4 < γ ∆5 ≥ γ ∆6 ≥ γ [559, 1411
3:2 ∆3 < γ ∆4 ≥ γ ∆5 ≥ γ [1342,∞)

Table I
LIMITS FOR ∆i,m:n

µτ̃

m : 1 3 : 1 5 : 2 4 : 2 3 : 2

1342 MSS574 MSS544 MSS313 MSS

Figure 3. Type of oscillations for γ = 30

reduced only when ∆i ≥ γ so that, for any specific bandwidth
delay product, certain patterns are not feasible because they
need the window to be reduced by a factor smaller than γ.

Using simulations, we have observed several different types:
3:1, 5:2, 4:2 and 3:2 but also 4:1, 5:1 and 6:1. In most
cases, the type of oscillations depends on the bandwidth
delay product and does not change during the course of the
simulation. This can be easily explained by observing that,
every round trip time, the sender will compute ∆i and compare
it with γ. If ∆i ≥ γ then wd (and therefore the sending
window) decreases, otherwise it increases. For example the
3:1 oscillations can only take place if three conditions are met.
The first one is ∆4,3:1 ≥ γ, so that the window will be cut
at the fourth step. The second is that ∆5,3:1 < γ , otherwise
the window would be reduced another time and the cycle type
would be 3:2. The third one is that ∆3,3:1 < γ, so that the
window is not cut at the third step, and only two increments,
in which case the cycle would be 2:1.

For each case it is possible to use a similar argument to
find the boundary values for the appropriate ∆i,m:n. Table I
shows the three conditions for several cases, where the ∆i’s
in each row are those of the corresponding case: for example
∆3 on the second row is a shorthand for ∆3,3:1 and ∆5 on
the third row represents ∆5,5:2. The values in the last column
correspond to the case when γ = 30, with µτ̃ expressed in
terms of MSS of 1500 B. As indicated by the last column of
Table I, these are necessary conditions for a certain oscillation
type but they are not sufficient in the sense that it is possible
for two oscillation types to be feasible for the same value of
the bandwidth delay product. For example if 546 ≤ µτ̃ ≤ 558
both the 2:1 and the 5:2 oscillations are possible and if 559 ≤
µτ̃ ≤ 573 the 4:2 and 5:2 cases are possible.

Based on an extensive set of simulations it seems that certain
conditions have “priority” in the sense that as long as they are
satisfied the corresponding case will take place. For example
the 5:2 case happens whenever 546 ≤ µτ̃ ≤ 573 even though
the 2:1 and 4:2 cases could take place as well. In only one
case (µτ̃ = 557) we were able to observe the 2:1 oscillations.
In some cases, for values very close to some of the brake
points reported in table I, the type of oscillations observed in
the simulations is not the same as the one given by the model

400 600 800 1000 1200 1400 1600 1800

µτ̃/MSS

20

40

60

80

100

(θ
m

a
x
−

θ m
in

)/
M

S
S

γ = 30

γ = 5

Figure 4. Amplitude of the oscillations

but, instead, it is the neighboring one (e.g. 3:2 instead of 4:2
or vice versa).

Given that we did not run a simulation for every possible
value of the bandwidth delay product we might have missed
some other exceptions but we are reasonably confident that
it is possible to use these “priorities” to find the oscillation
type. Figure 3 shows the type of oscillations obtained using
this method for γ = 30 while Figure 2 presents it in the form
of a flow chart. In both figures we use the oscillation type
m : 1 to represent the 4:1, 5:1 and 6:1 oscillations. We have
not written more detailed tests for these cases because they
happen only when the window is small with respect to γ so
that four or more increments are needed before the window
can be reduced (recall that the size of the reduction is always
greater than γ). The window will oscillate around such small
values only when the bandwidth delay product is small and,
in this case, the duration of phase 3 (“constant window”) is
much smaller than the duration of phase 4.

As discussed in [5] the Linux kernel does not use floating
point instructions, so that the implementation we used ap-
proximates all the operations using integer operations. All the
numerical values used in this section and the following ones
are computed using the same approximations as the Linux
implementation as there can be non-negligible differences
between using floating point and integer operations. Especially
when computing for which value of the bandwidth delay
product certain ∆i’s are equal to γ. (See [5] for more details.)

