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Abstract-Among the various options for implementing Internet 

packet filters in the form of Access Control Lists (ACLs), is the 

intuitive – but potentially crude – method of processing the 

ACL rules in sequential order.  Although such an approach 

leads to variable processing times for each packet matched 

against the ACL, it also offers the opportunity to reduce this 

time by reordering its rules in response to changing traffic 

characteristics.  A number of heuristics exist for optimising 

rule order in sequentially processed ACLs and the most 

efficient of these can be shown to have a beneficial effect in a 

majority of cases and for ACLs with relatively small numbers 

of rules.  This paper presents an enhancement to this algorithm 

by reducing part of its complexity.  Although the simplification 

involved leads to an instantaneous lack of accuracy, the long-

term trade-off between processing speed and performance can 

be seen, through experimentation, to be positive.  This 

improvement, though small, is consistent and worthwhile and 

can be observed in the majority of cases. 

Keywords-Internet traffic; Access control lists; Packet 

classification; ACL optimisatio; δ-opt; ε-opt 

I.  INTRODUCTION: ACCESS CONTROL LISTS – 

INTERPRETATION AND IMPLEMENTATION 

Internet devices such as routers switch traffic, usually in 
the form of discrete packets, between networks.  The 
primary function of a router is to forward each packet to the 
most suitable device, typically another router, at each step of 
the journey.  However, a vital secondary role is to consider 
whether a given packet should be passed at all, according to 
a set of tests, or rules, against which it is matched.  An 
equally important third role is to select packets to which 
certain traffic policies apply – also achieved through the 
application of these same rules. 

A typical rule, in the syntax of the Cisco Internetwork 
Operating System (IOS) [1], is 

access-list 101 deny icmp any 10.0.0.0 

                   0.255.255.255 echo-reply, 

which states that ICMP echo-reply packets from any 

source to the network 10.0.0.0 are to be blocked at this 
point.  The first part of the rule simply assigns it to access 

list 101 (and may be ignored when discussing single lists in 
isolation). 

A packet filter, or Access Control List (ACL), is then a 
sequence of such rules designed to implement a given 
objective or set of objectives.  ACLs can be used for 
security purposes – simply to pass or block packets, or as 
filters for more sophisticated policies such as traffic 
shaping, address translation, queuing or encryption [2].  A 
packet may be matched against several ACLs on a single 
router and many more on its complete journey from source 
to destination.  Inefficiently implemented ACLs can add 
significantly to packet delay and even small ACLs will 
contribute to this latency simply by their aggregation across 
several routers. 

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq telnet

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq ftp

access-list 101 permit tcp 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255 eq http

access-list 101 deny ip 192.168.212.0 0.0.0.255 10.0.0.0 0.255.255.255

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 administratively-prohibited

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 echo-reply

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 packet-too-big

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 time-exceeded

access-list 101 permit icmp any 10.0.0.0 0.255.255.255 unreachable

access-list 101 permit icmp 172.16.20.0 0.0.255.255

access-list 101 deny icmp any any

access-list 101 permit ip 202.33.42.0 0.0.0.255 any

access-list 101 permit ip 202.33.73.0 0.0.0.255 any

access-list 101 permit ip 202.33.48.0 0.0.0.255 any

access-list 101 permit ip 202.33.75.0 0.0.0.255 any

access-list 101 deny ip 202.33.0.0 0.0.255.255 any

access-list 101 deny tcp 210.120.122.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.183.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.114.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.175.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.136.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp 210.120.177.0 0.0.0.255 10.2.2.0 0.255.255.255 eq www

access-list 101 permit tcp any 10.2.2.0 0.255.255.255 eq www

access-list 101 deny tcp any any eq www

access-list 101 permit tcp any any

access-list 101 deny ip 195.10.45.0 0.0.0.255 any

access-list 101 permit ip any any

{access-list 101 deny all} {implicit}

 Figure 1.  A typical Access Control List (ACL). 

