
A Hybrid Cost Model for Evaluating Query Execution Plans

Ning Wang

Thesis submitted to the University of Ottawa
in partial Fulfillment of the requirements for the

Master of Computer Science (Applied Artificial Intelligence)
in Electrical and Computer Engineering

School of Electrical Engineering and Computer Science
Faculty of Engineering
University of Ottawa

© Ning Wang, Ottawa, Canada, 2024

ii

Abstract

Query optimization aims to select a query execution plan among all query paths for a given query. The

query optimization of traditional relational database management systems (RDBMSs) relies on estimating

the cost of the alternative query plans in the query plan search space provided by a cost model. The

classic cost model (CCM) may lead the optimizer to choose query plans with poor execution time due to

inaccurate cardinality estimations and simplifying assumptions [3,4,5]. A learned cost model (LCM)

based on machine learning does not rely on such estimations and learns the cost from runtime [23,29,48].

While learned cost models are shown to improve the average performance, they may not guarantee that

optimal performance will be consistently achieved. In addition, the query plans generated using the LCM

may not necessarily outperform the query plans generated with the CCM. This thesis proposes a hybrid

approach to solve this problem by striking a balance between the LCM and the CCM. The hybrid model

uses the LCM when it is expected to be reliable in selecting a good plan and falls back to the CCM

otherwise. The evaluation results of the hybrid model demonstrate promising performance, indicating

potential for successful use in future applications.

iii

Acknowledgements

I would like to express my sincere gratitude to my advisor, Prof. Verena Kantere, for her constant support

and encouragement during the difficult years of the COVID-19 pandemic, which enabled me to get

through the toughest moments of my life. Her profound knowledge in the database field, her rigor and

passion for research, and her patience have benefited me greatly in this journey towards my master's

degree. Without her guidance, I would not have been able to complete my degree.

I would also like to thank Amin Kamali, a PhD candidate at the University of Ottawa, for his deep

background in machine learning and constructive advice that has always helped me solve my work

problems, and for taking care of my studies and life along the way.

As well, I would like to thank IEEE AIKE, CASCON 2022 and the team for the IBM CAS project for

their approval and advice on my research.

Last but not least, I would like to thank my thesis examiners, Prof. Iluju Kiring and Prof. Tet Yeap from

the University of Ottawa, for their valuable and detailed comments and all the time and effort they have

invested in the evaluation of my thesis.

iv

Table of Contents

Abstract ... ii

Acknowledgements .. iii

List of Figures ... vii

List of Tables ..ix

List of Abbreviations ...x

Chapter 1 Introduction ...1

1.1 Introduction of Query Optimization ..1

1.1.1 Query Optimization and Query Plan .. 1

1.1.2 Query Optimizer and Cost Model .. 2

1.1.3 Existing Challenges in Cost Model .. 3

1.2 Motivation and Problem Statement ...4

1.3 Contribution ...5

1.4 Thesis Organization ...6

Chapter 2 Background and Literature Review.. 7

2.1 Background... 7

2.1.1 Cardinality Estimation ..7

2.1.2 Join Order Enumeration ... 12

2.1.3 Query Rewriting ... 15

2.2 Literature Review .. 20

2.2.1 Application of Statistical Relational Learning in Cardinality Estimation problem................... 21

2.2.2 Application of Deep Learning based method in Cardinality Estimation problem..................... 24

2.2.3 Application of Machine Learning based method in Learned Cost Model 27

2.2.4 Application of Deep Reinforcement Learning based method in Join Order Enumeration 30

2.2.5 Comparison of techniques applied to Query Optimization .. 33

Chapter 3 Introduction of the Hybrid Cost Model .. 37

3.1 The Learned Cost Models and its training-related modules ..37

3.1.1 Plan Generation and Hint Set ... 38

3.1.2 Plan Encoding ...39

3.1.3 The Learned Cost Models .. 39

3.2 The Query Classifier and its training-related modules ..41

3.2.1 Query Encoding ..41

v

3.2.2 Label Generator ..41

3.2.3 Query Classifier ..42

Chapter 4 Experimental Setup ...43

4.1 Database and Working Environment .. 43

4.2 Query Generation .. 43

4.3 Plan Generation ... 45

4.4 Collection of execution time of query plan ... 46

4.5 Data Division ...46

4.6 Implementation Details ... 46

4.6.1 Preprocessing ..46

4.6.2 The Learned Cost Model ..46

4.6.3 The Query Classifier .. 48

4.6.4 Training .. 48

Chapter 5 Experimental Evaluation .. 50

5.1 Evaluation for the Hybrid Cost Model .. 50

5.1.1 Evaluation Process ... 50

5.1.2 Hybrid Model vs the Base Models ... 51

5.2 Exploration for the Relationship between Cost and Execution time ...53

5.2.1 Background and Purpose ..53

5.2.2 Discussion based on Result .. 53

5.2.3 Conclusion ..56

5.3 Exploration for the Comparison of Query Plans generated by LCM and CCM............................... 56

5.3.1 Experiment setup and Result ..56

5.3.3 Conclusion ..58

5.4 Exploration for the Labeling methods for Label Generator .. 58

5.4.1 Comparison of three labeling methods ...58

5.4.2 Result and Evaluation ...60

Chapter 6 Conclusion and Future work ...62

6.1 Conclusion ...62

6.2 Future work ... 63

Bibliography ..65

Appendix A ... 69

Assumptions of Independence and Uniformity ...69

vi

Appendix B ..70

Hint Sets used for Plan Generation ... 70

vii

List of Figures

Figure 1: A query for two tables from TPC-DS and two alternative query plans for executing the query [1]