Using the algorithm presented in Figure 2 it is possible
to compute the size of the oscillations as a function of the
bandwidth delay product. Figure 4 shows the amplitude of the
oscillations for γ = 30 and γ = 5. These two values of γ
are the maximum and minimum values suggested in [12]. For
γ = 30 the type of oscillations changes with the bandwidth
delay product (see Figure 3) explaining the discontinuities in
the curve. While for γ = 5 the only type of oscillations is
always 3:2.

This indicates that even using smaller values for γ (and/or
the TUBE algorithm [12]) would not limit the size of the
oscillations for larger values of the bandwidth delay product.
On this figure we also see that the oscillations might have an
impact on other flows sharing the same bottleneck link.

20 30 40 50 60

time/s

200

250

300

350

400

450

500

550

w
in

d
ow

si
ze

/
M

S
S

w
w (theory)

Figure 5. The window for case 4

101 102 103

(µτ̃)/MSS

100

101

102

103

b/
M

S
S

1
2

3

46

5

Figure 6. Different cases on the b-µτ̃ plane

III. COMBINING MULTIPLE PHASES

As previously mentioned, the evolution of the CTCP win-
dow is characterized by four different phases. Depending
on the bandwidth-delay product and on the buffer size it is
possible to identify six different ways of combining these
phases:

1) phase 1 only
2) phases 1 and 2
3) phases 2 only
4) phases 1,2,3 and 4
5) phases 2,3, and 4
6) phase 4 only.
In each one of these cases the evolution of the window will

be different. As an example, Figure 5 shows the evolution of
the window for case 4. The solid line corresponds to a ns-2
simulation using ns-2.33 and the CTCP implementation [1]. In
this case the agreement between the model and the simulation
is excellent, as for cases 5 and 6. In the other cases (1,2 and 3)
packets are dropped when the window is increasing quickly,
causing multiple packets to be dropped. In this case sender will
sometimes reduce its window more than once. Our model does
not take this into account so that the evolution of the window
is predicted with a smaller accuracy but other quantities (like
the average throughput) have a smaller error (see [4] for a
complete discussion).

Figure 6 shows the different cases on the b-µτ̃ plane. Note
that both axis use a logarithmic scale. The discontinuities and

b < α(µτ̃)k

b < β
1−βµτ̃

start

b < β
1−βµτ̃b < θmax − µτ̃

case 1

case 6

case 2

case 3

case 4

case 5

False

True

False

True

True FalseTrue

False False

True

b > θ
1−β

− µτ̃

Figure 7. Flow chart for selecting the case based on µτ̃ and b

the “fuzziness” in the lines between cases 2 and 4 and between
cases 5 and 6 are due to the integer approximations used to
compute θmax and to different oscillation types (3:1, 5:2, etc.).

The dotted line in the middle of the figure represents the
boundary between cases 2 and 4 if the oscillations during
phase 3 are ignored, that is if we take θmax = µτ̃ + γ. This is
another example of the consequence of these oscillations. The
behavior in cases 2 and 4 is significantly different: in case
2 packets are dropped before the “constant window” phase
causing large oscillations in the window and lower throughput
while in case 4 the connection goes through all the phases
with a throughput close to the link capacity. Ignoring the
oscillations would lead to the wrong conclusion that for large
values of the bandwidth delay product case 2 is no longer
possible and that the only possible issue would be if the buffer
is much smaller than the bandwidth delay product so that case
1 would take place. Due to the oscillations, even much larger
values of the buffer might not be enough to guarantee a high
throughput.

Figure 6 was plotted using γ = 30 and the standard
values for all the other parameters. For arbitrary values of
the parameters it is possible to use the flow chart in Figure 7
to find the corresponding case. In order to use this flow chart
one needs to know the values of the all the parameters and of
θmax, which can be computed as discussed in section II for the
Linux implementation we have used. As we have previously
mentioned for different implementations θmax will be different
but it is the only implementation-specific parameter used.