A. ACL Interpretation 

An example of a complete ACL is given in Figure 1.  
Other than the ACL assignment, a rule may consist of up to 

five parts: the permit or deny type, the protocol, a source 
address, destination address and a flag function (as in the 

echo-reply parameter above) for fine-tuning.  Each 
parameter may be a single value or a range of allowable 

matches.  For example, the any parameter above matches 

all source addresses whilst the 0.255.255.255 

parameter matches destination addresses in the 10.0.0.0 
network.  The absence of any term, such as an address, 
protocol or flag, indicates the rule will match a packet with 
any such values – provided those fields that are present are 
matched. 



The interpretation of an ACL is that its rules are 
considered as being processed in sequential order from the 
top.  That is, each incoming packet is tested against the first 
rule; if it matches, it is passed or blocked accordingly and no 
further rules are considered; otherwise it is tested against the 

second rule, and so on.  There is an implicit deny all 
rule at the end of each ACL to block all packets not 
otherwise matched. 

: :

: :

access-list 102 permit ip 192.168.16.0 0.0.0.255 any

: :

: :

access-list 102 deny ip any 10.0.0.0 0.255.255.255

: :

: :

{access-list 102 deny all} {implicit}

: :

: :

access-list 102 deny ip any 10.0.0.0 0.255.255.255

: :

: :

access-list 102 permit ip 192.168.16.0 0.0.0.255 any

: :

: :

{access-list 102 deny all} {implicit}

Access list 2(b)

Access list 2(a)

 
Figure 2. Dependent rules 

 
There are three significant observations to make at this 

point: 
1. This model of an ACL as a sequence of rules, 

considered in order, is only a question of 
interpretation: it should not be assumed that the ACL 
is actually processed sequentially within the device 
hardware or software. 

2. For an ACL to be interpreted correctly. the order of 
the rules is crucial: an inherent dependency between 
rules prohibits arbitrary reordering.  For example, in 
Figure 2, an IP packet from the network 

192.168.16.0 to the network 10.0.0.0 will 
match both rules shown.  The packet will be passed in 
2(a) but blocked in 2(b).  Clearly then, rules may not 
be reordered if this changes the underlying intention of 
the policy. 

3. Not all rules are equally likely to match packets: rules 
with larger parameter ranges (or indeed absent 
parameters) may match more packets and rule hit-rate 
will vary among them.  Also, different rules will 
become more or less significant as traffic (packet) 
characteristics change so these same hit-rates will be 
dynamic. 

B. ACL Implementation 

Space here permits only a brief overview of ACL 
implementation and optimisation. See [3][4][5][6] & [7] for 
a fuller treatment.  There are essentially three basic 
approaches to implementation (TCAMs, trees/tries and 
linear lists) – although hybrids are also possible. 

Implementation in TCAMs: A Content Addressable 
Memory (CAM) is effectively Random Access Memory 

(RAM) in reverse.  Rather than accepting an address and 
returning the data at that location, a CAM can take an item 
of data and return the address at which it is to be found.  In 
principle, the operation constitutes a single operation.  A 
Ternary CAM (TCAM) permits wildcard bit matches along 
with binary ones and zeroes and is consequently ideal for 
allowing matches within ranges of addresses,  protocols, 
etc. of the form to be found within ACL rules.  CAMs and 
TCAMs can be used for various forms of packet look-up 
including routing tables as well as ACLs.  In a routing table, 
the longest matching entry is returned; in an ACL, the first.  
This is the fastest but most expensive form of 
implementation.  Not only is the immensely complex 
circuitry potentially restrictive; even cooling requirements 
can be an issue on large platforms [8]. 