... 2

Figure 2: Distribution of SubOpt (LCM, CCM) for the test set ..5

Figure 3: An example of Clustering [6] .. 8

Figure 4: The architecture of Artificial Neural Networks [8] ... 10

Figure 5: The conception of Ant Colony Optimization [10] ...13

Figure 6: The architecture of Reinforcement Learning [12] ... 14

Figure 7: The architecture of Recurrent Neural Network[13] ...16

Figure 8: The architecture of Transformer [20] .. 18

Figure 9: The algorithm of Cardinality refinement [37] ... 23

Figure 10: A back-propagation neural network in Lakshimi’s paper [25] ..25

Figure 11: The architecture of the Multi-set Convolutional Network (MSCN) [26]26

Figure 12: Query-level encoding by Neo [29] .. 27

Figure 13: Plan-level encoding by Neo [29] ... 27

Figure 14: The architecture of Neo [29] ..28

Figure 15: Bao’s representation for a query plan tree [23] ... 29

Figure 16: The architecture of learning-based cost estimator [39] ..30

Figure 17: The structure of the neural network in ReJOIN [41] ... 32

Figure 18: The architecture of RTOS [42] .. 33

Figure 19: The architecture of the hybrid cost model ... 37

Figure 20: Training procedure for a learned cost model ... 38

Figure 21: Vectorized query plan tree ...39

Figure 22: An example of TCNN [29] .. 40

Figure 23: Part of the code to generate queries ... 44

Figure 24: Code for one of hint sets for generating query plans ...45

Figure 25: Code for the structure of LCM.. 47

Figure 26: Code to define MLP Classifier .. 48

Figure 27: Part of code for training phase ...49

Figure 28: Comparing plan performance results for the Hybrid Model vs. the Base Models 51

Figure 29: The distribution of Comparison ...57

viii

Figure 30: Pseudocode for labeling with “better” ... 59

Figure 31: Pseudocode for labeling with Q-error ..59

Figure 32: Pseudocode for labeling with Pearson’s coefficient .. 60

ix

List of Tables

Table 1: Parameters of cost and explanation ...23

Table 2: Advantages and disadvantages of the model in the literature ... 35

Table 3: Comparison Results .. 52

Table 4: The co-relation between cost and execution time ... 54

Table 5: The impact of query-level feature for cost and execution time ...54

Table 6: The impact of cardinality for Pearson’s coefficient between cost and execution time55

Table 7: Definition of three special plans ... 57

Table 8: Comparison of different labeling methods ..60

x

List of Abbreviations

RDBMSs Relational Database Management Systems

CCM Classic Cost Model

LCM Learned Cost Model

SQL Structured Query Language

TPC-DS Transaction Processing Performance Council Decision Support Benchmark

MCMC Markov Chain Monte Carlo

CNNs Convolutional Neural Networks

RNNs Recurrent Neural Networks

ACO Ant Colony Optimization

RL Reinforcement Learning

MDP Markov Decision Process

LSTM Long Short-Term Memory

GRU Gated Recurrent Unit

BLEU Bilingual Evaluation Understudy

ROUGE Recall-Oriented Understudy for Gisting Evaluation

UDF User-Defined Functions

BP Back-Propagation

MSCN Multi-set Convolutional Network

MLPs Multilayer Perceptrons

TCNN Tree Convolutional Neural Network

1

Chapter 1

Introduction

1.1 Introduction of Query Optimization

1.1.1 Query Optimization and Query Plan

Querying is a manifestation of human needs, from looking up words in dictionaries to finding

bargains on Amazon. Queries appear in our daily life all the time. In the face of massive needs for

querying, if we can effectively reduce query execution time, it will undoubtedly improve the

efficiency of our work and life. In relational databases, queries are written using SQL statements.

A SQL query tells the relational database "what to ask", but it is up to the database to decide

“how to ask” for it. Generally, the database transforms the query into a number of query plans.

Each plan can be represented as a tree, with each node corresponding to an operator (table scan,

merge join, etc.) that works bottom-up, from the leaf nodes to the root node, to get the query

results. Figure 1[25] shows an example query that joins two tables in the TPC-DS dataset, along

with two alternative query execution plans. Although different query plans for the same SQL

query can yield the same output, the time and resources (e.g., CPU, memory) required for

executing the query vary greatly. Given a query, the optimal query plan may obtain the query

result in sub-seconds, while a bad query plan may take several hours to run. Therefore, choosing

a good query plan can help save a tremendous amount of time and thus improve productivity.

2

Figure 1: A query for two tables from TPC-DS and two alternative query plans for executing the query [1]

1.1.2 Query Optimizer and Cost Model

A traditional RDBMS has a module, the "query optimizer", which is dedicated to select an

optimal query plan from the search space. The query optimizer compares alternative plans in the

search space using a "cost model" that uses statistics from the underlying data, as well as

environmental specifications such as hardware and concurrency settings. The cost model

estimates the cost of each operator and accumulates the costs of all operators in the plan to

3

estimate the total cost. The query optimizer uses the cost model to evaluate different query plans

in its search space in order to choose an optimal plan with the lowest total cost.

