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Abstract—This paper deals with the identification of 

machines in a smart city environment. The concept of machine 

biometrics is proposed in this work for the first time, as a way 

to authenticate machine identities interacting with humans in 

everyday life.  This definition is imposed in modern years 

where autonomous vehicles, social robots, etc. are considered 

active members of contemporary societies. In this context, the 

case of car identification from the engine behavioral 

biometrics is examined. For this purpose, 22 sound features 

were extracted and their discrimination capabilities were 

tested in combination with 9 different machine learning 

classifiers, towards identifying 5 car manufacturers. The 

experimental results revealed the ability of the proposed 

biometrics to identify cars with high accuracy up to 98% for 

the case of the Multilayer Perceptron (MLP) neural network 

model. 
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I. INTRODUCTION 

With the advent of technology and the exponential 

increase in the application of human-computer interfaces 

due to the Industry 4.0, machines and robots have already 

become part of the everyday life of humans [1]. With this 

growing usage of technology, identity authentication has 

become a top priority in many cases, with a large number 

of studies proposing new methodologies or new biometrics 

for authentication. Even before those advancements, the 

authentication of a person was applied in many scenarios, 

like facilities or licenses.  

As the development of Industry 4.0 continues, so has 

the shift and development towards smart cities [2]. A smart 

city aims to improve the quality of life in the urban areas 

by integrating information techniques (big data, cloud 

computing, Internet of Things, etc.) and build various smart 

environments [3]. As a result, unauthorized access to those 

networks and environments is a critical issue that has been 

addressed through various authentication processes. 

Therefore, identity authentication, as a security service, 

provides the user access to those services.  

Moreover, security and rapid advancements in 

networking and communication have increased the need for 

reliable identity authentication [4]. The three types of 

authentication elements (password, hardware equipment 

and biometrics) address these security issues. For this 

reason, many security measures have been proposed, with 

the discipline of biometrics, which focuses on establishing 

the identity of an individual based on the inherent physical 

or behavioral traits [5], [6].  

As mentioned before, smart cities are composed of 

many small smart environments, such as smart homes, 

smart libraries, intelligent transportation systems or smart 

healthcare [7]. The ability to access those environments at 

any time is an important foundation for a smart city, which, 

as a result, unauthenticated access can pose serious 

problems to those kinds of network pipelines. Therefore, 

secure authentication processes are required and are mostly 

tackled by the usage of biometric features. Biometric 

features include physiological features, such as the face, 

fingerprints, or iris, and behavioral features, such as gait, 

voice, or signature. These can be used to discriminate one 

individual from another [8] for access control or in 

forensics and unlike other types of authentication 

processes, they cannot be stolen, lost or forgotten.  

The contribution of this paper is twofold. Firstly, a new 

category of biometrics, named machine biometrics is 

proposed for the first time, for machines identification. As 

for humans, machine biometrics are unique measurements 

related to a machine’s characteristics, that aim to identify a 

particular machine or type of machine. Secondly, the 

engine biometrics based on the sound of a car’s engine is 

proposed for the identification of passenger vehicles (cars). 
The remainder of the paper is organized as follows. 

Section II introduces the new paradigm of machine 
biometrics; Section III describes the proposed engine 
biometric, Section IV presents the experimental study on the 
performance of the engine biometrics. Finally, Section V 
concludes this study and points out the future work. 

II. MACHINE BIOMETRICS – A NEW PARADIGM 

The previous section already mentioned the emerging 

trends coming from the Industry 4.0 framework, where 

cyber-physical systems are interacting with each other and 

with humans. In this context, smart cities are considered the 

future human settlements integrating the recent 

technological innovations. In such environments, 

autonomous vehicles on a city’s streets, social robots 

accompanying people in urban districts will constitute 

typical examples of highly intelligent machines integration 

in human societies. 

The increased presence of autonomous and intelligent 

machines in daily life activities, calls for the establishment 

of a framework for their monitoring, supervision and 

authentication. Therefore, it is the right time to define the 

biometrics of machines in full proportion to the biometrics 

of humans. 

