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Abstract—This paper deals with the transmission power con-
trol problem in wireless networks. Such a problem represents a
well known and relevant issue as it allows to efficiently manage
the network’s required energy and the interference experienced
by end-users. With the widespread diffusion of smart devices,
the relevance of this aspect further increased and has been
identified as such also in 5G standards. The problem has been
formalized as a Multi-Agent Reinforcement Learning approach
(MARL) to guarantee scalability and robustness. These two
aspects also drove the development of an original Distributed
Average-Cost Temporal-Difference (TD) Learning algorithm. To
adopt such an algorithm, a Markov Game formulation of the
power control problem has also been derived. The effectiveness
of the proposed distributed framework in reducing the total
network’s transmission power has been proved by means of
simulations in a specific case study.

Index Terms—Distributed Reinforcement Learning, Power
Control, Average Cost TD Learning, Dynamic Consensus, Net-
worked Multi-Agent System

I. INTRODUCTION

Due to their modelling capabilities, in the last decade,
Multi-Agent Systems (MASs) have been successfully applied
to tackle a variety of complex control problems [1]–[4]. A
MAS consists of a decision-making problem where a set
of intelligent agents interacts with the environment, i.e., the
system to be controlled. Such interaction consists of the
agents performing actions impacting the environment and
can be based on static rules (e.g., if-then-else conditions)
or on learned policies. Being able to address complex and
time-varying communication topologies as well as complex
heterogeneous dynamics, the framework provided by MASs
has been adopted in several application domains including
communication networks [5]–[8], smart grids [9], robotics [10]
and social networks [11].

To model and solve decision-making problems, the avail-
ability of some a priori knowledge regarding the system’s
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dynamics plays a crucial role in aiding the achievement of
the desired performances. However, in real-world applications,
such a priori knowledge may not be available or not fully
representative of the system to be controlled. The misalign-
ment between the real and modelled system dynamics leads
to approximations impairing the capabilities of the adopted
mathematical model framework to capture relevant aspects
and, in turn, bounding the effectiveness of the deployed
control logic. In this respect, model-free approaches allow to
overcome these issues and thus can be also deployed in time-
varying and stochastic environments whereas certain aspects
of the system’s dynamics are unknown and/or complex to
identify.

With this in mind, Reinforcement Learning (RL) [12]
represents a powerful control methodology to solve complex
decision-making problems as it allows to significantly reduce
the system’s required knowledge. More specifically, RL al-
lows to learn (sub) optimal policies (i.e., functions mapping
system’s states and the control actions to be taken) by directly
interacting with the system itself. The basic scheme of such
interaction is the following: at each discrete time step t, the RL
agent receives an observation ot of the system to be controlled;
based on such observation, the agent selects an action at which
impacts the system causing a state transition from st to st+1;
finally, the agent receives a reward rt+1 providing a measure
of how good it was to choose action at when the system’s
state is st. This reward is then used by the agent to refine
its behaviour and eventually learn the optimal policy. The
described interaction scheme implies a closed-loop adaptive
control scheme which renders RL approaches very suitable to
solve complex decision-making problems.

When multiple RL agents (or MASs) are considered, the
control problem is referred to as Multi-Agent Reinforcement
Learning (MARL) [13]–[15]. MARLs can be classified into
two main classes: i) cooperative-MARL, in which all the
agents share a common goal, or ii) competitive-MARL, in
which each agent selfishly pursues its own goals.



The aim of this paper is to present a cooperative-MARL
control framework for transmission power control in hetero-
geneous wireless networks, as defined by the 5G and other
emerging networks framework [16], [17]. More specifically,
the objective consists in learning the best strategy to be
adopted for managing, in an efficient way, the transmission
power from data sources (e.g., transmitters/access points such
as 5G NR, 4G, WiFi routers or sensors) to data destinations
(e.g., receivers such as smartphones, sensors, actuators or
microprocessors). This problem is particularly relevant since
a coordinated and efficient management of the transmission
power in a wireless network allows to mitigate interference
among communication channels. Indeed, a lower interference
leads to an overall higher transmission bit rate [18], [19] and,
in turn, to a better usage of network resources.
In this respect, the framework provided by cooperative-
MARLs is particularly suited for the considered problem. As a
matter of fact, being able to enforce coordination between the
agents (i.e., the transmitters) regarding the allocated transmis-
sion power allows to maximize the overall network capacity.
This can be achieved since transmitters are able to retrieve
information on the network status including the interference
level which in typical communication networks is provided by
the receivers.