The "cost model" mentioned above that the query optimizer relies on is a traditional or classic

cost model (CCM). With the development of machine learning, a new learning-based cost model

has emerged.

Unlike the classic cost models(CCM) that utilizes heuristic-based approaches and relies on

statistical information about the data (e.g., the number of rows in a table, the distribution of key

values, the availability of indexes, etc.) to estimate the cost, the learned cost model uses various

machine learning techniques such as regression, decision trees, neural networks or deep learning

to learn patterns in query execution, learns cost from a large amount of historical query data, such

as actual execution time.

1.1.3 Existing Challenges in Cost Model

In the process of query optimization, the statistical information (cardinality estimation) that CCM

relies on is not always accurate, and even has a large deviation from the actual value. Furthermore,

the queries do not always satisfy the assumptions. All these may lead the optimizer to choose

query plans with poor execution time.

A learned cost model (LCM) does not rely on such statistics and learns the cost from runtime.

While LCMs improve average performance, they may not guarantee that optimal performance is

consistently achieved. Besides, the query plans selected using the LCM may not necessarily

outperform the query plans generated with the CCM. In section 1.4 of this chapter, we will use an

example to illustrate.

4

1.2 Motivation and Problem Statement

Both traditional cost models and learned cost models suffer from the problem of inaccurate

predictions that originates in either cardinality misestimations, simplifying assumptions, or lack

of appropriate and adequate training data. Although learned cost models (LCM)s are able to

improve the average performance compared to the traditional (classic) cost model (CCM), we

found that the LCM does not always outperform CCM through experimentation. To compare the

performance of LCM and CCM, we compute the Suboptimality of LCM compared to CCM, as:

SubOptqi LCM,CCM = − log10
ETLCM(qi)
ETLCM(qi)

(1)

where represents the execution time of the query using approach. With this formulation, values

greater than zero represent an improvement, while the ones less than zero represent regression.

Figure 2 shows the distribution of the for a set of test queries. The positive (blue) bins represent

the scenarios where the LCM outperforms the CCM, and the negative (red) bins represent the

scenarios where the CCM outperforms the LCM. Although the LCM outperforms the CCM in

most cases, the number of cases where it regresses is still significant and cannot be ignored. This

means that in a realistic setting, there would be a significant risk in substituting the CCM with the

LCM, as the latter would perform poorly for many queries in a workload. Thus, the LCM cannot

completely replace the CCM.

In addition to the aforementioned considerations, there are additional aspects that require

attention when utilizing LCMs. These factors are closely related to the previously mentioned

points.

5

Figure 2: Distribution of SubOpt (LCM, CCM) for the test set

When an LCM is appropriately trained, its performance is expected to be satisfactory, provided

that: a) The queries in the workload and the plans being evaluated closely resemble the examples

present in the model's training data, b) The underlying data distribution has not undergone

significant changes since the model was trained, and c) The environment variables and settings

during evaluation are consistent with those employed during the model's training.

While addressing these concerns is crucial for maximizing the effectiveness and reliability of

LCMs, it is important to first develop a technique that can leverage the optimal performance of

both the CCM and the LCMs. By creating such a technique, we can later adapt it to address the

aforementioned concerns as well. Consequently, our primary objective is to answer the following

question: How can we conceptualize a technique that consistently selects a suitable query plan,

utilizing both the CCM and the LCMs?

1.3 Contribution

In this work, we propose a hybrid cost model as a technique that can leverage the best

performance of a CCM and a set of LCMs. The hybrid cost model can strike a balance between

the LCM and the CCM. To do so, a set of LCMs are trained each specialized on a certain class of

6

queries. These LCMs together with the CCM, make up a collection of ‘base models’. Then

alternative plans for each query in the training set are evaluated using each of the base models.

The quality of the estimates generated by each model is determined by evaluating the correlation

between the estimates and runtime. Each query is then labeled by the base model that produces

estimates with the highest correlations. Then a classification model is trained to take queries as

input and predict which base model(s) would produce the best plan.

In summary, this thesis makes the following contributions:

1. It proposes a novel architecture that benefits from the advantage of using LCMs while

minimizing regressions by falling back on the CCM when necessary.

2. It proposes a query classifier that learns to route queries to a base cost model (either learned or

classic) that is expected to provide estimates with a higher correlation with the runtime.

Besides, the thesis was published in IEEE AIKE [49] and IBM CASCONxEVOKE [50], and the

Patent has been filed with the Patent Office in United States of America [51].

1.4 Thesis Organization

The rest of this thesis is organized as follows. Chapter 2 introduces the background of query

optimization and related literature review. Chapter 3 presents the proposed approach for building

the hybrid cost model. Chapter 4 describes the experimental setup used for evaluating the

proposed method. Chapter 5 outlines the evaluation results. Finally, Chapter 6 provides

conclusions and directions for future works.

7

Chapter 2

Background and Literature Review

2.1 Background

Query optimization involves several fields and directions. In recent years, with the development

of machine learning techniques, many machine learning techniques have been applied to query

optimization. In this chapter, we will introduce three important directions of query optimization

and the application of machine learning in that direction.

2.1.1 Cardinality Estimation

The query optimizer relies on cost model to obtain the optimal query plan. And cost model relies

on the statistics of the underlying data, in particular, the size of the data flowing through each

operator, also known as the "cardinality". However, the true cardinalities are typically unknown

at compile-time. Therefore, the optimizer uses various methods to estimate them.