Implementation as trees or tries: The concept of 
arranging ACL rules as a searchable tree structure (binary or 
otherwise) is a fairly obvious one.  However, in practice, 
rules are better organised as tries.  A trie (from ‘retrieval’) 
is essentially a tree with an array of pointers at each node, 
indicating subtries.  There is a pointer at each node for each 
possible value.  The bits of each rule are thus stored on the 
braches of the trie, not the nodes.  Rule look-up can be 
performed much faster on tries than trees.  In each case the 
time taken to search for the first matching rule will be a 
(different) constant.  However, there are considerable 
memory requirements for both approaches in addition to the 
processing complexity [5]. 

Implementation as linear lists: The simplest, but 
generally regarded as least efficient, approach to ACL 
implementation, is to process the rules sequentially as a 
linear list, precisely the original interpretation of rule order.  
In this case, the time taken to find the first matching rule 
will vary depending on the rule’s position in the ACL.  
However, the value of this approach is that rules searched in 
this manner may be reordered to lower the average time for 
processing a sequence of packets, provided such a 
rearrangement does not violate any rule dependencies.  
There is a well-defined optimisation problem concerned 
with attempting to find such a minimising order, subject to 
dependency constraints.  Unfortunately, it is shown in [6] 
that the problem is NP-comlete and only heuristics, not 
exact methods are viable.  However, even for this effort to 
be worthwhile, the potential reduction in latency must be 
large enough to warrant running any optimising algorithm.  
These concepts are formulated and discussed in the next 
section. 

II. PROCESSING ACLS SEQUENTIALLY – MODELLING, 

OPTIMISATION AND SIMULATION 

A full formulation of the model of a sequentially 
processed ACL is given in [6].  Algorithms and 
performance are also discussed in [7][9] & [10]. 

 

A. ACL Modelling 

Suppose there are n rules, r1, r2, .., rn, in an ACL 
implemented as a linear list.  Define a dependency matrix, D 



= (dij) to be such that dij = 1 if rules ri and rj are dependent 
and 0 otherwise.  If dij = 1 then the order of rules ri and rj 
must be preserved if the intended behaviour of the list is to 
be maintained.  On this basis, the dependency index, a 
normalised measure of rule interdependency for the ACL, 
can be defined as 

.
)1(

2 1

1 1

n
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ij

ijd
nn
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        (1) 

DI = 0 means no dependent rules; DI = 1 means all rules 
dependent upon all others.  Higher values of DI constrain 
rule order more tightly. 

Define the hit-rate, h(ri), of rule ri to be the probability 
that a packet will match ri.  Hit-rates can be calculated 
dynamically (they will vary as traffic characteristics change) 
using counters within the IOS or hardware [11][12].  Define 

the latency, (ri), of a rule ri to the time taken to 
(independently) process ri.  This may be calculated from the 
length of a rule, the nature of the protocols involved or 
taken from stored tables.  In the implementation of some 
systems, latencies may be constant for all rules but this is 
not assumed generally in this paper. 

The cumulative latency, (ri), for rule ri can now be 
defined as the time taken to process ri and all rules 
preceding it.  So 
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The expected latency, E, of the ACL, is then given by 
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The purpose of any optimisation procedure, applied in 
this context, would be to find, or approximate, the ordering 
of the rules of the ACL that minimises E, subject to the 
dependency constraints, D. 

B. ACL Optimisation 

As already mentioned, this problem is NP-complete.  
The authors of [6] investigate a number of solving 
algorithms of varying levels of sophistication although it is 
unclear whether any are capable of providing a worthwhile 
return implemented on a production router.  The main 
problem with most conventional sorting or swapping 
heuristics, in this context, is the need to re-evaluate the 
expected latency, E, for every revised rule order proposed, 
which greatly increases the processing complexity.  
However, consider the following. 

Define the trade-off coefficient, Ti, to be the (possible) 
decrease in expected latency from swapping rules ri and ri-1.  
Then 
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which, for consecutive rules, is a simple calculation, not a 
re-evaluation of the complete expected latency, E.   

