
Glyndŵr University
Glyndŵr University Research Online

Computing Computer Science

1-1-2010

A Simplified Method for Optimising Sequentially
Processed Access Control Lists
Vic Grout
Glyndwr University, v.grout@glyndwr.ac.uk

John N. Davies
Glyndwr University, j.n.davies@glyndwr.ac.uk

Follow this and additional works at: http://epubs.glyndwr.ac.uk/cair
Part of the Computer and Systems Architecture Commons, Digital Communications and

Networking Commons, Hardware Systems Commons, and the Systems and Communications
Commons

This Conference Paper is brought to you for free and open access by the Computer Science at Glyndŵr University Research Online. It has been
accepted for inclusion in Computing by an authorized administrator of Glyndŵr University Research Online. For more information, please contact
d.jepson@glyndwr.ac.uk.

Recommended Citation
Grout, V. & Davies, J.N., (2010) ‘A Simplified Method for Optimising Sequentially Processed Access Control Lists’. Proceedings of the
Sixth Advanced International Conference on Telecommunications (AICT), 9-15 May, held in Barcelona, Spain.

http://epubs.glyndwr.ac.uk?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/comp?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://epubs.glyndwr.ac.uk/cair?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/259?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/262?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/263?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/276?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:d.jepson@glyndwr.ac.uk

A Simplified Method for Optimising Sequentially Processed Access
Control Lists

Abstract
Among the various options for implementing Internet packet filters in the form of Access Control Lists
(ACLs), is the intuitive – but potentially crude – method of processing the ACL rules in sequential order.
Although such an approach leads to variable processing times for each packet matched against the ACL, it also
offers the opportunity to reduce this time by reordering its rules in response to changing traffic characteristics.
A number of heuristics exist for optimising rule order in sequentially processed ACLs and the most efficient of
these can be shown to have a beneficial effect in a majority of cases and for ACLs with relatively small
numbers of rules. This paper presents an enhancement to this algorithm by reducing part of its complexity.
Although the simplification involved leads to an instantaneous lack of accuracy, the long-term trade-off
between processing speed and performance can be seen, through experimentation, to be positive. This
improvement, though small, is consistent and worthwhile and can be observed in the majority of cases.

Keywords
internet traffic, access control, lists, packet, classification, ACL, optimisatino, δ-opt, ε-opt

Disciplines
Computer and Systems Architecture | Digital Communications and Networking | Hardware Systems |
Systems and Communications

Comments
Copyright © 2010 IEEE. This is a reprint of a paper that was presented at the Sixth Advanced International
Conference on Telecommunications AICT 2010 9-15 May, held in Barcelona, Spain. It was published by the
IEEE computer society and details of the published paper are available at http://doi.ieeecomputersociety.org
This material is posted here with permission of the IEEE. Such permission of the IEEE does not in any way
imply IEEE endorsement of any of Glyndwr University's products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution must be obtained from the IEEE by
writing to pubs-permissions@ieee.org.

This conference paper is available at Glyndŵr University Research Online: http://epubs.glyndwr.ac.uk/cair/51

http://doi.ieeecomputersociety.org/10.1109/AICT.2010.8
pubs-permissions@ieee.org
http://epubs.glyndwr.ac.uk/cair/51?utm_source=epubs.glyndwr.ac.uk%2Fcair%2F51&utm_medium=PDF&utm_campaign=PDFCoverPages

A Simplified Method for Optimising Sequentially Processed Access Control Lists

An efficient process for reordering rules in traffic packet filers

Vic Grout and John N. Davies

Centre for Applied Internet Research (CAIR)

Glyndŵr University, Wales

Wrexham, UK

{v.grout|j.n.davies}@glyndwr.ac.uk

Abstract-Among the various options for implementing Internet

packet filters in the form of Access Control Lists (ACLs), is the

intuitive – but potentially crude – method of processing the

ACL rules in sequential order. Although such an approach

leads to variable processing times for each packet matched

against the ACL, it also offers the opportunity to reduce this

time by reordering its rules in response to changing traffic

characteristics. A number of heuristics exist for optimising

rule order in sequentially processed ACLs and the most

efficient of these can be shown to have a beneficial effect in a

majority of cases and for ACLs with relatively small numbers

of rules. This paper presents an enhancement to this algorithm

by reducing part of its complexity. Although the simplification

involved leads to an instantaneous lack of accuracy, the long-

term trade-off between processing speed and performance can

be seen, through experimentation, to be positive. This

improvement, though small, is consistent and worthwhile and

can be observed in the majority of cases.