Traditional methods in Cardinality Estimation

Histograms: A histogram is a statistical representation of the data distribution in a column. It

divides the column's values into buckets or ranges and estimates the number of values falling into

each bucket. This information can be used to estimate the cardinality.

Sampling: Sampling involves randomly selecting a subset of the data from a column or table and

analyzing it to estimate the cardinality [2]. The cardinality of the sample is then extrapolated to

estimate the cardinality of the entire dataset.

8

Statistical models: Some DBMSs use statistical models, such as the Bayesian model or the

Markov Chain Monte Carlo (MCMC) method, to estimate cardinality based on observed data

patterns.

Metadata and heuristics: DBMSs often utilize metadata, such as index statistics or data

distribution information, along with heuristics to estimate cardinality. These estimates may be

based on assumptions about the data or historical query execution patterns.

The purpose of cardinality estimation is to predict the number of rows that a query is likely to

process through each plan operator without executing the query plan. The query optimizer uses

the result of the cardinality estimate to compute the total cost of the alternative plans and

ultimately select the best one, i.e., the plan with the lowest cost. However, cardinality estimation

is not always accurate, because realistic databases hardly satisfy the assumptions of independence

and uniformity [3,4,5] which are typically used in classic estimation methods.

Machine Learning methods applied to Cardinality Estimation

The inaccuracy in the cardinality estimates and the simplifying assumptions used in cost models

have motived an outpouring of research in the area with Machine Learning.

(1) Clustering

Figure 3: An example of Clustering [6]

9

As shown in Figure 3, clustering is a technique used in machine learning and data analysis to

group similar data points together based on their characteristics or attributes [7]. It is an

unsupervised learning method, meaning it does not require labeled data or predefined classes. The

goal of clustering is to find inherent patterns or structures within a dataset by organizing the data

points into clusters, where points within the same cluster are more similar to each other compared

to those in different clusters. The similarity or dissimilarity between data points is typically

measured using a distance metric, such as Euclidean distance or cosine similarity. Clustering

algorithms aim to minimize the intra-cluster distance (distance between points within the same

cluster) while maximizing the inter-cluster distance (distance between points in different clusters).

Clustering techniques can be applied in cardinality estimation to help analyze and understand the

distribution of data in a dataset. Here are a few ways clustering can be utilized for cardinality

estimation:

Data Exploration: Clustering can be used to explore the structure of the data. By grouping similar

data points together, it becomes easier to identify patterns, outliers, and potential clusters that

represent distinct entities. This analysis helps in understanding the cardinality of different groups

within the dataset.

Feature Engineering: Clustering can also be employed as a feature engineering technique to

create new features that capture the similarity between data points. These features can then be

used in cardinality estimation models to improve their accuracy. For example, clustering-based

distance metrics, such as the distance to the centroid of a cluster, can be used as features to

estimate the cardinality of a specific entity.

Sampling: Clustering can aid in selecting representative samples from a large dataset for

cardinality estimation. Instead of analyzing the entire dataset, clustering allows for the selection

of a subset of clusters that can adequately represent the entire dataset. This approach can

10

significantly reduce the computational cost of cardinality estimation while still providing reliable

estimates.

Anomaly Detection: Clustering algorithms can help identify anomalies or outliers in the data,

which can impact the accuracy of cardinality estimation. By detecting and treating outliers

separately, more accurate estimates can be obtained for the remaining data points.

Data Preprocessing: Clustering can be utilized as a preprocessing step before cardinality

estimation. It can be applied to remove redundant or highly correlated attributes from the dataset,

reducing the dimensionality and improving the accuracy of the cardinality estimation process.

(2) Deep learning

Figure 4: The architecture of Artificial Neural Networks [8]

Deep learning is a subfield of machine learning that focuses on artificial neural networks [8]. It

aims to enable computers to learn and make intelligent decisions by automatically extracting

meaningful patterns and representations from large amounts of data. Deep learning models are

constructed with multiple layers of interconnected artificial neurons called artificial neural

11

networks (shown in Figure 4). These networks are organized into an input layer, one or more

hidden layers, and an output layer [9]. Each neuron takes in a set of inputs, applies a

mathematical operation to them, and produces an output that is passed to the neurons in the next

layer. This process is repeated through the network until the final output is generated. Here are

some ways deep learning can be utilized for cardinality estimation:

Feature Learning: Deep learning models can learn relevant features from data. In the context of

cardinality estimation, this means that neural networks can learn representations of the data that

capture important patterns and characteristics related to distinct values. By extracting meaningful

features, deep learning models can enhance the accuracy of cardinality estimations.

Neural Network Architectures: Deep learning allows for the design of complex neural network

architectures that can capture intricate relationships within the data. Various types of neural

networks, such as convolutional neural networks (CNNs) and recurrent neural networks (RNNs)

[8], can be used to model the structure of the data and improve cardinality estimation

performance.

Supervised Learning: Deep learning models can be trained using supervised learning techniques,

where they are provided with labeled data consisting of input features and corresponding

cardinality values. By leveraging labeled datasets, neural networks can learn from the examples

and generalize to make accurate cardinality estimations on unseen data.

Ensemble Methods: Deep learning models can be combined with traditional cardinality

estimation techniques through ensemble methods. For example, an ensemble of deep learning

models and statistical estimators can be used to obtain accurate and robust cardinality estimations.

