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RESUMO

Enquanto modelos de aprendizado estatı́stico avançam em um número cada vez maior de
aplicações reais, tem-se percebido que o entendimento das predições apresentadas por estes
modelos é bastante desafiador. O campo de estudo focado em interpretabilidade/explicabili-
dade de inteligências artificiais tem desenvolvido diversas abordagens e ferramentas para mel-
horar o entendimento desses sistemas. Tais ferramentas tendem a ser direcionadas a cientistas
de dados com conhecimento técnico. Os resultados obtidos a partir delas podem ser tabelas,
gráficos ou outra representação gráfica (como superposição de cores em um texto, por exem-
plo); desta maneira, o usuário necessita de conhecimento técnico prévio para o consumo desta
informação. Neste trabalho são implementadas técnicas que geram explicações textuais so-
bre o funcionamento interno de um dado classificador, focando em usuários com menor pro-
eficiência técnica a respeito dos recursos de aprendizado de máquinas. Um pacote de geração
de explicações textuais, chamado NaLax, foi construı́do e testado do usuários. Resultados
preliminares foram publicados e apresentados na IEEE International Conference of Artificial
Intelligence and Knowledge Engineering (AIKE) em 2019.

Palavras-Chave – Aprendizado de máquinas, interpretabilidade, transparência.





ABSTRACT

As machine learning models are increasingly used in a wide range of applications, there
is growing concern about the challenges involved in understanding their predictions. The field
of interpretability/explainability of artificial intelligences has developed several approaches and
tools that aim at improving the understanding of such systems. These tools tend to focus on
the knowledgeable data scientist as their main user. The tools usually produce plots, charts
or another graphical representations (such as superposition of color on an image or text); thus
the user must have some technical background so as to consume the information. This work
developed techniques that generate a textual explanation for the internal behavior of a given
classifier, aiming at users of machine learning with limited technical proficiency. A package
for textual explanation generation, called NaLax, was built and tested with users. Preliminary
results were published and presented at the IEEE International Conference of Artificial Intelli-
gence and Knowledge Engineering (AIKE) in 2019.

Keywords – Machine learning, Interpretability, Transparency.
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1 INTRODUCTION AND MOTIVATION

The machine learning community has dedicated significant effort to develop techniques

that interpret black-box classifiers such as deep neural networks (DARPA-BAA-16-53, 2016;

RIBEIRO, 2016). As complex classifiers meet widespread application, it is important to make

them understandable to a broader array of people. A model that is taken to be transparent

may lack interpretability if its complexity exceeds a certain threshold. For instance, it may be

difficult even to understand a logistic regression when facing a problem with a large number of

features (more than 100, for example).

On top of that, recent legal issues have reinforced the need to explain decisions taken au-

tonomously by complex classifiers. For instance, the General Data Protection Regulation (Eu-

ropean Union, 2016), currently in force in the European Union (EU), and the law for personal

data protection (Lei Geral de Proteção de Dados - LGPD), recently implemented in Brazil,

require automatic decisions to be explained if so requested.

The need for a “less opaque” view of learned models is a natural concern for several busi-

ness sectors in which highly complex models have been widely used. For instance, macro-level

risks may increase with the lack of interpretability in applications in finance (HAGRAS, 2018)

and medicine (HOLZINGER, 2017), in which the decisions made have serious impact (social

and economic). Hence the professional worker in the field must understand how and why a

model yields each possible output.

A recent study by Miller (2019) points out that the discussion of explanation in artificial

intelligence is an old topic, and even though several authors have worked towards a formal def-

inition of what an explanation is, there is no final consensus on a definition. Even though there

is no consensus in the literature on what is the formal definition of interpretability, this work

adopts the definition by Doshi-Velez: “the ability to explain or to present in understandable

terms to a human” (DOSHI-VELEZ; KIM, 2017).

Following the terms defined by Miller (2019), the construction of an explanation may often

be taken as the answer to a “why-question”. This type of question, as detailed by the author, is a
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combination of another 2 structures: a “whether-question” preceded by the word “why” and the

presupposition that the event in the question has occurred. In other words, one have to construct

a sentence in which could result on a yes or no answer and add the word “why” in front of it

meaning to question an previously occurred event.

Several research results have appeared on interpreting and explaining classifiers (RIBEIRO,

2016; MONTAVON, 2017; GOLDSTEIN, 2015). An entire program led by the Defense Ad-

vanced Research Projects Agency (DARPA) started in 2016, focused on developing new ap-

proaches that have explanations built in their core. The Explainable Artificial Intelligence

(XAI) program (DARPA-BAA-16-53, 2016) aims to build effective interfaces to present the

explanations to end users. The envisioned new interface is to be based on state-of-the-art Hu-

man Computer Interaction (HCI) technologies, and to be able to present explanations based

on analogies with visual and textual means of communication. The psychology of explanation

is emphasized in DARPAS’s program, as depicted at Figure 1.1. The user’s background and

knowledge have to be taken in consideration when formatting an explanation within a given

context.

Figure 1.1: XAI program areas (source: DARPA-BAA-16-53 (2016)).

Indeed, the best way to explain a classifier depends on the end user: a data scientist may

be very happy with a linear equation and a few graphs relating weights to outputs, while a less

proficient user, say a member of a legal team, a human resources professional, or a final cus-

tomer, may be uncomfortable when presented only a mathematical explanation. In particular,

auditing bodies who are overseeing whether automatic classifiers can be properly interpreted

may benefit from explanations that do not require advanced mathematical expertise.
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That is, a system that wishes to ensure interpretability has to adapt its presentation layer to

its users. For instance, a system that is used on a hospital to assist a surgeon will have different

requirements compared to one supporting the decision of a doctor examining a patient. It is

naive to expect that interpretability should be addressed solely by the perspective of a machine

learning practitioner.

Several applications may benefit not only from the understanding of a model inner work-

ings, but from a human-readable rationale behind outputs. For instance, in the system by Vlek,

Prakken, Renooij and Verheij (2016), an explanatory text is generated from a Bayesian network

applied to law. In their application (Section 2.2), interpretability was not pursued to improve

the trustfulness of the model, but to illuminate its reasoning.

Implementation-wise, generating a textual explanation from a model is a similar to gener-

ating text from an expert system or from any other data (the generation of weather forecasts

based on data is an example (REITER; DALE, 1997)). The high level processes are illustrated

in Figure 1.2.

Figure 1.2: Generating text from a model (source: author (2020)).

This work implements a set of techniques that emphasize textual explanations; the goal is to

generate a readable explanation for the behavior of a given (complex) classifier. The explanation

is not expected to depend on the design of the model; rather, the explanation captures the overall

behavior of the model without any attempt to justify the ultimate causes of a classification. In

particular we aim at users with some mathematical sophistication but no serious knowledge of

data science — the kind of user we anticipate to see in auditing and regulating bodies.