IV. STEADY STATE PERFORMANCES

A. Throughput

Using the model presented in the previous sections it is
possible to compute the average throughput of an isolated
CTCP connection. More precisely solving the fixed point
equations presented in section II-B and then using the flow
chart in Figure 2 it is possible to compute θmax. Using this
value and the flow chart in Figure 7, the corresponding case
can be found so that the evolution of the window is known.
We have implemented this procedure in order to compute the
average throughput (λ̄) for different values of the bottleneck
capacity. Figure 8 compares the normalized throughput (λ̄/µ)

100 200 300 400 500 600 700 800 900 1000

µ/(Mb/s)

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

λ̄
/
µ

theory

simulations

Figure 8. Normalized throughput

computed using the theoretical model and the results of some
simulations with b = 100 MSS, τ̃ = 50 ms, MSS=1500 B
and γ = 30 MSS (each square corresponds to a simulation).
To compute the throughput in the simulations we ignore the
slow start phase. In a realistic setting, where some of the
connections send small amounts of data, ignoring the slow
start might not be appropriate. But here we are interested
in comparing the simulations with the theoretical model we
presented, which does not model slow start.

The first change in throughput at µ = 273 Mb/s is caused
by a transition from case 4 to case 2, due to the increase in
the size of the oscillations during phase 3. At µ = 320 Mb/s
the oscillation type changes from 4:2 to 3:2 causing smaller
oscillations and a transition back to case 4 from case 2 (this
corresponds to the reduction at µτ̃ = 1340 MSS in Figure 4).
In this region θmax is close to b + µτ̃ and it is possible for
a packet to be dropped before the oscillations reach steady
state (recall that θmax is the maximum value of the window
during the oscillations in steady state). This is confirmed by
the simulations: for µ = 330 Mb/s and µ = 360 Mb/s phases
3 and 4 do take place so that we are in case 4 while for
µ = 350 Mb/s packets are dropped during phase 2 and we
are in case 2. At µ = 400 Mb/s the oscillations during phase
3 are sufficiently large to cause a buffer overflow causing the
transition from case 4 to case 2.

Until µ = 273 Mb/s, that is during case 4, there is a very
good match between the model and the simulations. For case 2,
instead, the match is not as good. As mentioned in section III,
in this case multiple packets are dropped at each congestion
event, violating one of the assumptions of the model. We have
also noticed that, in several cases, the window will oscillate
a few times before packets are dropped, extending the length
of each congestion epoch. At the same time we do not have
an explanation for the fact that there is a bigger difference
between the model and the simulation for µ = 800 Mb/s and
µ = 900 Mb/s.

As discussed in section II-C, even for γ = 5 the amplitude
of the oscillations is an increasing function of µ. For example,
if γ = 5 the transition from case 4 to case 2 takes place
when µ ' 410 Mb/s, indicating that the TUBE algorithm can
shift this problem to higher bit rates but it does not solve it

200 400 600 800 1000

µ/(Mb/s)

15

20

25

30

35

40

45

50

55
av

er
a
g
e

b
a
ck

lo
g
/
M

S
S theory

simulations

Figure 9. Average backlog size

completely.

B. Average Backlog

Using the equations describing the evolution of the sending
window, presented in [4], and with some simple but tedious
algebra, it is possible to compute the average backlog at
the bottleneck link. Using the same procedure described for
the throughput it is possible to determine which case the
connection will follow and then use the appropriate formula
for the average backlog.

Figure 9 shows the average backlog for different values
of µ, according to the model and to the simulations (with
the same parameters used for the throughput analysis). As in
the previous section each square corresponds to a simulation,
ignoring the slow start phase to compute the average backlog.
The rapid decrease at µ = 131 Mb/s corresponds to the
oscillations changing from 3:1 to 5:2. The 5:2 oscillations are
present between 131 Mb/s and 138 Mb/s (which correspond
to the peak between µτ̃ = 546 MSS and µτ̃ = 574 MSS in
Figure 4). When the oscillations change from 3:1 to 5:2 the
double reduction causes the backlog to decrease further at each
oscillation and the average value is lower as well. Between
µ = 138 Mb/s and µ = 273 Mb/s the 4:2 oscillations have
increasing amplitude, causing the average backlog to increase
as well. It is interesting to note how these different types
of oscillations (3:1, 5:2 and 4:2) have a negligible effect on
the throughput while they have a significant impact on the
backlog. This is because during the oscillations, which are
present only during phase 3, the backlog is nonzero most of the
time, leading to high throughput, but the window oscillations
cause similar oscillations in the backlog size affecting its
average value.