On this basis, [9] offers the following algorithm, named 
δ-opt, and refined in [7]: 

  δ-opt: 

  Step 1: Initialisation (on 

             configuration/reconfiguration) 

  for i := 1 to n do 

  h(ri) := 1 
 

  Step 2: Promotion (on a match of rule ri) 

  h(ri) := θh(ri); 

  if (di-1 i =0) and 

     h(ri)λ(ri-1) > h(ri-1)λ(ri) then 

  Swap(ri-1, ri) 
 

  Step 3: Reduction (every DSIZE packets) 

  for i := 1 to n do 

  h(ri) := h(ri) / max j h(rj). 

The process works by increasing the hit-rate of the 
currently matched rule (by a factor, θ) and promoting it one 
place in the list if the trade-off in expected latency is 
positive.  All hit-rates are assumed equal when the list is 
originally defined (or redefined) by the network 
administrator.  Extensive simulation [7] suggests the ideal 
value of θ to be approximately 2.  (This also makes the 
implementation more efficient: multiplying by 2 is a simple 
register shift.) 

This is certainly a very simple and efficient algorithm.  

The linear (O(n)) Step 1 is executed only once, as the list 

is defined or redefined – an infrequent event.  Step 3 (also 
O(n)) executes at intervals to prevent buffer overflow 

(DSIZE is the size, in bytes, of the registers holding hit-

rates).  Only the constant Step 2 executes for each packet.  
Even so, it is not immediately clear that the latency savings 
from running such an algorithm will justify its execution 
time.  That this is actually so can be demonstrated through 
simulation. 

C. ACL Simulation 

In the original paper [7], a comprehensive simulation 
process is described, based on an in-house numerical model, 
capable of generating ACLs and traffic flows according to a 
given parameter set.  (Only an abridged version is given 
here – the original paper also extensively justifies the use of 
simulation rather than ‘real-world’ testing.)  For tested 
ACLs, the number of rules (n) ranged from 10 to 10 000.  
Values of the dependency index, DI, in the range 0 (no 
dependencies) to 1 (complete dependency) were used.  For 
each rule pair, (i,j), dependencies are randomised as dij = 1 
with probability DI and dij = 0 with probability 1 - DI.  Rule 

latencies were uniformly randomised from 0.5 s to 1.0 s.  
Actual values depend on the router hardware of course [5] 



but it is only relative values that are significant.  (Routers 
that process packets faster will also optimise faster.)  For 
traffic, the simulation is slightly more sophisticated.  The 
traffic simulator generates packets with given probabilities 
of matching each rule in the list.  At intervals, these 
probabilities may change to reflect shifting traffic patterns.  
Within a single traffic pattern, however, there is a certain 
probability that a packet is identical (other than the payload) 
to the previous one – or part of a similar stream - and thus 
matches the same rule.  So, at the start of the simulation, a 
value of a similarity index, SI, is set.  Then a match 

probability, i is randomised for each rule ri and normalised 

so that 1
1

n

i i
.  The first packet is generated, matching 

each rule ri with probability i.  Subsequent packets match 
the same rule with probability SI, and otherwise match any 

rule according to the match probabilities, i.  Every q 

packets, the match probabilities, i, are re-randomised. 
n and DI can be set to produce different types of ACL 

while q and SI vary to reflect different types of traffic.  As 
an example, Figure 3 shows simulated output from a test 

with  = 1.5 (from δ-opt),  n = 1 000,  DI = 0.25,  q = 1 000 
000  and  SI = 0.75.  4 000 000 packets were generated in 
total, in four stages with varying profiles.  Results were 
reported every 100 000 packets. 
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Figure 3. Simulated results: cumulative latencies 
 