Given that the definition of a “good explanation” is highly dependent on the listener, some

subjective metrics have to be applied to measure the quality of an explanation. The DARPA

program describes metrics that can measure the effectiveness of an explanation; user satisfaction

is taken as the top priority at their expected evaluation sequence, so explanations have to be
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clear and useful to the end user. In this work, we applied established metrics to evaluate our

framework as compared to others in the literature. Our experiments, detailed at Sections 4.1.3

and 4.2.2, tried to capture the subjective perception of interviewees reacting to explanations,

particular with respect to clarity and trustworthiness. We examined explanations related to the

Wine Dataset (a well-established literature baseline dataset to evaluate models), and then run

an experiment focused on predictions related to the COVID-19 pandemic; in the latter case an

interpretable model is important for users.

A paper (AQUINO; COZMAN, 2019) describing part of this work was accepted the IEEE

International Conference of Artificial Intelligence and Knowledge Engineering (AIKE) in 2019,

which reflected the relevance of this work in the scientific community.

This dissertation is organized as follows. Chapter 2 discusses related work and applications

where interpretability is applied (not restricted to text generation). Chapter 3 presents our ap-

proach to generate textual explanations using state-of-the art techniques (PDP in Section 3.1.1

and ICE plots in Section 3.1.2); that chapter also describes an evaluation technique (Section

3.1.3) and natural language generation (Section 3.2). Chapter 4 presents an experimental vali-

dation study applied to two relevant datasets, with feedback from users. The main goal was to

verify the correct generation of the outputs and the usability of the approach in comparison to

other well established tools. Chapter 5 presents the final comments on this work.
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2 RELATED WORK ON INTERPRETABILITY

Even though an accepted formal definition of interpretability is still lacking, there is wide

interest in making automatic classifications more interpretable to the human end user (DOSHI-

VELEZ; KIM, 2017). Improvements in interpretability have become urgent due to the applica-

tion of machine learning techniques in several fields, targeting a variety of users.

The social sciences have already extensively studied the social meaning of explanations, as

reviewed by Miller (2019). He exposes work by psychologists and scientists that have explored

how people build their explanations. In particular Miller presents distinctions between the terms

interpretability, explainability, and justification. Explainability is defined as the degree to which

an observer can understand the cause of a decision (of a model) presented by an explaining

agent. A justification instead points out the reasons why a presented decision is a good one

(however it may not expose the inner decision making process that a model took to reach it).

The present work focuses on the exposition of the inner workings of a model; it does not try to

justify the decisions.

A few popular models employed in machine learning are taken to be intrinsically inter-

pretable: for instance, simple logistic regressions and shallow decision trees (GUIDOTTI,

2018). A simple analysis of weights or a simple visual inspection are enough to reveal the

behavior of these models. Non-interpretable models, often referred to as black box models,

depend on complex structures; for instance, deep neural networks are quite hard to understand

without proper tools. However, even models that are considered intrinsically interpretable may

be almost impossible to interpret when they are applied to complex problems —- take deep

decision trees or logistic regressions with many features.

Explanations may focus on local decisions (that is, they explain why a particular output

was generated from a particular input) or they may offer a global view of a classifier’s behav-

ior (GUIDOTTI, 2018). A bank would use a local approach to explain to a client the reasons

as to why credit approval was denied to him, however a regulatory agency may be interested in

the overall behavior of the classifier to identify possible bias in it.
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Some interpretability techniques are only applicable to specific models, such as neural net-

works; they are said to be model-specific. Techniques such as Layer-wise Relevance Propaga-

tion (LRP) (BACH, 2015) and deep Taylor decomposition (MONTAVON, 2017) are examples

of model-specific techniques that apply to neural networks, since they rely on the specific ar-

chitecture of the models in study. Since our approach focus on a more broad view of analysis

these techniques are out of our scope of study.

Other techniques can in principle be applied to any model; they are said to be model-

agnostic. The Local Interpretable Model-Agnostic Explainer (LIME) (RIBEIRO, 2016), Par-

tial Dependence Plots (PDP) (HASTIE, 2009) and Individual Conditional Expectations (ICE)

(GOLDSTEIN, 2015) are examples of model-agnostic techniques. The PDP and ICE tech-

niques are further detailed in Sections 3.1.1 and 3.1.2 respectively, as they are important later

in this work.

A key point about these previous techniques, and indeed several others in the literature

(HECHTLINGER, 2016; PURI, 2017), is that they formulate their explanations focusing a data

scientist as the reader. That is, they assume a rather sophisticated user, as they generate reports

based on plots, charts and other elements that are familiar to those already working with data

science.

In the remainder of this section we review a few relevant proposals in the literature, as they

stand for several key strategies concerning explanation generation. More specifically, they are

applied to real use cases, where interpretability is necessary for model trustfullness.

2.1 LIME

The approach proposed by Ribeiro, Singh and Guestrin (2016) in LIME was to create a

surrogate (and easily interpretable) model that locally approximates a given complex model,

guaranteeing that the former is faithful to the latter on the surroundings of an specific decision.

As an interpretable model can be used to approximate locally any black box, the resulting

method is agnostic to any type of classifier.

To learn the local behavior of the complex model, LIME generates new samples around the

sample provided by its user (these new samples are uniformly generated). In Figure 2.1, the

dashed line depicts the simple model fitted by LIME as an interpretable representative of the

complex model around a particular point (the red cross). In this figure we see that the dashed

line does separate blue spots and purple crosses around the point of interest; there is a faithful

representation for the complex model near the provided sample.
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Figure 2.1: Representation of a local approximation performed by LIME (source: Ribeiro,
Singh and Guestrin (2016)).

The publicly available distribution of LIME implements a logistic regression. Figure 2.2

(RIBEIRO, 2016) shows an explanation given by LIME for a particular prediction, where the

model predicts the chance of default for a client (the dataset from which this model was learned

stored historical payment information of the client and some of its personal information).

The first part of this figure depicts the chance of each outcome (not default has 85% prob-

ability). The second part exposes how each feature contributes to the prediction (positively or

negatively with respect to each possible class of prediction). The last part shows the values

produced by LIME. Such visual information can be used to explore different scenario around

the given samples, possibly answering questions such as: “How does the probability of default

vary when a client delays one payment?”

Note that the representation in Figure 2.2 can be used for any data in tabular form. For

Figure 2.2: Example of a LIME explanation (source: Ribeiro, Singh and Guestrin (2016)).
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Figure 2.3: Example of a LIME explanation for text classification (source: Ribeiro, Singh and
Guestrin (2016)).

textual data, however, this representation is not easy to process. One usually converts texts

into vectors so as to fit a model, and in this process the meaning of features and how they

influence the decision of a classifier is blurred. For these settings, LIME can produce an output

that highlights the most important words in an actual text provided as sampled of analysis

(Figure 2.3). A scale with the most important words that supported the output of the model is

presented to the user.

Similarly, the interpretation of image classification follows a special scheme. LIME uses the

concept of super-pixel (that expresses the presence or absence of a contiguous patch of similar

pixels). The example in Figure 2.4 conveys the explanation for the top 3 classes predicted by

the pre-trained neural network Inception. For each explanation the gray area covers the super-

pixels in the image that do not justify the predicted class, exposing the remainder ones as the

reason why it was predicted. LIME indicates which parts of the image led it to be labeled as an

electric guitar (Figure 2.4b), as well as acoustic guitar and labrador (Figures 2.4c and 2.4d).