Keywords-Internet traffic; Access control lists; Packet

classification; ACL optimisatio; δ-opt; ε-opt

I. INTRODUCTION: ACCESS CONTROL LISTS –

INTERPRETATION AND IMPLEMENTATION

Internet devices such as routers switch traffic, usually in
the form of discrete packets, between networks. The
primary function of a router is to forward each packet to the
most suitable device, typically another router, at each step of
the journey. However, a vital secondary role is to consider
whether a given packet should be passed at all, according to
a set of tests, or rules, against which it is matched. An
equally important third role is to select packets to which
certain traffic policies apply – also achieved through the
application of these same rules.

A typical rule, in the syntax of the Cisco Internetwork
Operating System (IOS) [1], is

access-list 101 deny icmp any 10.0.0.0

 0.255.255.255 echo-reply,

which states that ICMP echo-reply packets from any

source to the network 10.0.0.0 are to be blocked at this
point. The first part of the rule simply assigns it to access

list 101 (and may be ignored when discussing single lists in
isolation).

A packet filter, or Access Control List (ACL), is then a
sequence of such rules designed to implement a given
objective or set of objectives. ACLs can be used for
security purposes – simply to pass or block packets, or as
filters for more sophisticated policies such as traffic
shaping, address translation, queuing or encryption [2]. A
packet may be matched against several ACLs on a single
router and many more on its complete journey from source
to destination. Inefficiently implemented ACLs can add
significantly to packet delay and even small ACLs will
contribute to this latency simply by their aggregation across
several routers.

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq telnet

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq ftp

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq http

access-list 101 deny ip 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 administratively-prohibited

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 echo-reply

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 packet-too-big

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 time-exceeded

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 unreachable

access-list 101 permit icmp 172.16.20.0 0.0.255.255

access-list 101 deny icmp any any

access-list 101 permit ip 202.33.42.0 0.0.0.255 any

access-list 101 permit ip 202.33.73.0 0.0.0.255 any

access-list 101 permit ip 202.33.48.0 0.0.0.255 any

access-list 101 permit ip 202.33.75.0 0.0.0.255 any

access-list 101 deny ip 202.33.0.0 0.0.255.255 any

access-list 101 deny tcp 210.120.122.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.183.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.114.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.175.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.136.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.177.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 permit tcp any 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp any any eq www

access-list 101 permit tcp any any

access-list 101 deny ip 195.10.45.0 0.0.0.255 any

access-list 101 permit ip any any

{access-list 101 deny all} {implicit}

 Figure 1. A typical Access Control List (ACL).

A. ACL Interpretation

An example of a complete ACL is given in Figure 1.
Other than the ACL assignment, a rule may consist of up to

five parts: the permit or deny type, the protocol, a source
address, destination address and a flag function (as in the

echo-reply parameter above) for fine-tuning. Each
parameter may be a single value or a range of allowable

matches. For example, the any parameter above matches

all source addresses whilst the 0.255.255.255

parameter matches destination addresses in the 10.0.0.0
network. The absence of any term, such as an address,
protocol or flag, indicates the rule will match a packet with
any such values – provided those fields that are present are
matched.

The interpretation of an ACL is that its rules are
considered as being processed in sequential order from the
top. That is, each incoming packet is tested against the first
rule; if it matches, it is passed or blocked accordingly and no
further rules are considered; otherwise it is tested against the

second rule, and so on. There is an implicit deny all
rule at the end of each ACL to block all packets not
otherwise matched.