Definition 1 – A machine biometric is a set of 

measurements that describe the inherent characteristics of 

a machine. 

Following the same methodology with human’s 

biometric characteristics, seven factors [5] that define the 

suitability of a biometric trait in order to be useful for 

identity authentication can be adopted: (1) Universality, 

which in the case of machine biometrics can be defined per 

machine type, (2) Uniqueness, to distinguish one machine 



from another, (3) Permanence, to remain unchanged over 

time, (4) Measurability, to be acquired by the sensor 

networks that are part of a smart city, (5) Performance, to 

be accurate and sustainable in terms of the used resources, 

(6) Acceptability, where the machine enables the 

measurement of its biometric, without any permission and 

(7) Circumvention, to avoid any unauthorized machine 

imitating a different identity. 

In order to describe a machine biometric based on the 

previously presented theory, the concept of machine 

identity should be defined firstly. Although there are 

several definitions of human’s identity, from different 

disciplines (sociology, psychology, neuroscience, etc.), for 

the case of the machines, the following definition can be 

stated:   

Definition 2 – Machine identity refers to the set of 

qualities and characteristics that the machine has from the 

construction or formed during its operation and are able to 

differentiate it in relation to its peers.   

Based on the above definitions several machine 

biometrics can be defined depending on the machine type. 

An example of a machine biometric is proposed in the next 

section for the case of passenger vehicles (cars). 

III. PROPOSED MACHINE BIOMETRIC 

In our study, we propose the sound a car’s engine 
generates, as an engine biometric, which is used with 
Machine Learning (ML) for identifying a car. More 
precisely, a fitting application of the proposed machine 
biometric characteristic is the recognition of a car’s 
manufacturer by using the sound the engine generates 
during its operation. Figure 1, shows the pipeline of the 
proposed identification methodology with the main function 
of each processing step being as follows: 

1. Data Gathering: The sounds of different car 
engines from different manufacturers were 
recorded. 

2. Feature Extraction: This step includes the 
extraction of the required features from the 
recordings, by processing the waveform in 
segments. 

3. Car manufacturer prediction: In this step, 
the car’s manufacturer is predicted. 

A. Data Gathering 

The data used in this work were gathered by recording 
the sound of the running engine of cars from different 
manufacturers. Each car engine was recorded in three 
different rounds per minute (rpm) states, specifically at: 
1000 (idle), 1500 and 2000 rpm.  

B. Feature Extraction 

As depicted in Fig. 1, the waveform of each recording 
was split into segments using a non-overlapping sliding 
window. The size of the window was determined for each 
car engine recording separately, by firstly calculating its 
tempo and its duration in samples (Eq. 1) as follows:  

𝑆𝑎𝑚𝑝𝑙𝑒𝑠 𝑝𝑒𝑟 𝑡𝑒𝑚𝑝𝑜 = 60/𝑡𝑒𝑚𝑝𝑜 ∗ 𝑠𝑎𝑚𝑝𝑙𝑒 𝑟𝑎𝑡𝑒 

where the tempo is calculated by using the onset strength 

of the waveform and the sample rate is a constant value of 

44100 (the sample rate of all the recordings).  

A total of 22 features were extracted for each waveform 

window, namely: RMS [9], Zero Crossing [10], Chroma 

Cens [11], Chroma Short-Time Fourier Transform (STFT) 

[11], Chroma CQT [12], Spectral Centroid [13], Spectral 

Bandwidth [14], Spectral Contrast [15], Spectral Flatness 

[16], Spectral Roll-off [17], Polynomial Zero, Polynomial 

Linear, Polynomial Quadratic, Mel Frequency Cepstral 

Coefficient (MFCC) [18], Mel Spectrogram, Spectral Flux 

[19], Superflux [20], Tonnetz [21], Tempogram [22], 

Filterbank Energies [23], Log Filterbank Energies and 

Spectral Subband Centroids [24].  
It should be noted that the mean values for each feature 

were used for the simulations in the study. Additionally, the 
features were extracted by using the Librosa [25] and 
Python Speech Features [26] libraries. 