Figure 2.4: Example of a LIME explanation for image classification (source: Ribeiro, Singh
and Guestrin (2016)).
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These explanations enhance trust in the classifier when they indicate that it is not acting in

an unreasonable way. If the explanation given by LIME does not display a reasonable connec-

tion between input and output, the user should consider improving the model.

2.2 Bayesian Network Explanations with Scenarios

In this section we review relevant work by Vlek, Prakken, Renooij and Verheij (2016).

Their objective was to present textual arguments that supported a model decision in a criminal

trial, so as to assist the jury and their judge in their decision. This work is detailed here since it

relates to the current research as it is an approach to enhance interpretability of a model being

used on a real application - in this case, a trial.

They adopted Bayesian networks to represent connections amongst variables as in Figure

2.5. In this application no learning method is being applied since the network is representing

a possible scenario. Therefore, the relevance of this work relies on the enhancement of the

interpretation of the model used and its feasibility towards all facts in it.

The quality of a scenario is measured by the probability of the outcome of interest. Given

that in a trial there may be different plausible scenarios, and for any of them several elements

(facts or proofs) intersect, the amount of time needed to evaluate this network of possibilities

could be a problem in a time constrained situation.

Figure 2.5: Example of structure with scenarios (source: Vlek, Prakken, Renooij and Verheij
(2016)).
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In their proposed representation, one can identify the temporal sequence of events using

arrows with a label t. It is then possible to identify inconsistencies in a sequence of events.

Similarly, causal relations can be identified with a c above the connective arrows. A scenario

starts at a node with double lined arrows coming out. Depending of the starting node of the

analysis, their approach may generate different plausible scenarios explanations. Here is an

example:

“Jane and Mark had a fight and Jane had a knife. Then Jane stabbed Mark. There-

fore, [Mark died: Mark lost a lot of blood. Therefore, Mark died of blood loss]”(VLEK,

2016).

This textual explanation, extracted from one of the possible readings of the structure, describes

the causal relation between the fact that Mark died and the blood loss. This information relates

to the previously presented fact that Jane stabbed him.

With this tool in hand, jury and judge in a trial may have a clear view of all the possible

interpretations of a case. The graphical representation by the Bayesian model, with the addition

of these textual elements, provides a coherent interpretation that may lead to a high confidence

verdict.

2.3 Linguistic Description of Complex Phenomena

A rather comprehensive approach to explanation generation is offered by the LDCP (Lin-

guistic Description of Complex Phenomena) method (CONDE-CLEMENTE, 2017). The method

is implemented in the rLDCP library for the R language.

LDCP generates textual reports based on tabular data; it uses fuzzy logic algorithms to

determine appropriate levels of input values that are turned into textual form. LDCP also uses

fuzzy logic to handle non-numeric or imprecise information, as well to deal with the inherent

vagueness of natural language (NOVAK, 1999). The LDCP architecture is depicted in Figure

2.6. Each stage of the architecture is filled with prior knowledge of the phenomena of interest,

and one can generate an automated report of the data originated from the phenomena.

The output of a model can be expressed as a textual response filling the gaps of a template

to produce the desired report. This final step is the interface between LDCP and the user, and

must be adjusted to the application of interest.
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Figure 2.6: LDCP architeture (source: Novak, Perfilieva and Mockor (1999)).

2.4 Human-Centric Explanations of Predictions

Biran and Mckeown (2017) focus their work on “human-centered” explanations that are

based on NLG using narrative roles. Their output is a brief text; Figure 2.7 shows an example

explaining predictions given by a classifier. Figure 2.8 shows another piece of the explanation

their system generates. The focus on their work is geared towards the identification of the most

important features to present in the generated text. This is accomplished through a metric called

narrative role.

Figure 2.7: Text output of Biran and Mckeown human-centric approach (source: Biran and
Mckeown (2017)).

Even though their approach produces explanations that are similar to the ones we have de-

veloped in the work reported here, their work focused heavily on the selection of core messages

to be presented to the user. We instead focus on a global explanation of a model’s behavior,
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Figure 2.8: Chart output of Biran and Mckeown human-centric approach (source: Biran and
Mckeown (2017)).

explaining the most common outputs generated by combinations of features.

In the end, we wish to provide readable, even if long, explanations to any person, regardless

of its proficiency, of how a model works and how the inputs affect predictions. We wish to

create full reports for the model of interest, creating a complete documentation – or “snapshot”

– of the current state of the model. To do so we use ideas inspired in the works described in this

section.
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3 PROPOSED SOLUTION

The final goal of this project is to create an agnostic framework that generates textual expla-

nations for a classifier. Even though we focus on global explanations, Section 3.1.4 discusses

local explanations that employ the global analysis.

To achieve the intended global analysis, the output of a given model is analyzed as its inputs

vary and the relationship between inputs and output is summarized in a textual report. There

are techniques in the literature that aim at capturing input-output relationships; in particular we

resort here to PDP (HASTIE, 2009) and ICE (GOLDSTEIN, 2015). Even though these tools are

actually “plots”, they are not actually drawn to the user in our approach; only the calculations

behind PDPs are used to capture the interactions between features and how they influence the

chance of a determined class to occur.

Miller (2019) points out that presenting dry statistical relationships to explain events is

unsatisfying to human users; here we dynamically generate explanations by comparing odds

of a range of values with odds of other ranges of values. The goal is to answer the following

question: “Why did the model produce a particular classification?”

This chapter will detail each step of our framework; Figure 3.1 shows the high-level view

of the framework. Except from the black box model, each one of the blocks will be discussed

in the next sections.

Black box model Model analysis

Sensitivity analysisNatural Language Generator

Report

Figure 3.1: Steps in report generation (source: author (2020)).
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3.1 Model analysis

As our work aims to be model-agnostic, we employed two techniques from the literature

that do not depend on the particular model structure: Partial Dependence Plots and Individual

Conditional Expectation. This section describes these techniques.

3.1.1 Partial Dependence

A Partial Dependence (PD) function (HASTIE, 2009) shows the marginal effect on the

model’s predicted outcome when we vary the values of a subset of the input features. Equa-

tion (3.1) defines a partial dependence function:

f̄S(XS) =
1
N

N

∑
i=1

f (XS,xiC), (3.1)

where f̄S stands for the marginal average of the function defined by the model, XS is a subset of

interest of the input features, N is the total number of training samples, xiC assumes values of

the complement of XS in the training data (values of the features that are not in the subset of the

features of interest).

A PDP offers a graphical representation of such a function; as a PDP is limited to three

dimensions for presentation purposes, it is restricted to two input features at a time. For a

classifier model that produces probabilities of classes, the PD functions return the probability

of a class to have a true value when the features of interest have certain values.

Equation (3.1) tells us that if we want to measure the model’s behavior in respect to a set of

features (Xs) then we must calculate the mean value of the model’s response for all combinations

of values for the other features (XC) - calculated with each instance xiC. This process may be

computationally expensive as the algorithm computes each point using values of all samples in

the dataset.