: :

: :

access-list 102 permit ip 192.168.16.0 0.0.0.255 any

: :

: :

access-list 102 deny ip any 10.0.0.0 0.255.255.255

: :

: :

{access-list 102 deny all} {implicit}

: :

: :

access-list 102 deny ip any 10.0.0.0 0.255.255.255

: :

: :

access-list 102 permit ip 192.168.16.0 0.0.0.255 any

: :

: :

{access-list 102 deny all} {implicit}

Access list 2(b)

Access list 2(a)

Figure 2. Dependent rules

There are three significant observations to make at this

point:
1. This model of an ACL as a sequence of rules,

considered in order, is only a question of
interpretation: it should not be assumed that the ACL
is actually processed sequentially within the device
hardware or software.

2. For an ACL to be interpreted correctly. the order of
the rules is crucial: an inherent dependency between
rules prohibits arbitrary reordering. For example, in
Figure 2, an IP packet from the network

192.168.16.0 to the network 10.0.0.0 will
match both rules shown. The packet will be passed in
2(a) but blocked in 2(b). Clearly then, rules may not
be reordered if this changes the underlying intention of
the policy.

3. Not all rules are equally likely to match packets: rules
with larger parameter ranges (or indeed absent
parameters) may match more packets and rule hit-rate
will vary among them. Also, different rules will
become more or less significant as traffic (packet)
characteristics change so these same hit-rates will be
dynamic.

B. ACL Implementation

Space here permits only a brief overview of ACL
implementation and optimisation. See [3][4][5][6] & [7] for
a fuller treatment. There are essentially three basic
approaches to implementation (TCAMs, trees/tries and
linear lists) – although hybrids are also possible.

Implementation in TCAMs: A Content Addressable
Memory (CAM) is effectively Random Access Memory

(RAM) in reverse. Rather than accepting an address and
returning the data at that location, a CAM can take an item
of data and return the address at which it is to be found. In
principle, the operation constitutes a single operation. A
Ternary CAM (TCAM) permits wildcard bit matches along
with binary ones and zeroes and is consequently ideal for
allowing matches within ranges of addresses, protocols,
etc. of the form to be found within ACL rules. CAMs and
TCAMs can be used for various forms of packet look-up
including routing tables as well as ACLs. In a routing table,
the longest matching entry is returned; in an ACL, the first.
This is the fastest but most expensive form of
implementation. Not only is the immensely complex
circuitry potentially restrictive; even cooling requirements
can be an issue on large platforms [8].

Implementation as trees or tries: The concept of
arranging ACL rules as a searchable tree structure (binary or
otherwise) is a fairly obvious one. However, in practice,
rules are better organised as tries. A trie (from ‘retrieval’)
is essentially a tree with an array of pointers at each node,
indicating subtries. There is a pointer at each node for each
possible value. The bits of each rule are thus stored on the
braches of the trie, not the nodes. Rule look-up can be
performed much faster on tries than trees. In each case the
time taken to search for the first matching rule will be a
(different) constant. However, there are considerable
memory requirements for both approaches in addition to the
processing complexity [5].

Implementation as linear lists: The simplest, but
generally regarded as least efficient, approach to ACL
implementation, is to process the rules sequentially as a
linear list, precisely the original interpretation of rule order.
In this case, the time taken to find the first matching rule
will vary depending on the rule’s position in the ACL.
However, the value of this approach is that rules searched in
this manner may be reordered to lower the average time for
processing a sequence of packets, provided such a
rearrangement does not violate any rule dependencies.
There is a well-defined optimisation problem concerned
with attempting to find such a minimising order, subject to
dependency constraints. Unfortunately, it is shown in [6]
that the problem is NP-comlete and only heuristics, not
exact methods are viable. However, even for this effort to
be worthwhile, the potential reduction in latency must be
large enough to warrant running any optimising algorithm.
These concepts are formulated and discussed in the next
section.

II. PROCESSING ACLS SEQUENTIALLY – MODELLING,

OPTIMISATION AND SIMULATION

A full formulation of the model of a sequentially
processed ACL is given in [6]. Algorithms and
performance are also discussed in [7][9] & [10].