To tackle scalability issues, the described power control
problem will be addressed by developing a Distributed Aver-
age Cost Temporal-Difference (TD) Reinforcement Learning
algorithm. The proposed distributed algorithm allows to define
a scalable and reliable MARL control scheme minimizing
communication exchanges between the agents and reducing
the required computational complexity.

The remainder of this paper is organized as follows: Section
II presents an overview of the Multi-Agent Reinforcement
Learning framework; Section III introduces the state-of-the-art
of Average Temporal-Difference learning (see Section III-A)
and Dynamic average consensus (see Section III-B); Section
IV describes the proposed distributed control algorithm;
Section V describe the mathematical formulation of the
Wireless Power Control problem (see Section V-A) and the
proposed Markov Game formulation of the wireless power
control problem (see Section V-B); Section VI presents the
considered case study and simulation results of the proposed
approach; finally, in Section VII, the obtained results are
summarized and future developments discussed.

II. BACKGROUND ON MULTI-AGENT REINFORCEMENT
LEARNING

Single-agent RL problems can be easily formalized by ex-
ploiting the mathematical framework provided by Markov De-
cision Processes (MDPs). Indeed, MDPs allow to model com-
plex decision-making problems characterized by the Markov
(or memoryless) property which consists in requiring that, at
any given time t+1, the environment’s state st+1 only depends
on the previous state st and the action at taken at time t.

A (finite) MDP can be described by a tuple:

MDP = (S,A, δ, r) (1)

where
• S, referred to as state space, is a finite set including all

possible environment’s state;
• A, referred to as action space, is a finite set including all

the possible actions which can be taken by the decision-
maker (i.e., the RL agent);

• δ : P (S × A × S) → [0, 1], referred to as the transition
function, is the conditional probability P (s′|s, a) of the
successor state s′, given the current state and action s, a;

• r : S × A × S → R is the reward function which shall
capture the performance of the controlled system in terms
of its goals and objectives.

Given a MDP, the goal of RL algorithms is to find the
optimal policy π∗ : S × A → A maximizing the cumulative
expected reward over time. Hence, the optimal policy π∗ can
be defined as:

π∗ = argmax
π

E

[
K∑

k=0

γkrk

]
, ∀s ∈ S (2)

where rk = r(sk, ak, sk+1), ak = π(sk), K is the control
horizon and γ ∈ [0, 1) is the discount factor weighting future
rewards. In other words, the agent’s objective consists in
maximizing its long-term reward based on the current received
feedback.

To take into account multiple collaborative agents, the
discussed MDP framework needs to be generalized. Indeed, in
this case, each agent would consider all the other agents as part
of the environment. This, in turn, means that each agent adjusts
its behaviour based on other agents’ actions rather than on the
environment state [13]–[15]. Following these considerations,
it is possible to consider Markov Games (MGs) [20], also
referred as Stochastic Games (SG) [21], [22], in place of
MDPs. The framework provided by Markov Games allows
each agent to perform actions considering (i) the environment’s
state and (ii) all the other agents’ adaptive behaviour. Similarly
to MDPs, MGs can be described by a tuple:

MG = (N,S, {Ai}i∈N , δ, {ri}i∈N ) (3)

where
• N > 1 is the set of agents;
• S is the finite set of environment’s states;
• Ai is the finite set of actions of the i-th agent, and A :=

A1 × A2 × · · · × AN is referred to as the joint action
space;

• δ is the transition function defined as the probability
distribution over transitions P (S × A × S) → [0, 1] and
can be expressed as the conditional probability P (s′|s, a)
of the successor state s′, given the current state s and the
current joint action;

• ri : S × Ai × S → R is the reward function of the i-th
agent.



Given the described MG framework, one of the main
issues of MARL solution algorithms is represented by the
problem’s complexity. Indeed, the problem dimension grows
exponentially with respect to N (i.e., the number of agents)
since each agent adds its own variables to the joint state-action
spaces. Furthermore, RL algorithms are affected by the so-
called curse of dimensionality since the dimension of state and
action spaces grow exponentially with the number of possible
actions and states. To address all these issues, in Section IV a
distributed average cost TD reinforcement solution algorithm
able to solve a cooperative MARL will be presented.