As an example, if we want to analyze the marginal influence of two features in the prediction

of a model, for each combination of values of the two features of interest we must calculate the

mean result of the predictions obtained by varying the other features within a certain range.

Such range is usually defined by looking at the training data used to fit the model. The result of

this calculation is a global view of the model’s behavior.

Figure 3.2 illustrates a PDP for two features on the California housing dataset (KELLEY;

BARRY, 1997), where each point represented in it reflects the mean result of the predictions
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obtained when the features HouseAge and AveOccup have any pair of values on the axes.

One can see that, for feature AveOccup (average number of people living in the house), there

is almost no variation of house price for values greater than 3. However, for values smaller than

3 the output depends heavily both on this feature and on the values of HouseAge.

Figure 3.2: PDP of house value on median age and average occupancy (source: Hastie, Tibshi-
rani and Friedman (2009)).

There is an obvious limitation of this method that is the maximum number of simultane-

ously analysed features being just 2; there is no visual way to add another dimension to represent

more interactions amongst features. This limitation is not a problem in our approach as our goal

is to generate textual explanations instead of graphs; the description of a model’s behavior can

be as complex as requested by the user, allowing control over the granularity of the reports.

We adopt the idea behind PDPs; that is, our the focus is to analyse the surfaces of probability

as selected features vary. These surfaces, which can be high dimensional, capture trends of a

particular class label to be selected under various circumstances. The final output expected from

the PDP in our approach is a textual description of the surfaces generated for each class label in

the model. With this data we can reason about the behavior of the model.

3.1.2 Individual Conditional Expectation

The Individual Conditional Expectation (ICE) technique, described by Goldstein, Kapelner,

Bleich and Pitkin (2015), offers an alternative to PDPs. An ICE plot shows the output variation

when a single feature of an individual instance varies. It has been shown that a PDP can be

calculated from the average of curves generated by the ICE technique; hence both methods are

related.
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Figure 3.3: ICE plots for the Wine dataset, where each one represents one possible prediction
label (source: author (2020)).

The Wine Dataset (CORTEZ, 2009)) is a well-established literature dataset to evaluate clas-

sification models. It has several features related to the biochemical components of two types of

wine (red and white) and a feature that indicates the “quality” of the sampled wine. The models

fitted with this dataset aims to predict the quality of the wine ( ranking it with from 0 to 9 -

named as classes in this work) based on its biochemical feature values.

For a multi-label problem, one plot is generated for each possible label, as depicted in

Figure 3.3. In this figure an ICE plot is presented per label analysing the feature alcohol in the

predictions given by a random forest classifier.

Note that it is possible to analyse each label in comparison to the others directly as the

starting point is always zero.

Each plot presented in Figure 3.3 contains dozens of lines, each one capturing an instance

of a prediction given by the classifier of interest. The mean value of all predictions is shown

in each of these plots by the thickest line. This “mean curve” is the curve given by the PDP

for the same feature. In a sense, the ICE curves capture the local interpretation of a classifier,

something lost with the PD functions.

As discussed in Subsection 3.1.1, we wish to get information of how the probability of
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a given label changes when some input features vary. With this in mind, as we had to alter

the output of the PDP: we only get the data from each curve on each ICE plot to describe

the interaction we are interested in. To generate descriptive information, we have to apply an

aggregation method; as ICE produces several curves for each label, we use the model statistics

to group similar curves, generating an aggregated view of the information shown in the chart.

Figure 3.4 illustrates the characteristic of this technique, which generates many different curves

for each label.

Figure 3.4: Detail of the ICE plot for class 3 (source: author (2020)).

3.1.3 Describing Partial Dependency functions with sectors

To study the results provided from the analysis of the model in the previous step in our

approach, the points in space representing the PD function or the ICE curves are aggregated in

sectors where its mean behavior is identified and summarized.

Our approach computes the PD function and the ICE curves for each possible label; from

there, descriptive texts are generated describing how the gradient behaves throughout sectors in

the probability surfaces. For such calculations we resort to standard methods of gradient com-

putation (FORNBERG, 1988) as they are implemented with Numpy (a Python programming

language module).

Given that it is unfeasible to describe a high-dimensional surface by detailing its behavior

at every possible point, the setup depicted in Figure 3.5 shows an example of a sector that will

have its gradient calculated (mean value for each point in it) and stored in a table with all of the

other sectors’ values.

The bounds of a sector is defined as a ratio of the input values of the features of interest It
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is calculated based on a sensibility variable set by the user. With the ratio of the sectors defined,

the mean gradient is calculated for each one - to summarize the tendency within it (increased or

decreased chance of a prediction class to occur).

These steps, which are reproduced to each class given by the model, led the overall trend in

each sector to be clearly exposed in the next stage in the analysis, natural language generation.

The result is a set of surfaces described by several sectors and their mean gradient values.

The visualization of sectors in a three dimensional space (PDP with two input features) is

shown in Figure 3.5: two features of interest have their range of values determined and the

PD function is calculated to generate the value on the vertical axis (that is, the average of the

probability of the label of interest over all possible values of the non-fixed features).

Figure 3.5: Highlight of a sectors on a PDP (source: author (2020)).

Algorithm 1, in Appendix A, translates the steps described before into code detailing how

the sectors in the PD function surface are determined and how the mean gradient is calculated

in each one of them. Steps in that algorithm are repeated for each label, limited only by a

sensitivity value that bounds the effect of less relevant labels and controls the size of the sectors.

The computed gradient is averaged in each sector to determine a trend; this information feeds

the natural language generation step.

3.1.4 Local explanation: in-sector sample placement

As the plots offered by PDPs and ICE cover the whole space of combinations for input and

output, the result they generate is a global analysis of the model. However, there are scenarios

where one may be interested in a local explanation (that is, the explanation for a classification).

The methods can be adapted so as to produce an approximate local explanation. This approxi-

mation comes from the basic algorithm of the PD functions, which calculates mean values over
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a series of predictions given by a model. The values of a PD function describe a surface on a

N-dimensional space (N being the number of features of study plus 1) which is segmented on

several sectors. Any sample data of interest can be placed in this space, and identified in which

sector it resides (as depicted in Figure 3.6).

Figure 3.6: Sample placement in a sector (source: author (2020)).

So, to advance a bit over topics to be discussed in Section 3.2, a local explanation for a

given point could be:

The provided sample falls in the sector defined by the interval of values 0.1 and 0.2

of feature Volatile Acidity and values 0.1 and 0.2 of feature Alcohol. This sector

has a slight decrease in the probability for the predicted class 6 to occur.

Note that this local analysis is made relative to the features studied in a previous global

analysis, in which a number of features are selected by the user to calculate the PD function.

If one wishes a take more features into account in the local analysis, it is necessary first to

apply the PD calculations to more features (thus increasing the dimensionality of the resulting

representation).