A. ACL Modelling

Suppose there are n rules, r1, r2, .., rn, in an ACL
implemented as a linear list. Define a dependency matrix, D

= (dij) to be such that dij = 1 if rules ri and rj are dependent
and 0 otherwise. If dij = 1 then the order of rules ri and rj
must be preserved if the intended behaviour of the list is to
be maintained. On this basis, the dependency index, a
normalised measure of rule interdependency for the ACL,
can be defined as

.
)1(

2 1

1 1

n

i

n

ij

ijd
nn

DI

 (1)

DI = 0 means no dependent rules; DI = 1 means all rules
dependent upon all others. Higher values of DI constrain
rule order more tightly.

Define the hit-rate, h(ri), of rule ri to be the probability
that a packet will match ri. Hit-rates can be calculated
dynamically (they will vary as traffic characteristics change)
using counters within the IOS or hardware [11][12]. Define

the latency, (ri), of a rule ri to the time taken to
(independently) process ri. This may be calculated from the
length of a rule, the nature of the protocols involved or
taken from stored tables. In the implementation of some
systems, latencies may be constant for all rules but this is
not assumed generally in this paper.

The cumulative latency, (ri), for rule ri can now be
defined as the time taken to process ri and all rules
preceding it. So

.)()(
1

i

j

ji rr

 (2)

The expected latency, E, of the ACL, is then given by

.)()()()(
1 11

n

i

i

j

ji

n

i

ii rrhrrhE

 (3)

The purpose of any optimisation procedure, applied in
this context, would be to find, or approximate, the ordering
of the rules of the ACL that minimises E, subject to the
dependency constraints, D.

B. ACL Optimisation

As already mentioned, this problem is NP-complete.
The authors of [6] investigate a number of solving
algorithms of varying levels of sophistication although it is
unclear whether any are capable of providing a worthwhile
return implemented on a production router. The main
problem with most conventional sorting or swapping
heuristics, in this context, is the need to re-evaluate the
expected latency, E, for every revised rule order proposed,
which greatly increases the processing complexity.
However, consider the following.

Define the trade-off coefficient, Ti, to be the (possible)
decrease in expected latency from swapping rules ri and ri-1.
Then

n

ik

kkiiii

i

k

kk

n

ik

kkiiii

i

k

kki

rhrhrhrh

rhrhrhrhT

1

11

2

1

1

11

2

1

)()()()(

)()()()(

),()()()(

)]()()[()()(

)]()()[()()(

11

11

111

iiii

iiiii

iiiii

rrhrrh

rrrhrrh

rrrhrrh

 (4)

which, for consecutive rules, is a simple calculation, not a
re-evaluation of the complete expected latency, E.

On this basis, [9] offers the following algorithm, named
δ-opt, and refined in [7]:

 δ-opt:

 Step 1: Initialisation (on

 configuration/reconfiguration)

 for i := 1 to n do

 h(ri) := 1

 Step 2: Promotion (on a match of rule ri)

 h(ri) := θh(ri);

 if (di-1 i =0) and

 h(ri)λ(ri-1) > h(ri-1)λ(ri) then

 Swap(ri-1, ri)

 Step 3: Reduction (every DSIZE packets)

 for i := 1 to n do

 h(ri) := h(ri) / max j h(rj).

The process works by increasing the hit-rate of the
currently matched rule (by a factor, θ) and promoting it one
place in the list if the trade-off in expected latency is
positive. All hit-rates are assumed equal when the list is
originally defined (or redefined) by the network
administrator. Extensive simulation [7] suggests the ideal
value of θ to be approximately 2. (This also makes the
implementation more efficient: multiplying by 2 is a simple
register shift.)

This is certainly a very simple and efficient algorithm.

The linear (O(n)) Step 1 is executed only once, as the list

is defined or redefined – an infrequent event. Step 3 (also
O(n)) executes at intervals to prevent buffer overflow

(DSIZE is the size, in bytes, of the registers holding hit-

rates). Only the constant Step 2 executes for each packet.
Even so, it is not immediately clear that the latency savings
from running such an algorithm will justify its execution
time. That this is actually so can be demonstrated through
simulation.