MARL problems can be classified based on the nature of
agents’ objectives:

• Fully Cooperative Tasks — In fully cooperative SGs,
the agents share the same reward function and their
learning goal consists in maximizing the common return.
In this case, solution algorithms can be designed using
coordination-free, coordination-based or indirect coordi-
nation methods;

• Fully Competitive Tasks — In fully competitive SGs,
each agent maximizes its own goal assuming that the
other agents’ will try to minimize its obtained rewards
(according to a minimax principle). In this case, solution
algorithms can be tailored for each agent;

• Mixed Tasks — In mixed SGs, no constraints are imposed
on the agents’ reward functions. This class of MARLs
is suited for heterogeneous scenarios in which there are
both selfish and cooperative agents. More in detail, this
problem formulation allows to take into account the
fact that cooperative agents may encounter situations in
which their immediate interests are in conflict with those
of other agents. Concerning solution algorithms, game-
theoretic considerations (e.g., the concept of equilibria)
are the most adopted ones.

• Explicit Coordination Mechanisms — Explicit coordina-
tion mechanisms can be used for any type of MARL tasks
(cooperative, competitive, or mixed): in this case, solution
algorithms consider the fact that each agent’s actions are
coordinated (or negotiated) with all the other agents;

A second aspect based on which it is possible to classify
MARL problems is represented by the considered information
exchange logic. In this respect, three main settings can be
identified:

• Centralized MARLs — In this case, a central controller
collects and processes the environment’s and local agents’
data (i.e., joint actions, rewards, and observations). Such
a centralized controller is in charge of providing each
agent with the designed policy;

• Decentralized Networked Agents MARLs — This set-
ting envisages a time-varying communication network
connecting the agents. In other words, local informa-
tion spreads across the network by local information
exchanges between neighbouring agents;

• Fully Decentralized MARLs — In this scenario there is
no explicit information exchange between the agents.

More in detail, each agent makes decisions based on
its local observations, without any coordination and/or
aggregation of data. It should be noted that although
local observations differ from agent to agent, they may
contain some global information.

III. BACKGROUND

A. Average Temporal-Difference learning
The present work is aimed at developing a Cooperative Dis-

tributed Average Cost Temporal-Difference algorithm allowing
to solve the power control problem in wireless networks. To
achieve this result, the starting point has been [23] where the
authors presented a single agent formulation of the Average
Cost Temporal-Difference learning problem. The proposed
formulation considers an irreducible and aperiodic Markov
chain {st|t = 0, 1, . . . } on a finite state space S = {1, . . . , n},
with transition probability matrix P . The average cost per
stage associated with state s is defined as g(s), where st is
the state at time t and the average cost is µ∗ = E[g(st)].
The considered objective function is a basic differential cost
function J∗ =

∑∞
t=0 P

t(g−µ∗e) with e being a vector of all
ones and P t being transition probability matrix of the Markov
chain. The learning problem consists in estimating Ĵ(st, rt),
i.e., the approximation of the differential cost function which
is defined as:

Ĵ(s, r) =

K∑
k=1

r(k)ϕk(s) (4)

where r is a vector of tunable parameters and each ϕk is a basis
function defined in the state space S. To a given transition
between two states st and st+1 it is associated a temporal
difference dt defined as

dt = g(st)− µt + Ĵ(st+1, rt)− Ĵ(st, rt) (5)

where µt and rt are the estimation at time t of the average
cost µ∗ and parameters vector r, respectively. Said estimates
are updated according to

µt+1 = (1− ηt)µt + ηtg(st) (6)

rt+1 = rt + γtdtzt (7)

where zt is referred to as eligibility vector and is defined as

zt+1 = λzt + ϕ(st+1) (8)

where γt and ηt are scalar step size and λ is a parameter in
[0, 1). With respect to equation 8, the eligibility vector z1 at
time t = 1 is simply equal to ϕ(s1), i.e., z0 = 0. Furthermore,
the step sizes γt are positive, deterministic, and satisfy the
following relations:

∞∑
t=0

γt = ∞ ,

∞∑
t=0

γ2
t < ∞. (9)

The reader is referred to [23] for a full discussion on the
problem motivation, convergence proof and error estimates.



B. Dynamic Average Consensus

When a set of autonomous agents needs to reach a global
agreement starting from local measures, several difficulties
arise. Indeed, collecting said local data over large-scale and
time-varying networks is a complex problem [25], [26]. To
deal with this issue, the easiest solution consists in adopting a
centralized control logic. However, this approach has several
drawbacks such as (i) lack of robustness, (ii) increase in
communication exchanges and required computational power,
(iii) lack of scalability and (iv) confidentiality and privacy
issues (since local data is spread over the whole network).