3.2 Natural Language Generation

This section describes techniques that we used to produce textual explanations. The field

of Natural Language Processing (NLP) covers a vast range of different application, such as

machine translation (WOŁK; MARASEK, 2015), sentiment analysis (DOS SANTOS; GATTI,

2014), text summarization (NAZARI; MAHDAVI, 2018).

The present work employed concepts of Natural Language Generation, in particular based
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on the architecture detailed by Reiter and Dale (1997), who thoroughly describes steps to gen-

erate text from data (Figure 3.7).

The Text Planner transforms the input data into structures that will later generate the de-

sired message to the target user. The structure of the output sentences are engineered in the

Sentence Planner, which selects words that will represent information in the final text. This

module may have some intersection with the previous one. Finally, the Linguistic Realiser con-

structs the sentences, according to the structures built in the previous modules and respecting

the grammatical rules of the target language.

Figure 3.7: Full architecture of a NLG system (source: Reiter and Dale (1997)).

The system implemented in this work followed this architecture; however the code did not

follow the strict moularization described by Reiter and Dale (1997). The remainder of this

section discusses the rationale and the implementation of our system.

Aiming to generate a text that could be easily interpreted by any professional, this module

is built to mimic the way a person reads a chart. Usually, the description of a chart focuses on

the rises and falls of a function in some selected ranges of the axis presented.

In natural language, one might say:
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“There is a
1©

high
2©

increase in the probability of label y when feature X varies from

a1 to an and feature Z varies from b1 to bn”

This sentence can be broken down into the following elements:

• trend indicator

Term that indicates whether there is an increase, decrease or no change in the trend of the

analysed plot. It reflects the signal of the gradient calculated in the sector (positive/in-

crease, negative/decrease and near zero/ no tendency ). In the example sentence this is

indicated by a 1© above the word;

• intensity factor

Words that modify the intensity of the trend, from a small intensity (word “minor”) to a

higher intensity (word “major”). The selection of possible words is based on the ampli-

tude of the gradient in the sector analysed. is In the example sentence this is indicated by

a 2© above the word;

• features

Names of the analysed features, listed in the order of the analysis. The example sentence

shows features X and Z ;

• ranges

Interval where this analysis applies to. It is determined by the boundaries of each sector

of the problem. The example sentence shows two ranges, one for each analysed feature:

a1 to an and b1 to bn.

Due to the limited number of options within a section (probability can increase, decrease or

stay the same), the NLG technique we selected was one of dynamic templates (GATT; KRAH-

MER, 2018; REITER; DALE, 2000) as it is itself easily interpretable and manipulable.

The main procedure is as follows:

• For each class label:

– Present the overall trend of the space analysed.

– For each intensity captured by the analysis:

* Describe the ranges of input features for the sector with this trend.
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This procedure is replicated to describe each label within the boundaries determined by the

restrictions of the sensibility value. In other words, labels that are not very relevant (according

to the selected sensibility value) do not lead to any text. Also, this variable controls the size of

each sector: the more sensitive an analysis is, the smaller the sectors are.

As the templates use the same sequence of words to describe each label, the previous pro-

cedure does not produce a fluid text. To circumvent this difficulty, some words in the output

sentences were parameterized (Figure 3.8). That is, some words are replaced by a synonym (or

by the combination of other words) during operation. It is also possible in our system to dif-

ferentiate these markers from the ones used to fill in the values when sentences are generated.

To control the synonyms used in the templates, a dictionary was implemented, as depicted by

Figure 3.9. Each positional mark is replaced by a word or sentence, depending of the previous

ones used before. The rationale behind this was to avoid using the same words on sequential

sentences and, more importantly, to reduce the chance of a frequently used word to be used

again.

Figure 3.8: Example of parameterized template (source: author (2020)).

Figure 3.9: Fragment of the dictionary of synonyms (source: author (2020)).

The implementation of this method was loosely inspired in the term frequency-inverse doc-

ument frequency (TF-IDF) metric, however the proposed metric tries to leave the most used

words with less probability of reuse, instead of leaving them ordered from the most to least

important. While the TF-IDF algorithm calculates the term frequency of tokens in a docu-

ment and multiplies it by the inverse document frequency over all of the documents to find a

balanced score of importance, the developed procedure sets a prior balanced sentence weight
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(to start with an equal sentence importance) and dynamically redoes the calculations of impor-

tance. With each new sentence selected, its weight value is equally divided amongst the other

sentences, and then the currently selected sentence weight is set to zero.

When a textual gap is to be filled, a set of synonyms are selected from the synonym dictio-

nary. At the beginning, each one of these synonyms is selected with the same probability given

by an option weight:

option weight =
1

total number o f options
. (3.2)

After a word is selected, the probability that it is selected again is recalculated so as to

balance balance its frequency on the final text. Starting from the initial state (equal probability

of selection), the following steps describe how this probability changes for each selection:

1. Apply a weighted random selection in the list of options, obtaining one option;

2. Distribute the current probability of usage of this options equally between the other op-

tions in this list;

3. Set the current probability of this option to 0.

The weight update steps can be expressed as follows:

wt+1
j = wt

j +
wi

N−1
,∀w j 6= i,

wt+1
i = 0,

(3.3)

where

wt
i: Weight of the randomly selected option;

wt+1
i : New weight of the randomly selected option;

wt
j: Weight of the other options;

wt+1
j : New weight of the other options;

N: Number of options.

This algorithm generates a more fluid text, as there is no chance that close sentences contain

the same words.

3.3 Implementation and discussion

The implementation of our approach was done using the Python language and several pack-

ages to manipulate data. The framework was made into a package named Natural Language
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Explanations (NaLax) that can be easily imported into any code and applied to any classifier

model. This section presents the resulting implementation and also describes what was learned

during its process of development and the challenges identified during the implementation.

3.3.1 The NaLax package

With the usability of the framework in mind, the development focused on simple functions

that can easily generate results. An explanation can be generated in a single command line:

explanation = ge.gen global explanation(X train, features=feats)

The object ge is an instance of the GenerateExplanations class, which receives the model

to be analysed, a list of names of features to be used in the PD function and the input data to

calculate it (as seen on Figure 3.10).

The method generate global text returns a string with the report for the model given in

the parameters. It manipulates the data sent within the parameters with the method explainer

and generates a text with the generate behavior text method. The sensibility parameter, that

controls the depth of analysis of the framework, is given to this function to regulate the output.

Figure 3.10: Generation of explanations on NaLaX code (source: author (2020)).

Figure 3.11 shows the outputs of a test code written to examine the simplicity of the pack-

age. In it, a menu was used to access the functions of fitting a model and then apply the

technique in it. It is also possible to output the results to a text file, as NaLax can generate a

quite long report if so desired.

An option was implemented so as to generate an explanation for a given individual sample.

Figure 3.12 shows the output for a random sample of data extracted from the Wine Dataset.

This option was introduced after the comments received during the qualifier exam, where

it was pointed out that several requests for explanations with respect to bank decisions are due

to an interest in understanding a single decision. This solution follows the rationale described
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Figure 3.11: Using the NaLaX system (source: author (2020)).

in Section 3.1.4, where local explanation is achieved placing the desired sample point on the

calculated surface of analysis.