A number of results can be recorded; in particular, the 
mean position (rank) of the matched rule in the ACL and the 
mean cumulative latency of this rule.  In both cases, three 
values are considered: the mean since the last set of figures 
(R* & L*) – the instantaneous average, the mean since the 
last traffic variation (R” & L”) – the variation average, and 
the mean of the entire simulation (R^ & L^) – the continuous 
average.  The three latency averages, L*, L” and L^, are 
plotted in Figure 3.  The mean rank, R, for a 1 000 rule list 
with no optimisation will be (1 + 1 000) / 2 = 500.5 and the 
mean cumulative latency, L, for a latency range of 0.5 to 

1.0, 500.5  (0.5 + 1.0) / 2 = 375.375.  In simulation, 
optimised averages start at these values and are then 
progressively lowered as rules with high hit rates are 
promoted.  When traffic profiles change, instantaneous and 

variation averages become poor again but are gradually 
improved once more as the ACL adapts to the new 
characteristics.  The continuous average becomes steadier 
over time.  In this example, L^ approaches a figure of 
approximately 287, an improvement of 23% (rounded) on 
the non-optimised figure. 

This improvement figure, notated as φ, can be 
determined, through this simulation, for any combination of 
parameters.  High values of DI work against the 
optimisation process, prohibiting desirable swaps.  In the 
extreme cases, DI = 1 prevents any optimisation whereas DI 
= 0 allows rules to move freely.  High values of q and SI 
imply greater traffic stability, which improves the optimised 

values.  The effect of  is more subtle.  High values make 
rule promotion faster, which works well for similar, stable 
traffic but can lead to repetitive, unnecessary swaps for 
continuously changing, or oscillating, traffic patterns.  

Simulation suggests a compromise, with a value around  = 
2 appearing to maximise the improvement in expected 
latency in most cases. 

For any given ACL, Step 1 of the δ-opt algorithm is 
executed once and can be taken as part of the configuration 

(or reconfiguration), Step 2, is executed every processed 

packet, and Step 3, every DSIZE packets.  Step 2 
consists of an assignment, two calculations, two 
comparisons and a conjunction (possibly) followed by a 
swap of six assignments – three for the rules and three for 

their hit-rates - twelve operations in all.  Step 3 has two 
loops of size n, one to establish the maximum value and the 

other to reduce each value.  The mean complexity (of Step 

3) each packet is then 2n / DSIZE and, in total, 12 + 2n / 

DSIZE for Steps 2 & 3 combined.  Matching a packet 
against a rule consists of at least one operation (permit or 
deny) followed by between 1 and 5 comparisons (Figure 1).  
Taking a mean of 1 + 3 = 4 operations per rule and a 
percentage saving for an optimised list of φ gives an 
optimisation trade-off of 
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which will be positive (i.e. worthwhile) when 

.
50300

DSIZEn         (6)

 

For example, taking θ = 2, n = 1 000, DSIZE = 16 and 
DI = SI = 0.5 gives an improvement (from simulation) of φ 

= 15% and a trade-off of Tδ = (15  1 000) / 25 – 12 – 2 000 
/ 16 = 463, a positive benefit.  This calculation can be 
extended across a range of values of n and DSIZE and, for 
each DSIZE, the key value of n*, the size of ACL for which 
optimisation is profitable, can be determined.  Table I, for 
example, fixes DSIZE at 16 and calculates n* for various 
values of DI and SI. 

So, for example, with SI = 0.75 and DI = 0.25, n* is 
calculated as 12.57.  On this basis, δ-opt will be worthwhile 
for an ACL of fifteen rules but not one of ten rules.  It is 



then trivial to separate those lists to which optimisation is to 
be applied from those to which it is not [10].  Of course, it is 
precisely for longer ACLs that optimisation will yield the 
best results. 