C. ACL Simulation

In the original paper [7], a comprehensive simulation
process is described, based on an in-house numerical model,
capable of generating ACLs and traffic flows according to a
given parameter set. (Only an abridged version is given
here – the original paper also extensively justifies the use of
simulation rather than ‘real-world’ testing.) For tested
ACLs, the number of rules (n) ranged from 10 to 10 000.
Values of the dependency index, DI, in the range 0 (no
dependencies) to 1 (complete dependency) were used. For
each rule pair, (i,j), dependencies are randomised as dij = 1
with probability DI and dij = 0 with probability 1 - DI. Rule

latencies were uniformly randomised from 0.5 s to 1.0 s.
Actual values depend on the router hardware of course [5]

but it is only relative values that are significant. (Routers
that process packets faster will also optimise faster.) For
traffic, the simulation is slightly more sophisticated. The
traffic simulator generates packets with given probabilities
of matching each rule in the list. At intervals, these
probabilities may change to reflect shifting traffic patterns.
Within a single traffic pattern, however, there is a certain
probability that a packet is identical (other than the payload)
to the previous one – or part of a similar stream - and thus
matches the same rule. So, at the start of the simulation, a
value of a similarity index, SI, is set. Then a match

probability, i is randomised for each rule ri and normalised

so that 1
1

n

i i
. The first packet is generated, matching

each rule ri with probability i. Subsequent packets match
the same rule with probability SI, and otherwise match any

rule according to the match probabilities, i. Every q

packets, the match probabilities, i, are re-randomised.
n and DI can be set to produce different types of ACL

while q and SI vary to reflect different types of traffic. As
an example, Figure 3 shows simulated output from a test

with = 1.5 (from δ-opt), n = 1 000, DI = 0.25, q = 1 000
000 and SI = 0.75. 4 000 000 packets were generated in
total, in four stages with varying profiles. Results were
reported every 100 000 packets.

0

50

100

150

200

250

300

350

400

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39

L*

L"

L^

Instantaneous Average

Variation Average

Continuous Average

Cumulative Latency (s)

Packets
Change of traffic profile

n = 1,000

= 1.5

DI = 0.25

SI = 0.5

0 1 000 000 2 000 000 3 000 000 4 000 000

Figure 3. Simulated results: cumulative latencies

A number of results can be recorded; in particular, the
mean position (rank) of the matched rule in the ACL and the
mean cumulative latency of this rule. In both cases, three
values are considered: the mean since the last set of figures
(R* & L*) – the instantaneous average, the mean since the
last traffic variation (R” & L”) – the variation average, and
the mean of the entire simulation (R^ & L^) – the continuous
average. The three latency averages, L*, L” and L^, are
plotted in Figure 3. The mean rank, R, for a 1 000 rule list
with no optimisation will be (1 + 1 000) / 2 = 500.5 and the
mean cumulative latency, L, for a latency range of 0.5 to

1.0, 500.5 (0.5 + 1.0) / 2 = 375.375. In simulation,
optimised averages start at these values and are then
progressively lowered as rules with high hit rates are
promoted. When traffic profiles change, instantaneous and

variation averages become poor again but are gradually
improved once more as the ACL adapts to the new
characteristics. The continuous average becomes steadier
over time. In this example, L^ approaches a figure of
approximately 287, an improvement of 23% (rounded) on
the non-optimised figure.

This improvement figure, notated as φ, can be
determined, through this simulation, for any combination of
parameters. High values of DI work against the
optimisation process, prohibiting desirable swaps. In the
extreme cases, DI = 1 prevents any optimisation whereas DI
= 0 allows rules to move freely. High values of q and SI
imply greater traffic stability, which improves the optimised

values. The effect of is more subtle. High values make
rule promotion faster, which works well for similar, stable
traffic but can lead to repetitive, unnecessary swaps for
continuously changing, or oscillating, traffic patterns.

Simulation suggests a compromise, with a value around =
2 appearing to maximise the improvement in expected
latency in most cases.