Identifying the placement of the sample point, one can describe the trend in its sector so as

to explain the decision. This explanation, however, may not match exactly the value in the input,

as the algorithm calculates mean values over a sector. The higher the value of the sensibility

variable, the more accurate this local analysis tend to be, since the sector in which the sample is

placed is smaller.

3.3.2 Difficulty: The curse of dimensionality

Because PD functions must calculate predictions over all possible combinations of values

for all of the features in a model, our proposal is heavily affected by the size and number of

features of the dataset. Hence, NaLax takes a great deal of computational effort. During the

work the existing libraries were examined to check whether they could be optimized, but it

seems they are already quite efficient.

Figure 3.12: Local explanation (source: author (2020)).
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Still, as an example of difficulties that may emerge, we can imagine a model with 10 fea-

tures. If we wish to apply a PD function to only 2 of them, first we need to determine the ranges

of values we want them to be analysed. Because each feature vary within different ranges, and

the weight of the effects of each one in the model may be different, it is possible to determine

how many points we wish to analyse. If we take 10 equally spaced points for each of the fea-

tures we would have 100 combinations of points of the interested features. To create a surface

of the PD function it is also needed to determine the sample points of the remainder features,

which in this case sum 8 in total. In this scenario there are 108 combinations of values for these

features, assuming the same 10 point for each one. Ultimately, each of the 100 points of the

studied features is combined with these. All of the 108 points where the model would be applied

in combination with the pair in study would have to be averaged, to finally obtain 1 point of the

PD function surface.
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4 EVALUATION

To evaluate our approach, we must test it with human subjects. This section discusses

metrics that evaluate automatically generated texts and describes evaluation runs with human

subjects.

The evaluation runs happened at two different stages of the project, and with two sources

of data. The first dataset is the Wine Quality Dataset with widely known data used to predict

the class of wines. The second dataset focuses on the worldwide pandemic of 2020. Several

datasets have been published aiming to widen the access to data gathered by health professionals

with respect to the COVID-19 virus. We used the Diagnosis of COVID-19 and its Clinical

Spectrum Dataset provided by the Einstein Data4u project, from one of the most prestigious

hospitals in Brazil. Models generated from this dataset can shed light on the pandemic, and

as our framework generates complete textual information about the model, the information

contained in it may help any person without further technical expertise and it can be used as

documentation for future reference.

4.1 Wine Quality Dataset

The evaluation of our proposed approach was based on the generation of an explanation

for the behavior of a random forest model with 300 trees, each with a maximum depth of 50.

We focused on random forests because we wanted to emphasize that our approach is not solely

geared towards large deep neural networks (for which model-specific methods exist). Other

common classifiers can also be quite difficult to understand.

As noted previously, the dataset we used was the Wine Quality Dataset (CORTEZ, 2009), a

dataset containing physicochemical properties related to red and white variants of a Portuguese

wine, with a label determining the class of each sample, from 0 (very bad) to 10 (excellent).
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4.1.1 Unit test

An example of the automatically generated text is presented in Figure 4.1, which describes

how the probability of class 3 wines (the most relevant one) changes when features alcohol

and volatile acidity vary within their range in the training dataset. The text comments on the

probability of each class of wine given the training dataset.

Class 3 have a considerable decrease in chance to occur when
features alcohol and volatile acidity increases.
Next, it is detailed 4 ranges of values so that it is possible to
verify the output variation given the features values:
There is a major decrease of chance for this class to occur
when:

- feature alcohol varies from value 0.14 to 0.46 and
- feature volatile acidity varies from value 0.05 to 0.18,
- feature alcohol varies from value 0.46 to 0.68 and
- feature volatile acidity varies from value 0.05 to 0.18,
- feature alcohol varies from value 0.46 to 0.68 and
- feature volatile acidity varies from value 0.18 to 0.39.

There is a major increase of chance for this class to occur
when:

- feature alcohol varies from value 0.14 to 0.46 and
- feature volatile acidity varies from value 0.18 to 0.39.

Figure 4.1: Text result for the Wine Quality Data Set (source: author (2020)).

Note that this approach is not focused on showing whether the training is balanced, nor

whether the model is properly encoding the data. The output conveys the behavior of the model

in the space of possible values of the features.

Even though the sensitivity variable was set to 0.4 on average (meaning that the first sector

will have 60% of the total size of the feature space) the generated text is quite long if we

consider all labels (Figure 4.1 only contains one class out of eleven). The larger the sensitivity

the smaller the sectors, causing the text to be more detailed.

It is to be expected that with a more complex problem (with more features and labels) the

textual explanation for the model’s behavior will be significantly longer. A longer report is not

a problem: the granularity of the report can be controlled, so the end user can choose anything

from a few paragraphs to a book-length description.

We can see that our system can generate a comprehensive text of the behavior of a model.

The implementation of the sensitivity variable was the most important factor in text generation

as it enabled granular control of the report.
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4.1.2 Evaluation metrics

One metric that may come to mind when dealing with automated generated text is the BLEU

score (PAPINENI, 2002). This scores rates a text on how close it is to a set of source sentences

(generated by humans for a given context). Unfortunately, this metric is aimed at the evaluation

of translations; in the present context there is no human generated text to compare to the output.

Several other metrics that quantify the “complexity” of a text were examined, however none

of them seemed to capture the information needed to classify the generated text as “good” or

“bad”. The literature that focuses on text evaluation tries to match the complexity level of a text

grading it accordingly to the school level of a student or the maturity of a reader. This matching

is achieved mainly by analysing the followings variables:

• Word frequency;

• Word length;

• Sentence length;

• Paragraph length.

Metrics and systems like the Lexile Framework (STENNER, 1996), Pearson Reading Maturity

Metric (LANDAUER, 2011) (based on the LSA algorithm (LANDAUER; DUMAIS, 1997)),

Coh-Metrix (GRAESSER, 2004), and many more well established metrics (Dale-Chall (DALE;

CHALL, 1948), Flesch–Kincaid (KINCAID, 1975), Gunning Fog (GUNNING, 1968) and

SMOG (MCLAUGHLIN, 1969)) have been constructed based on these variables, and others

derived from them, to rate a text with respect to its complexity or level of difficulty (readabil-

ity).

The SMOG metric, used to measure the readability of text, which estimates the years of

education needed to understand it, is calculated as follows (the other metrics have similar ap-

proaches):

grade = 1.043∗

√
number o f polysyllables∗ 30

number o f sentences
+3.291, (4.1)

where the variable number of sentences must be at least 30 in the analysed corpus and the

variable number of polysyllables are words in these sentences that have more than 3 syllables.

Because the generated text here is based on templates, any metrics derived from this vari-

ables would be static or would not vary much so none be used to evaluate our results. This
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difficulty led to the development of a measurement scheme that could adequately evaluate our

approach. Section 4.1.3 describes the metrics that enable fair comparison between the estab-

lished state-of-the-art techniques and the one proposed here, and that try to follow the notion of

a good explanation indicated by Miller (2019).