 

 

Fig. 1. Pipeline of the proposed methodology. 

C. Car manufacturer prediction 

The features from the previous step were used to train 

the following 9 ML models:  

1. Linear Support Vector Classification (LSVC): 

A similar implementation to the famous Support 

Vector Machine with a linear kernel, used for 

classification [27]. 

2. Decision Tree (DT): A predictive modelling 

approach that uses a decision tree to go from 

observations to conclusions [28]. 

3. K-Nearest Neighbors (KNN): A non-parametric 

classification method, with the input consisting of 

the k closest training examples and the output, is 

based on its neighbors [29]. 

4. Logistic Regressor (LR): A statistical model that 

uses a logistic function to model dependent 

variables [30]. 

5. Multilayer Perceptron (MLP): A feedforward 

Artificial Neural Network [31]. 

6. Random Forest (RF): An ensemble learning 

method that uses a number of decision tree 

classifier [32]. 



7. Stochastic Gradient Descent Classifier (SGD): 
Iterative method for optimizing an objective 

function [33]. 

8. XGBoost Classifier (XGB): An efficient 

implementation of gradient boosting  [34]. 

9. XGBoost Random Forest Classifier (XGBRF): 

An efficient application of the XGBoost algorithm 

on the Random Forest classifier.  

IV. EXPERIMENTS 

A. Dataset and Configuration 

For the experiments, a total of 122 recordings were 

gathered from the engines of 19 different car models, 

belonging to 5 different car manufacturers, as depicted in 

Table I. 

TABLE I.  DATASET INFORMATION 

Car Manufacturers 

Citroen Fiat Ford Opel Peugeot 

C3 (2)  

C4 (2) 

Saxo (2) 

Panda (4)  
Punto(3) 

Fiesta (2) 
Focus (3) 

Astra (6) 
Corsa (4) 

206 (2) 
307 (3) 

 

As mentioned before, the engines were recorded for 

three different rpm levels (1000, 1500 and 2000 rpm). The 

reasoning behind the recording of the engine in different 

rpm levels is to study if the running speed makes the engine 

biometric more discriminative. 

The sounds of the engines were recorded using an XXL 

Inside microphone from the XD02 Drum Kit Pack Micro 

Microphone Package, equipped with a wind noise 

reduction sponge foam, to reduce environmental noise as 

much as possible. The microphone was connected to a 

smartphone via an XLR Microphone Audio Adapter from 

SmartRig and the Easy Voice Recorder App was used, with 

the following option settings: High sound quality, “.wav” 

encoding, 44.1KHz sample rate with noise and echo 

cancellation being enabled. 

To record a sound coming from an engine, the car was 

left on a neutral gear in all cases and for the cases of 1500 

and 2000 rpm, the gas pedal was being pressed so that the 

engine was running steadily at a specific speed. The 

engines were recorded with the car’s hood being open and 

by positioning the microphone at the center of the engine, 

for a duration of 15 seconds.  

B. Simulations 

In our study, we evaluated the application of 9 ML models 

for the recognition of the manufacturer of different car 

engines. The experiments were conducted using the Scikit-

learn [35] Library for Python. 

1) Data preparation 

For each sound waveform, a non-overlapping sliding 

window technique was applied to split the waves into 

multiple segments. In this study, the performance of the 

models on different window sizes was examined, 

specifically with a duration of 1, 2 and 5 tempos, on 

different engine rpm levels. Thus, the performance of the 

models was tested on 9 different datasets, with different 

sizes each due to the varying length of window size. It 

should be noted that before the training process, the 

dataset’s values were being normalized, so as to preserve 

their values between the range of [0, 1], which assists with 

the training process and models generally perform better. 

2) Performance Evaluation 

The models were evaluated using the Accuracy, 

Precision, Recall and F1-score measures. These measures 

are widely used in machine learning to evaluate the 

performance of a classification model.  