For any given ACL, Step 1 of the δ-opt algorithm is
executed once and can be taken as part of the configuration

(or reconfiguration), Step 2, is executed every processed

packet, and Step 3, every DSIZE packets. Step 2
consists of an assignment, two calculations, two
comparisons and a conjunction (possibly) followed by a
swap of six assignments – three for the rules and three for

their hit-rates - twelve operations in all. Step 3 has two
loops of size n, one to establish the maximum value and the

other to reduce each value. The mean complexity (of Step

3) each packet is then 2n / DSIZE and, in total, 12 + 2n /

DSIZE for Steps 2 & 3 combined. Matching a packet
against a rule consists of at least one operation (permit or
deny) followed by between 1 and 5 comparisons (Figure 1).
Taking a mean of 1 + 3 = 4 operations per rule and a
percentage saving for an optimised list of φ gives an
optimisation trade-off of

,

2
12

100

4

DSIZE

nn
T

 (5)

which will be positive (i.e. worthwhile) when

.
50300

DSIZEn (6)

For example, taking θ = 2, n = 1 000, DSIZE = 16 and
DI = SI = 0.5 gives an improvement (from simulation) of φ

= 15% and a trade-off of Tδ = (15 1 000) / 25 – 12 – 2 000
/ 16 = 463, a positive benefit. This calculation can be
extended across a range of values of n and DSIZE and, for
each DSIZE, the key value of n*, the size of ACL for which
optimisation is profitable, can be determined. Table I, for
example, fixes DSIZE at 16 and calculates n* for various
values of DI and SI.

So, for example, with SI = 0.75 and DI = 0.25, n* is
calculated as 12.57. On this basis, δ-opt will be worthwhile
for an ACL of fifteen rules but not one of ten rules. It is

then trivial to separate those lists to which optimisation is to
be applied from those to which it is not [10]. Of course, it is
precisely for longer ACLs that optimisation will yield the
best results.

TABLE I. δ-OPT OPTIMISATION TRADE-OFF: MINIMUM ACL LENGTH

 DI = 0.0 0.25 0.5 0.75 1.0

SI = 0.00 25.26 27.59 30.37 43.64

 0.25 21.62 25.26 27.59 38.09

 0.50 16.78 20.17 25.26 33.80

 0.75 12.06 12.57 17.78 27.59

 1.00 11.16 11.59 15.89 23.30

θ = 2, DSIZE = 16. Table shows the value of n*, the minimum length of list for Tδ = φn/25 – 12 –

n/8, to be positive (i.e. for optimisation to be worthwhile) for different values of DI and SI

TABLE II. δ-OPT REAL-WORLD EXAMPLES

ACL n DI SI = 0.00 0.25 0.50 0.75 1.00

A 16 0.47

B 20 0.47

C 55 0.30

D 144 0.30

E 19 0.47

F 93 0.36

G 111 0.39

H 62 0.12

I 172 0.43

J 68 0.40

K 24 0.45

θ = 2, DSIZE = 16. For 11 real-world ACLs, the table shows the cases where δ-opt is worthwhile
() or not () for different levels of traffic similarity (SI)

Table II summarises the characteristics of several ACLs
taken from a variety of production applications. (ACLs B, C
and D are taken from college/university LANs, F, G and H
from company networks and A and E from Small
Office/Home Office environments connecting to the Internet
via an ISP. ACLs I, J and K are derived from templates for
various standard security configurations.) δ-opt is seen to be
effective in the majority of real-world cases.

III. A SIMPLIFIED ACL OPTIMISATION HEURISTIC: ε-OPT

Other than the calculated proof of its effectiveness, the
operation of δ-opt is easily justified. The essential role of

Step 2 is to promote a recently matched rule, on the basis
that there is an increased probability (dependent upon SI)
that the next packet will match the same rule. This will
lower the cumulative latency of processing this next packet.
However, this promotion only takes place if the expected
latency of the list is reduced by the move. (All promotions
are constrained by rule dependencies.) It can be seen that

the operations in Step 2, concerned with raising the rule
hit rate and testing for the trade-off in expected latency, are
major contributors to the overall complexity of the δ-opt
algorithm.