4.1.3 Experiment with users

To evaluate the effective application of our approach on human readers, an experiment was

conducted on a machine learning class of 48 students from a Master Engineering degree. These

students heard first a 30 minute explanation about interpretability and several tools related to the

field, focusing on LIME, PDP and the proposed framework, then they were asked to participate

on the evaluation experiment.

This experiment consisted of showing the results obtained by two state of the art inter-

pretability model-agnostic techniques: PDP and LIME, an then showing the results obtained by

our approach so as to compare techniques. For each technique presented, students were asked

to score with respect to three criteria, as shown on Figure 4.2.

1. Quick understanding of information: How much effort the student spent to understand

the underlying information represented by the technique.

2. Seemingly reliable result: Whether the result given by the technique appeared correct

and reliable.

Figure 4.2: Example of screen presented to students (source: author (2020)).
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Table 4.1: Results of the experiment
Technique Quick understanding of information Seemingly reliable result Chance of usage

Negative Neutral Positive Negative Neutral Positive Negative Neutral Positive
PDP 1 36 11 12 28 8 1 30 17
LIME 2 29 17 2 22 24 2 22 24
Proposed Technique 3 16 29 5 30 13 4 26 18

3. Chance of usage: Whether the student would use the technique in a real project.

These criteria were related to “satisfaction”, each one of them with possible values: Pos-

itive, Neutral and Negative. For instance, a positive satisfaction for the first criterion means

that little effort was spent to understand the information provided by the method.

The evaluation results presented in Table 4.1 indicate that our approach outperformed other

approaches with respect to the first criterion, while it was equally as satisfactory with respect

to the other criteria — suggesting that textual explanations led to a more satisfactory under-

standing. This is particularly interesting in our setting as students were knowledgeable about

mathematical expressions and graphs; even then text was the preferred.

It is important to point out that this experiment was performed within the ethical require-

ments required by the ethics council in the university – Comitê de Ética em Pesquisa do Hospital

Universitário da USP (CEP-HU/USP) – to conduct researches with individuals. After present-

ing the methodology of this experiment, a representative of this council considered it to be a

public opinion poll, therefore no submission to a special analysis was needed. The response

given by the Committee Secretary can be found in the Appendix B.

4.2 Diagnosis of COVID-19 and its Clinical Spectrum Dataset

Given the dire situation caused by the COVID-19 pandemic, we have examined the benefits

of interpretability techniques over models trained with related medical data. In such cases,

where the interpretation of the results is as important as the result itself, our proposal can be

very useful for professionals to extract as much information as possible from fitted models.

For instance, a medical technician may evaluate whether a model is coherent with medical

knowledge in the literature.

The Diagnosis of COVID-19 and its Clinical Spectrum Dataset was made available to the

public at the Kaggle platform by the researchers of the Einstein Institute. In this dataset there are

over 5.500 entries of patients labeled with positive and negative to COVID-19. The proportion

of positive cases in the dataset is 0.099; over 80% of the data related to blood samples are
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missing. Hence the analysis is complex and demands imputation strategies and techniques to

deal with the unbalanced labels.

4.2.1 Unit test

By processing the COVID-19 dataset we produced a Gradient Boost Classifier with 100

estimators, with a maximum depth of 5, using 35 out of the 110 columns available in the dataset.

The reduced number of columns was due the removal of correlations and mostly null columns.

At the same time, we also developed an interface to make the framework more portable and

accessible to anyone interested in using it to improve interpretability of any classifier.

The result of this development is depicted in Figure 4.3. In this interface the user can run

the model with the desired features and see the resulting explanatory text after the process is

finished.

The generated text for the Gradient Boost Classifier is depicted in Figure 4.4. The text

describes how the probability that class 1 (positive to COVID-19) holds changes when the

Figure 4.3: Web interface (source: author (2020)).
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values of leukocytes and lymphocytes vary.

The analysed model predicts 1 class,and this text details how some features influ-
ence its chance of prediction.
Generally, class 1 have a major increase on the probability to be true when fea-
tures leukocytes and lymphocytes increases.
For this same class, it is detailed above 16 ranges of values that exposes the effect
of the features on the output:
There is a major increase of chance for this class to occur when:

- feature leukocytes varies from value -0.6344 to -0.5014 and
- feature lymphocytes varies from value -0.0592 to -0.0204,
- feature leukocytes varies from value -0.5014 to -0.3951 and
- feature lymphocytes varies from value -0.0592 to -0.0204,
- feature leukocytes varies from value -0.3951 to -0.2664 and
- feature lymphocytes varies from value -0.0592 to -0.0204,
- feature leukocytes varies from value -0.2664 to -0.2115 and
- feature lymphocytes varies from value -0.0592 to -0.0204.

There is a minor increase of chance for this class to occur when:
- feature leukocytes varies from value -0.3951 to -0.2664 and
- feature lymphocytes varies from value -0.2157 to -0.0592,
- feature leukocytes varies from value -0.3951 to -0.2664 and
- feature lymphocytes varies from value 0.0744 to 0.1627.

There is a major increase of chance for this class to occur when:
- feature leukocytes varies from value -0.6344 to -0.5014 and
- feature lymphocytes varies from value -0.2157 to -0.0592,
- feature leukocytes varies from value -0.6344 to -0.5014 and
- feature lymphocytes varies from value -0.0204 to 0.0744,
- feature leukocytes varies from value -0.6344 to -0.5014 and
- feature lymphocytes varies from value 0.0744 to 0.1627.

There is a less significant increase of chance for this class to occur when:
- feature leukocytes varies from value -0.5014 to -0.3951 and
- feature lymphocytes varies from value -0.2157 to -0.0592,
- feature leukocytes varies from value -0.2664 to -0.2115 and
- feature lymphocytes varies from value -0.2157 to -0.0592,
- feature leukocytes varies from value -0.5014 to -0.3951 and
- feature lymphocytes varies from value -0.0204 to 0.0744,
- feature leukocytes varies from value -0.3951 to -0.2664 and
- feature lymphocytes varies from value -0.0204 to 0.0744,
- feature leukocytes varies from value -0.2664 to -0.2115 and
- feature lymphocytes varies from value -0.0204 to 0.0744,
- feature leukocytes varies from value -0.5014 to -0.3951 and
- feature lymphocytes varies from value 0.0744 to 0.1627,
- feature leukocytes varies from value -0.2664 to -0.2115 and
- feature lymphocytes varies from value 0.0744 to 0.1627.

Figure 4.4: Text result for the Diagnosis of COVID-19 and its Clinical Spectrum Dataset
(source: author (2020)).

The long text output presented in Figure 4.4 was produce by a sensibility value set higher
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value to what we did in Section 4.1.1. One can verify details about the classifier with higher

granularity.

4.2.2 Experiment with users

A survey through Google Forms was developed aiming to validate the explanation given by

our approach. The form was presented to a body of more proficient machine learn practitioners.

A total of 49 people participated in the survey.

The survey contained three questions; one of these questions is shown in Figure 4.5 in

connection with a PDP analysis. The participants were also asked to write a text regarding

the techniques presented, where they could openly express their opinions about strengths and

weaknesses of each one.