3) Hyperparameter optimization 

In order to optimize the performance of each ML 

model, a hyperparameter optimization technique was 

employed using the Scikit-Optimize Library [36]. The 

technique that was employed was the Bayesian 

optimization scheme over the hyperparameters of each 

model, which does not try out all the possible parameter 

values. A fixed number of parameter settings were sampled 

from specific value distributions, measuring their 

performance over a 10-fold cross validation technique and 

selecting the best according to the highest F1-score. 

4) Model performance validation 

After the hyperparameter optimization step was 

finished, each model’s performance was evaluated by 

applying the Leave-One-Out evaluation strategy for each 

sample of the dataset.  

5)  Results 

The experimental results are depicted in Table II, 

showing the validation results of the models in the dataset 

with the car engines running at 2000 rpm with the 1 tempo 

window size. 

TABLE II.  BEST PERFORMING VALIDATION RESULTS 

ML 

Model 

Accuracy 

(%) 

Precision 

(%) 

Recall 

(%) 

F1-score 

(%) 

LSVC 74.86 74.78 76.58 75.20 

DT 94.16 94.12 94.17 94.13 

KNN 98.18 98.16 98.13 98.14 

LR 71.86 72.22 73.12 72.46 

MLP 98.50 98.45 98.44 98.45 

RF 98.42 98.38 98.40 98.39 

SGD 72.34 72.56 73.71 73.05 

XGB 98.03 97.93 98.02 97.98 

XGBRF 97.47 97.41 97.41 97.41 

 

 The experimental results from the validation phase 

generally show very satisfactory performance from the 

included models. The MLP model has performed the best, 

with 98.45% F1-score, followed by the RF and KNN 

models with 98.39% and 98.14% F1-scores respectively. 

The LR model seems to have performed the worst with 

72.46% F1-score.  

The following figures show the performance of the 

models on all the examined datasets. Figure 2 shows how 

the models performed with a window size of 1 tempo, on 

each engine speed, Fig. 3 shows the results for windows 

size of 2 tempos and Fig. 4 for a window size of 5 tempos. 

All figures show the models’ performance according to 

their F1-scores, during the validation phase of the 

experiments. 



 
Fig. 2. F1-score of models for dataset with a window size of 1 tempo. 

 

Fig. 3. F1-score of models for dataset with a window size of 2 tempo. 

 
Fig. 4. F1 -score of models for dataset with a window size of 5 tempo. 

From the figures, it is obvious that the higher the window 

size, the worse the models perform, with a small difference 

between window size of tempo 1 and 2 and a bigger 

difference when the window size is increased to 5 tempos. 

This is mostly due to the fact that the dataset becomes 

smaller when the window size increased, with the dataset 

having 1277 samples in the first case and only 277 in the 

second one. Moreover, the higher the rpm speed of the 

engine, the better the models perform, with some 

exceptions. Although the difference is small in most cases, 

the models perform better with the engines running at 2000 

rpm compared to the other levels, with the worst 

performance being at 1500 rpm.  

V. CONCLUSIONS 

In this study, we emphasized the future need for the 

identification of machines, in Smart City environments. 

The new paradigm of machine biometrics, which aims to 

identify machines in the context of smart city 

environments, as is done with humans until now. 

Moreover, the engine biometric was introduced based on 

the sound characteristics of a car engine, for predicting the 

car manufacturer. Additionally, a new dataset is presented 

to the literature, including 122 soundwaves of 19 different 

car models, belonging to 5 different car manufacturers, 

each one recorded in 3 different rpm levels. To our 

knowledge, it is the first dataset formed with specific 

acquisition protocol. 

As for future work, the expansion of the dataset is 

required according to all aspects (manufacturers, models, 

and samples for each class). Moreover, as the application 

of deep learning has exponentially grown, their application 

should also be evaluated. Finally, an in-depth analysis of 

the permanence property of the proposed engine biometric 

will further improve its utility in practice. 
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