It is interesting to note how the oscillations during phase 3
do affect the performance of CTCP, both in terms of through-
put and of average backlog size. Modifying the protocol
in order to significantly reduce their amplitude would be a
worthwhile endeavor. One such way could be to use smaller
increments and decrements after full utilization is detected,
that is after ∆i is positive but such modifications are outside
the scope of this work.

V. CONCLUSIONS

In this paper we have presented a model for an isolated
CTCP connection. To the best of our knowledge this is the
first complete model of CTCP which has led us to identify
its significantly different behaviors depending on the system
parameters. While the basic idea of combining a delay and
a loss based approach is fairly simple, the resulting protocol
is far from it and its behavior is much more complicated to
analyze than that of TCP Reno, even in the simple case of
an isolated connection. Using this model we have analyzed
the average throughput and backlog size, showing how these
quantities do depend on the different regimes of CTCP.

We have also highlighted how the oscillations during the
“constant window” phase do have a non negligible impact on
the performance and how it is not possible to reduce their size
by simply reducing the value of the parameter γ. We believe
that modifying the protocol in order to significantly reducing
the size of the oscillations could have a significant impact.
Especially given that, even though we have not addressed the
issue, they can adversely effect the other traffic sharing the
same links.

REFERENCES

[1] L. Andrew. Compound TCP Linux module. available at http://netlab.
caltech.edu/lachlan/ctcp/, Apr. 2008.

[2] L. Andrew, C. Marcondes, S. Floyd, L. Dunn, R. Guillier, W. Gang,
L. Eggert, S. Ha, and I. Rhee. Experimental evaluation of delay/loss-
based TCP congestion control algorithm. In Proc. 6th Int. Workshop on
Protocols for FAST Long-Distance Networks, Mar. 2008.

[3] A. Baiocchi, A. Castellani, and F. Vacirca. YeAH-TCP: Yet Another
Highspeed TCP. In Proc. 5th Int. Workshop on Protocols for FAST
Long-Distance Networks, Mar. 2007.

[4] A. Blanc, D. Collange, and K. Avrachenkov. Modelling an isolated
Compound TCP connection. Tech. Report 6778, INRIA, Dec. 2008.

[5] A. Blanc, D. Collange, and K. Avrachenkov. Oscillations of the sending
window in Compound TCP. In Proc. 2nd NetCoop Workshop, 2008.

[6] J. Davies. Performance enhancements in the next generation TCP/IP
stack. The Cable Guy http://www.microsoft.com/technet/community/
columns/cableguy/cg1105.mspx, 2007.

[7] S. Floyd. HighSpeed TCP for Large Congestion Windows. RFC 3649
(Experimental), Dec. 2003.

[8] S. Floyd. Metrics for the Evaluation of Congestion Control Mechanisms.
RFC 5166 (Informational), Mar. 2008.

[9] K. Kumazoe, M. Tsuru, and Y. Oie. Performance of high-speed transport
protocols coexisting on a long distance 10-Gbps testbed network. In
Proc. 1st Int. Conf. on Networks for Grid Applications, Oct. 2007.

[10] Y. Li. Evaluation of TCP congestion control algorithms on the Windows
Vista platform. Technical Report SLAC-TN-06-005, Stanford Linear
Accelerator Center, June 2005.

[11] M. Sridharan, K. Tan, D. Bansal, and D. Thaler. Compound TCP: A
new TCP congestion control for high-speed and long distance networks.
Internet draft, Internet Engineering Task Force, Oct. 2007. (Work in
progress).

[12] K. Tan, J. Song, M. Sridharan, and C. Ho. CTCP-TUBE: Improving
TCP-friendliness over low-buffered network links. In Proc. 6th Int.
Workshop on Protocols for FAST Long-Distance Networks, Mar. 2008.

[13] K. Tan, J. Song, Q. Zhang, and M. Sridharan. Compound TCP: A
scalable and TCP-friendly congestion control for high-speed networks.
In Proc. 4th Int. Workshop on Protocols for FAST Long-Distance
Networks, Mar. 2006.

[14] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A compound tcp approach
for high-speed and long distance networks. In INFOCOM 2006. Proc.
25th IEEE Int. Conf. on Computer Communications., 2006.