A. ε-opt Optimisation

A simplified alternative can be considered in which the
matched rule is promoted irrespective of the trade-off
calculation (but still subject to dependency constraints),
seeking to lower the cumulative latency at the possible

expense of expected latency. If the h(ri)λ(ri-1) > h(ri-

1)λ(ri) condition is removed, there is no need to increase

the hit-rate of the matched rule (h(ri) := θh(ri)) and

Step 2 reduces to

 Step 2: Promotion (on a match of rule ri)

 if di-1 i =0 then

 Swap(ri-1, ri).

However, removing the hit-rate update and test makes

initialisation (Step 1) and renormalisation (Step 3)
redundant as well so the complete algorithm becomes just

 ε-opt:(on a match of rule ri)

 if di-1 i =0 then

 Swap(ri-1, ri).

ε-opt, by simply promoting the currently matched rule,
if valid, may lead to unnecessary or inappropriate swaps and
is likely to produce smaller improvements in expected
latency compared with δ-opt and, in turn, poorer reductive
performance. However, balanced against this is the

considerably reduced complexity of ε-opt over δ-opt.
Overall performance will depend on this balance.

B. ε-opt Simulation

The simulation experiments for δ-opt, from section II.C,

can be repeated for ε-opt. Unsurprisingly, by forcing

(permitted) swaps that may not lower expected latency, ε-
opt, for various values of θ, n, DI, q and SI, provides
percentage improvements, ψ, that are smaller than the
equivalent φ for the same values. For example, for θ = 1.5,
n = 1 000, DI = 0.25, q = 1 000 000 and SI = 0.75, ψ is
determined, through the same simulation process, to be
18%, compared with the equivalent φ = 23% from section
II.C.

However, in contrast, the complexity of ε-opt is less
than that of δ-opt and the cost of its implementation smaller.

In total, for each packet, ε-opt consists of a comparison and
(definitely this time) a swap of six assignments – three for
the rules and three for their hit-rates - seven operations in

all. The equivalent optimisation trade-off for ε-opt is
therefore

,7

100

4 n
T

 (7)

which will be positive (i.e. worthwhile) when

 n

175

 (8)

Taking the example, from section II.C, of θ = 2, n = 1

000 and DI = SI = 0.5 (DSIZE is no longer relevant as there
is no potential register flow from increased hit-rates and
therefore no need for reduction) gives an improvement of ψ

= 12% and a trade-off of Tε = (12 1 000) / 25 – 7 = 487,
compared with 463 from δ-opt with φ = 15%. Once again,
extending this calculation across a range of values of n, DI
and SI, allows the key value of n*, the size of ACL for
which optimisation is profitable, to be determined. Table
III, for example, gives the ε-opt equivalent of δ-opt for
Table I.

TABLE III. ε-OPT OPTIMISATION TRADE-OFF: MINIMUM ACL LENGTH

 DI = 0.0 0.25 0.5 0.75 1.0

SI = 0.00 24.23 27.56 30.67 44.11

 0.25 19.88 24.44 27.50 38.29

 0.50 14.72 18.67 24.31 33.78

 0.75 9.91 10.09 15.20 26.29

 1.00 9.32 9.84 13.36 20.89

θ = 2, DSIZE = 16. Table shows the value of n*, the minimum length of list for Tε = φn/25 – 12 –

n/8, to be positive (i.e. for optimisation to be worthwhile) for different values of DI and SI

These figures can be seen to be lower in all cases except
those with particularly disadvantageous values of DI and SI.
The value of n* has been reduced in nearly all cases – more
so for lower values of DI and higher values of SI. The
implication is that ε-opt will potentially be beneficial for a
larger number of ACLs than δ-opt.

Returning to the real-world examples, the ε-opt
equivalent of the δ-opt Table II is given in Table IV.

TABLE IV. ε-OPT REAL-WORLD EXAMPLES

ACL n DI SI = 0.00 0.25 0.50 0.75 1.00

A 16 0.47

B 20 0.47

C 55 0.30

D 144 0.30

E 19 0.47

F 93 0.36

G 111 0.39

H 62 0.12

I 172 0.43

J 68 0.40

K 24 0.45

θ = 2, DSIZE = 16. For 11 real-world ACLs, the table shows the cases where ε-opt is worthwhile
() or not () for different levels of traffic similarity (SI)

The difference between Tables II and IV is that ε-opt can
be seen to be effective for two further ACL scenarios above
δ-opt (namely ACL A with SI = 0.75 and ACL K with SI =
0.50). The saving in complexity of ε-opt over δ-opt has more
than compensated for its lack of precision in these cases.