The deep learning models can capture complex patterns, while the statistical estimators can

provide a baseline or refine the results further.

Transfer Learning: Deep learning models trained on one dataset can be fine-tuned or transferred

to a different dataset for cardinality estimation. Transfer learning allows leveraging the learned

12

representations and knowledge from one domain to another, even when the datasets differ. This

can be particularly useful when labeled data for the target dataset is scarce or unavailable.

2.1.2 Join Order Enumeration

Join order enumeration is a technique used in query optimization for relational databases. When

executing a query involving multiple tables, the database optimizer needs to determine the order

in which the tables are joined together. The join order can significantly impact the performance of

the query, as different join orders may result in different intermediate results and execution plans.

Join order enumeration involves considering all possible permutations of table join orders and

evaluating the cost of each permutation. The cost is typically measured based on factors like the

number of disk accesses, CPU usage, and network communication required for the join operation.

The goal of join order enumeration is to find the join order with the lowest estimated cost.

Enumerating all possible join orders is a combinatorial problem, as the number of possible

permutations grows exponentially with the number of tables involved. For example, if a query

involves three tables, there are six possible join orders (3! = 3 x 2 x 1). As the number of tables

increases, the number of possible permutations grows rapidly, making exhaustive enumeration

impractical for queries with many tables.

Machine Learning methods applied to Join Order Enumeration

To address the issue above, query optimizers often employ machine learning methods to reduce

the search space and find a reasonably good join order without considering all permutations.

(1) Ant Colony Optimization

13

Figure 5: The conception of Ant Colony Optimization [10]

Ant Colony Optimization (ACO) is a metaheuristic algorithm inspired by the behavior of ants

searching for food [10]. It is used to solve optimization problems, particularly combinatorial

optimization problems. As shown in Figure 5, ACO algorithms are based on the observation that

ants can collectively find the shortest path between their colony and a food source by depositing

and following pheromone trails [11].

In the context of ACO, a problem is represented as a graph, where nodes represent problem-

specific elements, such as cities, and edges represent connections or paths between them[11]. The

goal is to find the optimal path or combination of elements based on a defined objective function.

The ACO algorithm consists of a population of virtual ants that iteratively build solutions by

moving through the graph. Initially, each ant is placed on a random node, and at each step, it

chooses the next node to move to base on a probabilistic decision rule, often referred to as the

"transition rule."

The decision of each ant is influenced by two main factors: the amount of pheromone on the

edges and the heuristic information, which represents the desirability of choosing a particular path

based on problem-specific knowledge. As ants move, they deposit pheromone on the edges they

traverse, and the amount of pheromone is updated based on the quality of the solutions found.

14

Over time, ants tend to follow the paths with higher pheromone levels, as these paths become

more attractive due to positive feedback. By iteratively repeating the ant movement and updating

the pheromone levels, the algorithm converges towards an optimal or near-optimal solution.

(2) Reinforcement Learning

Figure 6: The architecture of Reinforcement Learning [12]

Reinforcement learning (RL) is a type of machine learning that involves an agent learning to

make decisions in an environment to maximize its cumulative reward (shown in Figure 6). It is

inspired by how humans and animals learn from the consequences of their actions [12].

In reinforcement learning, an agent interacts with an environment, receives feedback in the form

of rewards or penalties, and learns to take actions that lead to the highest possible reward [12].

The agent learns through a trial-and-error process, exploring different actions and observing the

outcomes to understand which actions are more favorable.

The environment is typically represented as a Markov Decision Process (MDP), which consists of

states, actions, transition probabilities, and rewards. At each step, the agent observes the current

state, selects an action, and the environment transitions to a new state based on the action taken

[11]. The agent receives a reward or penalty based on the state transition, providing feedback to

guide its learning. This process is repeated until the agent reaches a terminal state [11].

Here's a high-level overview of how RL can be applied to join order enumeration:

15

State Representation: The first step is to define the state representation. The state typically

includes information about the query, such as the tables, their sizes, cardinalities, and join

predicates.

Action Space: Define the action space, which represents the possible actions the RL agent can

take. In join order enumeration, each action corresponds to selecting the next table to join.

Rewards: Define the reward function that provides feedback to the RL agent. The reward can be

based on query execution time, resource utilization, or any other performance metric. The goal is

to maximize the reward over time [11].

Training: Train the RL agent using techniques like Q-learning or policy gradient methods. The

agent interacts with the environment by selecting actions (choosing the next table to join) based

on its current state [12]. The agent receives rewards based on the performance of the chosen join

order and updates its policy to maximize future rewards.

Exploration-Exploitation Tradeoff: Balancing exploration and exploitation is crucial in RL.

Initially, the agent may explore different join orders to learn their performance. As training

progresses, the agent can exploit its learned policy to choose join orders with higher expected

rewards.

2.1.3 Query Rewriting

Query rewriting refers to the process of transforming or modifying a given database query into an

equivalent query that can be executed more efficiently or effectively. It involves manipulating the

structure or content of the original query while preserving its intended meaning and semantics.

Query rewriting is often employed in database optimization and query processing to improve

query performance, enhance result accuracy, or adapt the query to a different data model or

system.

16

Machine Learning methods applied to Query rewriting

(1) Recurrent Neural Network

Figure 7: The architecture of Recurrent Neural Network[13]

A Recurrent Neural Network (RNN) is a type of artificial neural network that is specifically

designed to process sequential data [13].