To deal with these issues, distributed communication pro-
tocols have been successfully applied. More specifically, dy-
namic average consensus algorithms, such as the one described
in [27], allow autonomous agents to keep track of the average
value of time-varying signals which are locally measured by
each agent and shared only between neighbouring agents. For
each agent i, the estimate µ̃ of a given signal can be computed
at each time step by means of the discrete First-Order Dynamic
Average Consensus algorithm as follows:

µ̃i
t+1 = µ̃i

t +
∑
j ̸=i

ai,j(µ̃
j
t − µ̃i

t) + ∆xi
t (10)

where xi
t is the signal measured by the i-th agent,

∆xi
t = xi

t − xi
t−1, and ai,j is the (i, j)-th entry of the

adjacency matrix of the network’s communication graph
specifying if there exists a communication link between
agents i and j.

IV. DISTRIBUTED AVERAGE TEMPORAL-DIFFERENCE
LEARNING

The MARL instance considered in this work is the fully co-
operative one (see Section II). Concerning the characterization
in terms of the information exchange logic, by considering a
centralized controller the problem reduces to a MDP whose
action space is equal to the joint action space of the MG
as defined in equation (3). Indeed, the control problem’ goal
can be achieved by learning the optimal joint-action values
with single agent algorithms thus removing the exponential
growth of the problem’s complexity with respect to the agents’
number. However, as already mentioned, the adoption of a
centralized controller can be characterized by scalability and
robustness issues. Furthermore, since with this approach all
the agents must send information to the central controller, also
traffic congestion issues may arise.

Following these considerations, in this work a fully coop-
erative decentralized networked MARL will be considered.
When considering decentralized approaches, the amount of
exchanged information should be kept under control to avoid
traffic congestion. This can be achieved by adopting appro-
priate communication protocols [24]–[27]. Furthermore, by
adopting a dynamic average consensus protocol (see equation
(10)), the complexity of the learning algorithm can be reduced
as well allowing to deal with huge numbers of agents. More

in detail, the proposed learning update rule is based on the
Average TD learning [23] reported in Section III-A. This
choice allows to update the agents’ estimations by means of
the average cost experienced by all the agents in the network;
by doing so each agent updates its estimates taking into
account the experienced cost of other agents.

A. Proposed Networked Agent Reinforcement Learning

The proposed distributed approach to tackle the power
control in wireless networks relies on a multi-agent extension
of the average cost TD learning algorithm already describe
in Section III-A. To develop such an extension, the first step
consists in coordinating the agents’ actions. With respect to the
classical average cost TD discussed in [23], in the proposed
approach the average is computed considering all the costs
experienced in the network by all the agents, and not the costs
of a single agent.

With this solution, the agents share information about the
local cost experienced with the neighbouring agents, and
each agent can update its local estimate using the global
average cost. However, the computation of the average cost
between all the networked agents can be a cost expensive task,
particularly with respect to the communication resources. To
deal with this aspect, the dynamic average consensus algorithm
presented in [27] has been embedded in the mentioned TD
learning algorithm. This, in turn, enables a fully distributed
computation of the average cost.

To solve the learning problem with this distributed approach,
the update of the temporal difference in equation (5) is
modified as follows for each agent i:

dit = gi(st)− µ̃i
t + Ĵ i(st+1, rt)− Ĵ i(st, rt) (11)

where µ̃i
t is the global average cost agreed by user i.

Furthermore, each agent updates its estimate of the average
variable as follows:

µ̃i
t+1 = µ̃i

t +
∑
j ̸=i

ai,j(µ̃
j
t − µ̃i

t) + ∆µi
t (12)

where ∆µi
t = µi

t−µi
t−1, µi

t is computed according to equation
(6), and ai,j is the (i, j)-th entry of the adjacency matrix of
the network’s communication graph. Equation (12) relies on
the following parameters’ updates:

µ1,i
t+1 = (1− ηit)µ

1,i
t + ηitg(st)

i (13)

µ2,i
t+1 = µ1,i

t (14)

rit+1 = rit + γi
td

i
tz

i
t (15)

zit+1 = λzit + ϕi(st+1) (16)

µ̃i
t+1 = µ̃i

t +
∑
j ̸=i

ai,j(µ̃
j
t − µ̃i

t) + µ1,i
t − µ2,i

t (17)