IV. CONCLUSIONS AND FURTHER WORK

The improvement of ε-opt over δ-opt is small but
significant and comes at no cost. In general, ε-opt will prove
worthwhile for a greater variety of real-world ACLs than δ-
opt. Obviously there are some instances where this is not the
case; however, these can be clearly identified from Table III
and the appropriate algorithm implemented accordingly.

The following meta-heuristic offers a crude but effective
approach:

Ω-Opt (applied to an ACL with
 dependency index DI acting on

 traffic with similarity index SI)

if SI + 1 – DI < 0.75 then

 Apply δ-opt

 else

 Apply ε-opt

This selection may even be made dynamically in response to
changing traffic characteristics. Overall, the result is a
demonstrably more effective algorithm.

A final note is that ε-opt, being smaller in terms of code
than δ-opt, will itself take up less space when implemented
on a production router.

REFERENCES

[1] A. Colton, Cisco IOS for IP Routing, Rocket Science Press Inc.,
2002.

[2] Syngress, Building Cisco Remote Access Networks, Syngress
Media, 2002.

[3] J. Qian, S. Hinrichs & K. Nahrstedt, ACLA: A Framework for
Access Control List (ACL) Analysis and Optimization, Proceedings
of the IFIP TC6/TC11 International Conference on Communications
and Multimedia Security, May 21-22, 2001, Darmstadt, Germany.

[4] E. Al-Shaer & H. Hamed, Modeling and Management of Firewall
Policies, IEEE Transactions on Network and Service Management,
Vol. 1-1, April 2004.

[5] G. Varghese, Networking Algorithmics: An Interdisciplinary
Approach to Designing Fast Networking Devices, Morgan
Kaufmann, 2005.

[6] V. Grout, J. McGinn & J. Davies, Real-Time Optimisation of Access
Control Lists for Efficient Internet Packet Filtering, Journal of
Heuristics, Vol. 13, No. 5, October 2007, pp435-454

[7] V. Grout, J. Davies & J. McGinn, An Argument for Simple
Embedded ACL Optimisation, Computer Communications, Vol. 30,
No. 2, January 2007, pp280-287.

[8] N. McKeown, Internet Routers: Past, Present and Future, British
Computer Society (BCS) 2006 Lovelace Medal Lecture,
http://www.bcs.org/server.php?show=nav.7935 (accessed 10
December 2009).

[9] V. Grout, J. McGinn & J. Davies, Reducing Processing Latency in
Network Traffic Filters, Proceedings of the 5th International
Network Conference (INC 2005) Samos Island, Greece, 5th-7th July
2005, pp3-10.

[10] V. Grout, J. McGinn, J. Davies, R. Picking & S. Cunningham, Rule
Dependencies in Access Control Lists, Proceedings of the IADIS
International Conference WWW/Internet 2006 (ICWI 2006), Murcia,
Spain, 5-8 October 2006, pp537-544.

[11] Cisco, ACL Optimizer and Hits Optimizer, Cisco Systems,
www.cisco.com/univercd/cc/td/doc/product/rtrmgmt/cw2000/
fam_prod/acl_mgr/aclm_1_x/1_5/u_guide/ac1js.pdf (accessed 10
January 2009).

[12] Cisco, ACL Manager, Cisco Systems,
http://www.cisco.com/en/US/partner/products/sw/cscowork/ps402/pr
oducts_user_guide_book09186a00801f42b9.html (accessed 10
January 2009).

	Glyndŵr University
	Glyndŵr University Research Online
	1-1-2010

	A Simplified Method for Optimising Sequentially Processed Access Control Lists
	Vic Grout
	John N. Davies
	Recommended Citation

	A Simplified Method for Optimising Sequentially Processed Access Control Lists
	Abstract
	Keywords
	Disciplines
	Comments