As shown in Figure 7, the key characteristic of an RNN is its ability to maintain an internal state

or memory that allows it to process inputs in a sequential manner. This memory allows the

network to retain information about previous inputs and use it to influence the processing of

future inputs [14]. In other words, an RNN has a form of "recurrence" that allows it to learn

patterns and relationships in sequential data.

The basic building block of an RNN is the "recurrent layer," which consists of a set of

interconnected nodes, often referred to as "memory cells" or "hidden units." Each node in the

recurrent layer receives input not only from the current time step but also from its own output in

the previous time step [15]. This feedback loop allows the network to maintain information about

past inputs.

One popular variant of the RNN is the Long Short-Term Memory (LSTM) network [16], which

was designed to address the "vanishing gradient" problem that can occur during training[16]. The

17

LSTM introduces additional mechanisms, such as input and forget gates, to control the

information through the network and make the network to capture long-term dependencies in the

data easily.

Here's a general outline of how RNNs can be applied to query rewriting:

Data Preparation: The first step is to gather a dataset of original queries and their rewritten

versions, which serve as training examples. This dataset needs to be properly annotated,

indicating the correct rewritten form for each original query.

Sequence Encoding: Each query is represented as a sequence of tokens, such as words or

subwords. These tokens are then encoded into a numerical representation, typically using

techniques like word embeddings or subword embeddings (e.g., Word2Vec, GloVe, or FastText).

Recurrent Neural Network Architecture: A common choice for sequence-to-sequence tasks like

query rewriting is the Long Short-Term Memory (LSTM) [17] or Gated Recurrent Unit (GRU)

networks [18]. These RNN architectures are designed to capture long-term dependencies and

handle variable-length input sequences.

Encoder-Decoder Setup: The RNN is trained in an encoder-decoder framework. The encoder

processes the original query tokens, generating a fixed-length vector representation known as the

"context vector" or "thought vector." The decoder takes this context vector and generates the

rewritten query tokens one by one.

Training: The RNN is trained using pairs of original queries and their corresponding rewritten

versions. During training, the model learns to minimize the difference between its generated

rewritten queries and the ground truth rewritten queries. This is typically done by minimizing a

loss function like cross-entropy loss.

Inference: Once the RNN is trained, it can be used to rewrite new, unseen queries. Given an

original query, the encoder processes it to obtain the context vector. The decoder then generates

18

the rewritten query by sampling tokens based on the context vector and its own internal state.

This process continues until an end token or a maximum length is reached.

Evaluation: The rewritten queries generated by the RNN can be evaluated using metrics such as

BLEU (Bilingual Evaluation Understudy) [19]. These metrics compare the generated rewritten

queries against the ground truth rewritten queries to measure their similarity.

(2) Transformer

Figure 8: The architecture of Transformer [20]

A transformer is a type of neural network architecture that was introduced in a 2017 paper titled

"Attention is All You Need" by Vaswani et al [21].

The key idea behind the transformer is self-attention, which allows the model to weigh the

importance of different words or tokens in a sequence when processing it. Instead of relying on

recurrent connections or fixed-length convolutions, the transformer processes the entire input

sequence simultaneously.

19

As shown in Figure 8, the architecture of a transformer consists of an encoder and a decoder. The

encoder takes an input sequence and processes it to create a representation of the input. The

decoder then takes the encoder's representation and generates an output sequence.

The self-attention mechanism in a transformer enables the model to capture the dependencies

between different words or tokens in a sequence more effectively than previous approaches. It

allows the model to attend to different parts of the input sequence based on their relevance to

each other, capturing long-range dependencies and improving the modeling of context [22].

Here's how the Transformer can be applied to query rewriting:

Encoding the original query: The original query is first tokenized into a sequence of tokens. Each

token is then embedded into a dense vector representation, which captures both its semantic and

positional information. The Transformer's encoder takes these embeddings as input and generates

contextualized representations of each token in the query.

Generating alternative queries: Once the original query is encoded, different rewriting strategies

can be employed to generate alternative queries. These strategies can involve paraphrasing,

synonym replacement, expansion, or any other technique aimed at modifying the original query.

The Transformer can be used to generate alternative queries by conditioning the decoder on the

encoded representation of the original query.

Attention mechanism: The Transformer's attention mechanism plays a crucial role in query

rewriting. It allows the model to attend to different parts of the input query during the rewriting

process. By attending to relevant tokens, the Transformer can learn to modify specific aspects of

the query, ensuring that the rewritten query maintains the user's intent while addressing any issues

or limitations of the original query.

Because query optimization covers a wide range of domains and directions, we focus the

attention on the cost model on which the query optimizer depends. So in the literature review, we

focus more on the work that is related to the cost model.