V. DISTRIBUTED WIRELESS POWER CONTROL

A. Mathematical Model

In wide-band wireless systems, when Code Division Multi-
ple Access (CDMA) techniques are deployed, the downlink in-
terference management is performed by each transmitter. This
is achieved by modulating their transmission power taking into
account the interference experienced by the receivers. Indeed,
the higher signal interference is, the higher the transmission
power should be to guarantee the quality of the signal at the
receiver. However, higher transmission power implies higher
interference for the receivers who are receiving different a
signal. The interference level in the received signal can be
measured by means of the Signal-to-Interference-plus-Noise
Ratio (SINR) [19] which, for each transmitter i and each
receiver j, is defined as:

SINRi,j =
Pi,jf(xi, xj)∑

k∈STX ,k ̸=i Pkf(xk, xj) +Wi,jN
j
0

(18)

where Pi,j is the i-th transmitting power towards the j-th re-
ceiver, f(xk, xj) is the path loss function, it providing provides
a measure of the power density reduction for transmitting a
signal from the transmitter in position xi and the receiver in
position xj , N j

0 is the thermal noise spectral density at the j-th
receiver, Wi,j is the bandwidth of the communication channel
between transmitter i and receiver j, and STX is the set of
nearby transmitters. Summarizing, equation (18) represents the
SINR value experienced by the j-th receiver located at spatial
point xj for communications coming from the i-th transmitter,
located at spatial point xi, transmitting with power Pi.

SINR is a useful Key Performance Index (KPI) as it provides
a measure of the reduction of the information transmitted in a
communication path with a given power. Indeed, by combining
equation (18) and the Shannon capacity theorem, it is possible
to derive a measure of the maximum achievable data rate.
That is, the channel capacity of a given communication path
is defined as:

Ci,j = Wi,j log(1 + SINRi,j) (19)

where Ci,j is the channel capacity (or maximum rate of data).
In other words, the higher the SINR and the channel bandwidth
are, the higher is the allowed data rate.

B. Control Problem Formulation

The interference management problem presented in Section
V-A can be formulated as a control problem aimed at maxi-
mizing the SINR experienced by each receiver. Such a problem
can be formalized as an optimization problem as follows:

Pk = argmax
P∈RN×M

f(SINRi,j , i ∈ STX , j ∈ SRX) (20)

subject to (18) and

P i
min ≤

∑
j∈SRX

Pi,j(k) ≤ P i
max ∀i ∈ STX (21)

where Pk ∈ RN×M is the control matrix containing the
transmission power of each transmitter towards each receiver,

N and M are the number of transmitters and receivers in
the network, respectively. STX and SRX are the sets of
transmitters and receivers, respectively, and P i

min and P i
max

are the minimum and maximum total transmission power of
the i-th transmitter, respectively.

Given the control problem formulation described by equa-
tions (18), (20), (21), it is straightforward to define the power
control as a MG.

By recalling equation (3), this can be achieved by defining
the elements of the tuple (N,S,A,δ, r). In the considered
scenario, these elements can be defined as follows:

• N represents the number of the transmitters in the net-
work;

• S is the state space observed by the agents and is given
by:

S = S1 × S2 × · · · × SN (22)

where the state of a generic transmitter is defined as the
measured SINR level for each receiver. Since the SINR is a
continuous value, to reduce the algorithm complexity, its
values are computed based on L discrete levels. By doing
so, the state of each local agent at time k, si(k) ∈ RM ,
where M is the number of receivers connected to the i-th
transmitter, can be described as a vector

si(k) = [sinr1i , sinr
2
i , . . . , sinr

M
i ]T (23)

where the generic scalar entry sinrji of the state repre-
sents the SINR level experienced by the generic receiver
j. Note that the state space, as it has been defined,
guarantees high flexibility since it is possible to trade off
the model’s description capabilities and the computational
costs simply by increasing or decreasing the number
of discrete levels L, respectively. Indeed, with these
modelling choices, the number of possible states for the
individual agent is equal to LM which is a relatively
small number. As a final remark, note that it is possible
to generalize the proposed formulation by considering
different discrete SINR levels for each transmitter-receiver
pair based on the receivers’ Quality of Service (QoS)
level defined by the service provider contract, or other
business or technical requirements. Therefore, the Si state
space is defined as

Si =
{
sinr(l)ji

∣∣∣ j ∈ [1,M ], l ∈ [1, L]
}

(24)

• A is the joint action space defined as:

A := A1 ×A2 × · · · ×AN (25)

where Ai is the action space of the i-transmitter. From
the above-described problem formulation, it follows that
the control variable is the transmission power for each
transmitter-receiver connection. In order to induce a
smooth variation of the transmission power, and to reduce
the dimension of the agent’s action space, instead of
directly considering the transmission power it is possible
to consider as control actions at time k, ai(k) ∈ RM



where M is the number of receivers connected to the i-
th transmitter. With this modelling choice the action space
of the i-th agent is described by

ai(k) = [λ1
i , . . . , λ

M
i ] (26)

where the generic scalar entry λj
i represents the variation,

with respect to the previous discrete time instant, of
the transmission power from the i-th transmitter and the
j-th receiver. Furthermore, such variations are limited
to a small number of discrete levels Λ. With these
modelling choices, the total number of possible actions
for the individual agent is ΛM , which is a relatively
small number. Note that it is possible to generalize the
proposed formulation by considering different discrete
power variation levels for each transmitter, this choice can
be driven by the maximum and minimum power variation
the transmitter can implement. Therefore, the Ai action
space can be rewritten as

Ai =
{
λ(l)ji

∣∣∣ j ∈ [1,M ], l ∈ [1,Λ]
}

(27)

• δ is the transition function and its estimation is one of
the objectives of the learning problem;

• r is the set of reward functions of each agent and is
defined as a function of the state with a predefined value
for each SINR level on the basis of receivers’ needs. An
example can be a linear function of the SINR since the
higher the SINR level, the more the objective is satisfied
according to the problem formulation above.

VI. SIMULATIONS AND RESULTS

In this section, the mathematical model presented in Section
V and the proposed solution algorithm described in Section IV
will be tested on a specific wireless power control scenario.
The goal of the simulations is to prove that such a collaborative
distributed algorithm is able to set the transmission powers to
maximize the network’s average bit rate as much as possible.

More in detail, 4 transmitters and 4 receivers have been
considered. Each receiver is connected to a transmitter, and the
resulting communication is affected by the transmission power
of the other transmitters with a certain intensity level. Said
intensity is proportional to the distance from the respective
transmitters.

During the simulation, the receivers are assumed to be in
three different positions. The receivers’ positions variation
changes the intensity of the interference of the transmitters
for each receiver. Hence, it is expected that after a certain
number of time steps the network average bit rate increases
due to such position changes.

In Figure 1, the average of the bit rates experienced by
the receiver is reported. The receivers’ position variations are
performed at steps 250000 and 350000 of the simulation. The
figure shows that after both changes of receivers’ positions
the average bit rate level has a fast variation according to the
current transmitters’ power level and interference level at the
receivers (see Section V-A). In fact, the proposed algorithm is

able to increase the average bit rate level almost immediately,
modulating the power level by performing actions as defined in
Section V-B, in order to maximize the reward (i.e., the average
experienced bit rate) computed in a distributed way according
to the proposed algorithm in Section IV-A.

Fig. 1. Network’s average bit rate.

VII. CONCLUSIONS AND FUTURE WORKS

In this paper, the problem of controlling transmission power
in wireless networks has been addressed. A single agent
MDP formulation of the problem has been presented and its
drawbacks highlighted. To overcome scalability and robustness
issues, a MARL framework has been derived. To cope with
multiple interacting agents, the power control problem has
been formalized as a Markov Game. Concerning the solution
algorithm, an original Distributed Reinforcement Learning
algorithm for Power Control in Wireless Networks has been
presented. Said algorithm leverages on a multi-agent average
cost temporal difference learning algorithm which has been
developed by the authors.

The most relevant aspect of the proposed approach is its
distributed nature. Indeed, this allows to guarantee (i) scalabil-
ity, (ii) robustness, (iii) low computational and communication
costs.

A simple proof of concept has been presented to prove
the effectiveness of the proposed distributed framework. As
shown, the proposed solution is able to efficiently adapt the
transmission power in response to the environment’s varia-
tions.

Since the proposed algorithm was only tested in a simulation
scenario, it is worth mentioning that in the case of a real
scenario, with mobile receivers or transmitters, frequent com-
munication connection and disconnection, and unreliable com-
munication links between the agents (i.e., the transmitters), the
dynamic consensus algorithm as proposed can issue limitations
in the convergence when tracking the global average value.
To avoid the time-varying network effects introduced by the
behaviours mentioned above, several countermeasures can be
used, resulting in a more complex algorithm but able to
provide the same result.



The authors are currently working on an extension of the
proposed framework to take into account personalized QoS
constraints. Indeed, as mentioned in Section V, the developed
mathematical model is sufficiently flexible to capture addi-
tional end-users’ and network operators’ features.
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