It is important to note that this survey was also in accordance with the directives given by

CEP-HU/USP as the same protocol was employed and no personal and sensitive information

was asked from the participants.

Figure 4.5: Question example in Google Forms (source: author (2020)).

Each participant first read a text on the importance of interpretability in machine learning.
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Then the participant was presented an image with the output of each technique, and an automatic

explanation about how the output should be interpreted.

Finally, participants rated techniques, again with respect to Section 4.1.3:

1. Quick understanding of information;

2. Seemingly reliable result;

3. Chance of usage.

The possible values were, again: Positive, Neutral and Negative. These values capture the

subjective feeling regarding each technique.

In Figure 4.6 we see the effect of producing too much detail in NaLax when the user is not

explicitly asking for it: other methods are better evaluated. When we examined the positive

responses we can see that the perception of “easiness in reading” is indeed dependent on the

individual.

Figure 4.6: Quick understanding of information (source: author (2020)).

In contrast with the previous result, using a textual representation as the channel of com-

munication seems to bring a higher level of “trustfulness” that surpasses charts. As seen on

Figure 4.7, NaLax gets very positive results and surpasses PDP. In this evaluation, the proposed
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approach received almost equivalent responses as LIME, indicating that it can be considered

really comparable to the state-of-the art techniques of the literature.

Figure 4.7: Seemingly reliable (source: author (2020)).

More modest results are presented at Figure 4.8, where NaLax had more “balanced” scores

and was not as good as the others. However, in contrast with Figure 4.6 we can see that that even

though the general perception was that the approach is not as fast in transferring the information

compared to the others, participants still like it and consider it for use in the future.

Complementing the quantitative results, the analysis of the texts produced by the partic-

ipants students corroborated several facts, and exposed possibilities which were not the main

objective at the beginning of the research. Also, these comments enabled a deeper view of the

users’ perspectives regarding the approach, which could not be perceived by the survey.

Overall, there were mixed comments regarding the level of detail of the text and the amount

of information in it. Some students were not comfortable reading an extensive text, and felt

that this was a negative aspect of the approach, while other students pointed out that the lengthy

texts were useful as they thoroughly explained the effects of the model. More importantly, the

granularity control was deemed positive as one could choose how extensive this resulting text

could be.

As the generation of explanation – even if extensive – was “by design”, some of these

comments reflect the expected portion of users which would not benefit of this level of detail.
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Figure 4.8: Interest in future use (source: author (2020)).

Because the NaLaX implementation is able to regulate the length of its results using a sensibility

variable, on a real scenario these users could set the value of it to the level of their need and

have a more concise explanation (as the one on Section 4.1.3).

The comments presented at Appendix C are excerpts of responses given by a sample of

students that found our approach to be positive, and present their reason over this opinion.

One particular comment emphasized the fact that NaLax is useful to transfer information as it

uses natural language, avoiding abstractions that could create a barrier to understanding and

sometimes needs to be prior learned. It is especially important to have a textual representation

as there are situations where one needs to present information to a visually impaired reader, and

it is not trivial to translate a visual representation of data into information when in this situation.

These results were helpful to expand the opportunities of our approach and brought to light

some aspects that could be better explored. Even the “negative” comments were useful to be

aware of real use scenarios where extensive texts can be harmful to the user understanding.
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5 CONCLUSION AND FUTURE WORK

This document described the generation of textual explanations that clarify the behavior

of classifiers. State of the art model-agnostic interpretability techniques were used and new

algorithms were developed to analyze a classifier through a series of dynamic template-based

sentences. In the proposed method, explanations can be generated with the level of detail de-

termined by the user. The resulting framework generates global explanations that help the user

identify the effect of features. We have also developed a procedure that adapts the global analy-

sis into a local analysis explaining the behavior of a given sample. This sort of local explanation

is, of course, dependent on the level of detail selected by the user.

A few evaluation experiments were designed and applied to evaluate the quality and usabil-

ity of the proposed explanation techniques. The tests captured the quality of the analysis and the

usability of the procedures with real users. The first test, run in 2019 with a partial implemen-

tation of the framework, had undergraduate students to compare the present proposal against

two state-of-the-art techniques, all applied to a well-known dataset in the literature. This test

produced positive responses regarding the proposed method. The same testing procedure was

again applied in 2020 with more proficient researchers (master degree candidates) who took

part in the survey. This second evaluation also produced positive results, placing the proposed

approach amongst the state-of-the-art techniques in the literature.

Future development of this work should improve text generation with regard to finely de-

tailed sections (which are now quite repetitive). Improvements can be achieved by implement-

ing new textual representations for value intervals, combined with the weighted selection algo-

rithm described in Section 3.2. Also, the development of heuristics that can reduce the exponen-

tial complexity problem of our proposal would expand its applications to higher dimensional

settings. Another possible way to continue this would would be to develop a chatbot interface

that could present explanations interactively. One could then study every facet of a model with-

out a single line of code, so as to get a more adequate response than a parameterized textual

template.
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APPENDIX A – ALGORITHM

The algorithm in this appendix determines the sectors in the PD function surface and calcu-

lates the mean gradient for each one of these sectors. Each label is treated separately, as limited

by a sensitivity vale that bounds the effect of labels and controls the size of the sectors.

Comments in the code explain each one of the steps.
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Algorithm 1 Gradient Analysis
Input: pd data (PD data for one particular class)
Output: list of (bound index,mean gradient)

### Initializing variables ###
slices perc sizes← percentual size for each feature in PD
dim stride← empty list
num f eatures← length(pd data.shape)
### Loop to determine the stride in each dimension ###
for i = 0 to num f eatures−1 do

shape size← pd data.shape[i]
perc size← slices perc sizes[i]
dim stride.append(bshape size∗ perc sizec)

end for
do loop← True
slices← empty list
indexes← list with size num f eatures, filled with zeroes
### Loop to create the bounds of the sectors ###
while do loop = True do

bound index← empty list
for i = 0 to num f eatures−1 do

last index← indexes[i]+dim stride[i]
if last index≥ pd data.shape[i] then

last index← pd data.shape[i]−1
end if
bound ind← bound ind +(indexes[i], last index)

end for
### Calculates the mean value in this sector ###
mean grad = mean(grad(pd p data[bound ind]))
slices.append((bound ind,mean grad))
indexes[0] = indexes[0]+dim stride[0]
for i = 1 to num f eatures−1 do

if indexes[i−1]≥ pd p data.shape[i−1] then
indexes[i] = indexes[i]+dim stride[i]
indexes[i−1] = 0

end if
end for
if indexes[−1]≥ pd p data.shape[−1] then

do loop = False
end if

end while
return slices
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APPENDIX B – CEP-USP MAIL

Figure B.1: CEP-USP message on ethical committee analysis (source: author (2019)).



68



69

APPENDIX C – COMMENTS REGARDING THE
TECHNIQUE

Comments that highlights the relevance of the approach

Figure C.1: Students’ comments regarding the technique (source: author (2020)).