20

2.2 Literature Review

The traditional (classic) cost model (CCM) is often criticized for its inaccuracy. Cardinality

estimation is the "Achilles' heel"[23]. Traditional cardinality estimation methods can be divided

into two main categories: (1) statistical histogram-based estimation and (2) sampling-based

estimation. However, both methods have their own drawbacks. Statistical histogram-based

estimation is subject to the assumptions of independence and uniformity, resulting in estimates

that are often lower than the true values, and obtaining the true distribution of the data is also a

challenge for this method. Sampling-based distributions, on the other hand, are constrained by the

number of samples taken, and in addition to that, the accuracy of estimation drops dramatically

when multiple table joins are involved. And these problems have been studied for more than

thirty years and still have not been completely solved. So, for a long time, building a good query

optimizer was "an art that only a few experts could fully master"[23], and even then, those few

experts needed a lot of engineering time to carefully tune it to improve the query performance of

a particular database. On top of that, they required tedious maintenance. As a result, commercial

optimizers have held a firm grip on the market, and no free open-source query optimizer can

match them. However, even for commercial optimizers, the problem of inaccurate cardinality

estimation still exists, resulting in poor query performance [24].

However, over time, Lakshmi et al. [25] found that machine learning can effectively address the

shortcomings of inaccurate cardinality estimation of query optimizers. In recent years, a growing

number of studies have started to use machine learning or deep model learning to estimate

Cardinality [25,26,27,28], and have shown great potential to surpass traditional methods in terms

of accuracy. However, limited by some special predicates, unsatisfactory generalization

performance on multi-table joins, and special cases of huge deviations between estimated and the

21

actual values, the research in this area have not been largely used in practical database

environments.

Instead, researchers represented by Marcus [29,35] have looked beyond the limitations of

cardinality estimation and focused on implementing "learned query

optimizers"[29,35,30,31,32,33,34,35], which are machine learning-based models that no longer

rely exclusively on traditional cost models. Instead, they use cost as a feature of the model, by

learning the relationship between features and runtime, which in turn improves model prediction

accuracy. These new learned cost models have been shown to improve the average performance

compared to the traditional cost model. However, such learned models require large amounts of

training data and hours of training time, and even then, when the schema of the database changes,

the models then need to be redesigned and re-trained, so the new learned cost models are too

"expensive" compared to traditional cost models. In addition to that, their accuracy can be poor

for queries and plans they have not seen in training. As a result, they cannot be reliably used in

practice even with large amounts of training data and hours of training time.

In the following, we will analyze and discuss more specifically the work mentioned above.

2.2.1 Application of Statistical Relational Learning in Cardinality Estimation

problem

LEO [35] was one of the first attempts to learn from real-world experience to correct errors in

cardinality estimation. It used "adjustment factors" to fix errors in cardinality estimation, and

these factors was defined as the ratio of the estimated value to the actual cardinality value. The

simplistic model fails to take into account other factors such as predicate type and column

correlation.

22

Getoor [36] and Wentao [37] also made some early attempts to use mathematical models to learn

the cardinality of base tables and cross-table queries.

Based on a probabilistic graphical model (RPM), a technique that can compactly represent

complex joint distributions over a high-dimensional space, Getoor et al. [36] cleverly exploit this

joint distribution over multiple attributes, rather than over isolated attributes, to propose a

framework for estimating the selectivity of queries in relational databases. In this framework,

since Bayesian networks can be used to represent the interactions between attributes in a single

table, providing high-quality estimation of the joint distribution over attributes in that table, they

utilize the correlations between attributes of tuples connected by foreign keys to extend Bayesian

networks to relational domains, thus enabling the estimation of selectivity involving queries over

multiple tables. In addition, they have tested and achieved improvements in selective estimation

on a number of databases in the medical, financial, and social domains. However, although the

probabilistic graphical model can represent complex joint distributions over a high-dimensional

space, effectively reduce the constraints on the assumptions of uniformity and independence, such

joint distributions are not exactly equivalent to the true distribution of the data. Besides, once the

schema of database is changed, the probabilistic graphical model will no longer be accurate and

the model will need to be rebuilt. In addition, the database for model testing is too simple and

lacks validation of performance on databases containing multiple multi-attribute tables.

Wentao et al. [37] propose a sampling-based method for refine cardinality estimation. Their work

is based on PostgreSQL. In PostgreSQL, the cost of an operator (Co) in a query plan can be

calculated with the following equation,

Co = �� ⋅ C = Ns ⋅ Cs+ Nr ⋅ Cr + Nt ⋅ Ct + Ni ⋅ Ci + No ⋅ Co [2]

where PostgreSQL uses 5 parameters to define the cost, i.e. C = (Cs, Cr, Ct, Ci, Co)T, and the

23

meanings of the 5 parameters are shown in the following table,

Table 1: Parameters of cost and explanation

Similarly, the values N = (Ns, Nr, Nt, Ni, No)T represent the number of pages sequentially

scanned, the number of pages randomly accessed, and so forth.

Through the equation 2, the factors affecting cost can be divided into two major categories,

namely C and N. For C, the paper designs five independent queries to calibrate the parameter

values of Cs, Cr, Ct, Ci, and Co, respectively. For N, the paper utilizes a sampling-based

algorithm to refine cardinality estimation, and the algorithm proceeds as Figure 9.

Figure 9: The algorithm of Cardinality refinement [37]

Parameters Explanation
Cs the I/O cost to sequentially access a page
Cr the I/O cost to randomly access a page
Ct the CPU cost to process a tuple
Ci the CPU cost to process a tuple via index access
Co the CPU cost to perform an operation such as hash or

aggregation

24

For a given query plan, the cardinality of all operators except Aggregation is refined by two

procedures, Recompute Cardinality and Estimate Cardinality. The refined C and N are then used

to obtain to more accurate cost of the query plan.