TABLE I.  δ-OPT OPTIMISATION TRADE-OFF: MINIMUM ACL LENGTH 

 DI =  0.0 0.25 0.5 0.75 1.0 

SI =  0.00 25.26 27.59 30.37 43.64  

 0.25 21.62 25.26 27.59 38.09  

 0.50 16.78 20.17 25.26 33.80  

 0.75 12.06 12.57 17.78 27.59  

 1.00 11.16 11.59 15.89 23.30  

θ = 2, DSIZE = 16.  Table shows the value of n*, the minimum length of list for Tδ = φn/25 – 12 – 

n/8, to be positive (i.e. for optimisation to be worthwhile) for different values of DI and SI 

TABLE II.  δ-OPT REAL-WORLD EXAMPLES 

ACL n DI SI =  0.00 0.25 0.50 0.75 1.00 

A 16 0.47       

B 20 0.47       

C 55 0.30       

D 144 0.30       

E 19 0.47       

F 93 0.36       

G 111 0.39       

H 62 0.12       

I 172 0.43       

J 68 0.40       

K 24 0.45       

θ = 2, DSIZE = 16.  For 11 real-world ACLs, the table shows the cases where δ-opt is worthwhile 
() or not () for different levels of traffic similarity (SI) 

Table II summarises the characteristics of several ACLs 
taken from a variety of production applications.  (ACLs B, C 
and D are taken from college/university LANs, F, G and H 
from company networks and A and E from Small 
Office/Home Office environments connecting to the Internet 
via an ISP.  ACLs I, J and K are derived from templates for 
various standard security configurations.)  δ-opt is seen to be 
effective in the majority of real-world cases. 

III. A SIMPLIFIED ACL OPTIMISATION HEURISTIC: ε-OPT 

Other than the calculated proof of its effectiveness, the 
operation of δ-opt is easily justified.  The essential role of 

Step 2 is to promote a recently matched rule, on the basis 
that there is an increased probability (dependent upon SI) 
that the next packet will match the same rule.  This will 
lower the cumulative latency of processing this next packet.  
However, this promotion only takes place if the expected 
latency of the list is reduced by the move. (All promotions 
are constrained by rule dependencies.)  It can be seen that 

the operations in Step 2, concerned with raising the rule 
hit rate and testing for the trade-off in expected latency, are 
major contributors to the overall complexity of the δ-opt 
algorithm. 

A. ε-opt Optimisation 

A simplified alternative can be considered in which the 
matched rule is promoted irrespective of the trade-off 
calculation (but still subject to dependency constraints), 
seeking to lower the cumulative latency at the possible 

expense of expected latency.  If the h(ri)λ(ri-1) > h(ri-

1)λ(ri) condition is removed, there is no need to increase 

the hit-rate of the matched rule (h(ri) := θh(ri)) and 

Step 2 reduces to 

  Step 2: Promotion (on a match of rule ri) 

         if di-1 i =0 then 

                Swap(ri-1, ri).  

However, removing the hit-rate update and test makes 

initialisation (Step 1) and renormalisation (Step 3) 
redundant as well so the complete algorithm becomes just 

        ε-opt:(on a match of rule ri) 

               if di-1 i =0 then 

                      Swap(ri-1, ri).  

ε-opt, by simply promoting the currently matched rule, 
if valid, may lead to unnecessary or inappropriate swaps and 
is likely to produce smaller improvements in expected 
latency compared with δ-opt and, in turn, poorer reductive 
performance.  However, balanced against this is the 

considerably reduced complexity of ε-opt over δ-opt.  
Overall performance will depend on this balance. 

B. ε-opt Simulation 

The simulation experiments for δ-opt, from section II.C, 

can be repeated for ε-opt.  Unsurprisingly, by forcing 

(permitted) swaps that may not lower expected latency, ε-
opt, for various values of θ, n, DI, q and SI, provides 
percentage improvements, ψ, that are smaller than the 
equivalent φ for the same values.  For example, for θ = 1.5, 
n = 1 000, DI = 0.25, q = 1 000 000 and SI = 0.75, ψ is 
determined, through the same simulation process, to be 
18%, compared with the equivalent φ = 23% from section 
II.C. 

However, in contrast, the complexity of ε-opt is less 
than that of δ-opt and the cost of its implementation smaller.  

In total, for each packet, ε-opt consists of a comparison and 
(definitely this time) a swap of six assignments – three for 
the rules and three for their hit-rates - seven operations in 

all.  The equivalent optimisation trade-off for ε-opt is 
therefore 

      
,7

100

4 n
T

         (7)

 

which will be positive (i.e. worthwhile) when 

       n

175

         (8)

 

Taking the example, from section II.C, of θ = 2, n = 1 

000 and DI = SI = 0.5 (DSIZE is no longer relevant as there 
is no potential register flow from increased hit-rates and 
therefore no need for reduction) gives an improvement of ψ 



= 12% and a trade-off of Tε = (12  1 000) / 25 – 7 = 487, 
compared with 463 from δ-opt with φ = 15%.  Once again, 
extending this calculation across a range of values of n, DI 
and SI, allows the key value of n*, the size of ACL for 
which optimisation is profitable, to be determined.  Table 
III, for example, gives the ε-opt equivalent of δ-opt for 
Table I. 

TABLE III.  ε-OPT OPTIMISATION TRADE-OFF: MINIMUM ACL LENGTH 

 DI =  0.0 0.25 0.5 0.75 1.0 

SI =  0.00 24.23 27.56 30.67 44.11  

 0.25 19.88 24.44 27.50 38.29  

 0.50 14.72 18.67 24.31 33.78  

 0.75 9.91 10.09 15.20 26.29  

 1.00 9.32 9.84 13.36 20.89  

θ = 2, DSIZE = 16.  Table shows the value of n*, the minimum length of list for Tε = φn/25 – 12 – 

n/8, to be positive (i.e. for optimisation to be worthwhile) for different values of DI and SI 

These figures can be seen to be lower in all cases except 
those with particularly disadvantageous values of DI and SI.  
The value of n* has been reduced in nearly all cases – more 
so for lower values of DI and higher values of SI.  The 
implication is that ε-opt will potentially be beneficial for a 
larger number of ACLs than δ-opt. 

Returning to the real-world examples, the ε-opt 
equivalent of the δ-opt Table II is given in Table IV. 

TABLE IV.  ε-OPT REAL-WORLD EXAMPLES 

ACL n DI SI =  0.00 0.25 0.50 0.75 1.00 

A 16 0.47       

B 20 0.47       

C 55 0.30       

D 144 0.30       

E 19 0.47       

F 93 0.36       

G 111 0.39       

H 62 0.12       

I 172 0.43       

J 68 0.40       

K 24 0.45       

θ = 2, DSIZE = 16.  For 11 real-world ACLs, the table shows the cases where ε-opt is worthwhile 
() or not () for different levels of traffic similarity (SI) 

The difference between Tables II and IV is that ε-opt can 
be seen to be effective for two further ACL scenarios above 
δ-opt (namely ACL A with SI = 0.75 and ACL K with SI = 
0.50).  The saving in complexity of ε-opt over δ-opt has more 
than compensated for its lack of precision in these cases. 

IV. CONCLUSIONS AND FURTHER WORK 

The improvement of ε-opt over δ-opt is small but 
significant and comes at no cost.  In general, ε-opt will prove 
worthwhile for a greater variety of real-world ACLs than δ-
opt.  Obviously there are some instances where this is not the 
case; however, these can be clearly identified from Table III 
and the appropriate algorithm implemented accordingly.  

The following meta-heuristic offers a crude but effective 
approach: 

Ω-Opt (applied to an ACL with 
     dependency index DI acting on 

     traffic with similarity index SI) 

if SI + 1 – DI < 0.75 then 

  Apply δ-opt 

 else 

  Apply ε-opt 

This selection may even be made dynamically in response to 
changing traffic characteristics.  Overall, the result is a 
demonstrably more effective algorithm. 

A final note is that ε-opt, being smaller in terms of code 
than δ-opt, will itself take up less space when implemented 
on a production router. 
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