Although this divide-and-conquer algorithm improves the reliability of the traditional cost model

to some extent, however, the model does not take into account the potential impact of predicates.

In addition, the model cannot refine operator Aggregation's cardinality estimation, and for

Aggregation, the model still relies on the database optimizer, which still leads to non-negligible

errors in cardinality estimation.

2.2.2 Application of Deep Learning based method in Cardinality Estimation

problem

Researchers such as Lakshmi have brought deep learning to the study of cardinality estimation,

and their work have shown the great potential of neural networks for cardinality estimation.

Lakshmi et al. [25] pioneered the application of deep learning to cardinality estimation. They

proposed a neural network-based approach to learn the selectivity of predicates for user-defined

functions (UDF). The structure of their neural network is shown in Figure 10. They transformed

complex data objects into feature vectors that could be used for neural network training and then

used the features as inputs to a Back-Propagation (BP) neural network to predict selectivity. As

an early application of deep learning in cardinality estimation, their attempt is respectable, but

their study did not involve selectivity of join predicates and resulting in less attention from the

academics.

25

Figure 10: A back-propagation neural network in Lakshimi’s paper [25]

Liu et al. [38] treated the cardinality estimation problem as a supervised learning problem by

generating synthetic queries for a given table and then using these queries to train a neural

network model for predicting the selectivity of queries with range predicates on the base table. In

this way, the model is able to perform cold-start training while collecting workload information at

runtime that can later be used to refine the model. However, the model does not directly deal with

cross-join cardinality estimation and some predicates such as LIKE, IN and IS NOT.

Kipf et al. [26] propose a deep learning based method for predicting cardinality. Join-crossing

correlations is a challenge for cardinality estimation, i.e., cardinality estimation is accurate for a

single table, while two and more tables are involved, cardinality estimation is routinely wrong by

orders of magnitude, which will also lead the optimizer to choose a poor query plan when

enumerating the search space and result in a slow query.

26

Figure 11: The architecture of the Multi-set Convolutional Network (MSCN) [26]

This paper proposes a novel solution to the challenge. It first extracts features from three different

dimensions of the query, i.e., table, joins and predicates, and then feeds these features into a

Multi-set Convolutional Network (MSCN) with three independent Multilayer Perceptrons (MLPs)

to process these three features respectively. Finally, the output of the three Multilayer Perceptrons

(MLPs) are concatenated and fed into an MLP network to predict cardinality (shown in Figure

11).

Although compared to the traditional method, the method based on Multi-set Convolutional

Network (MSCN) improve cardinality estimation, it is limited by the number of joins involved in

the queries used (up to 4 joins), which hardly prove the model’s generalization for queries

involving multiple tables. In addition, there are no complex predicates (e.g., LIKE) in the queries,

so the model is only applied on the queries with a few joins and simple predicates. Furthermore,

the model does not cope well with database changes, i.e., the schema of the database changes the

model will likely need to be redesigned and re-trained.

27

2.2.3 Application of Machine Learning based method in Learned Cost Model

Both the traditional statistical method and the deep learning method for cardinality estimation, are

essentially based on the traditional cost model and refine the cost model, while the learned cost

model goes beyond the traditional cost model to explore optimal a query plan by a systematic

approach of “learning from past failures".

Figure 12: Query-level encoding by Neo [29]

Figure 13: Plan-level encoding by Neo [29]

Neo [29] is a representative of this “new” learned cost model. For a given query, it first extracts

features from query level (e.g., the adjacency matrix representing database table-to-table joins)

28

and plan level (e.g., the type of operator. It utilizes various encoding techniques (e.g., one-hot,

hist, etc.) to represent these features respectively (e.g., Figure 12 and Figure 13).

As shown in Figure 14, Neo takes query-level ending as the original input, uses 3 fully connected

layers to learn and compress the length of query-level features, and then concatenates the output

of fully connected layers with the plan-level encoding (a tree) to generate an augmented tree, as

the input of Tree Convolutional Neural Network (TCNN), which is utilized to process tree-shaped

data. After the process of TCNN, the resulted tree is flattened into a single vector and fed to

another set of fully connected layers to eventually predict the execution time.

Figure 14: The architecture of Neo [29]

Neo, a novel learned cost model, blurs the boundaries between the main components of

traditional query optimizers: cardinality estimation, cost model, and plan search algorithm.

However, Neo is not perfect. For example, the unbalanced way of concatenating the compressed

query-level encoding and plan-level encoding will make query-level features play a more

significant role in the augmented tree. In addition, Neo is limited by the schema of the data, when

a new table is inserted into the database, Neo will face the problem of redesign and re-trained.

Another representation of “new” learned cost model is Bao [23]. Unlike other learned query

optimization approaches that must relearn what the traditional query optimizer

29

already knows, Bao is fully integrated into PostgreSQL as an extension that sits on top of the

optimizer and recognizes that the traditional query optimizer contains decades of carefully hand-

coded wisdom to enhance query optimization.

Given a query, Bao selects a set of coarse-grained hints that limit the search space of the query

optimizer. For the hint, it is the limitation for the operators in the query plan, such as disable hash

join and index scan. Via learning to select different hints for different queries, Bao could discover

and "steer" query optimizer to generate a relatively good query plan for an incoming query.

Specifically, for each incoming query, Bao uses four different hints to generate query plan, which

can prune the search space to some extent, but due to the limitation of hints, Bao is likely to

exclude the optimal query plan, resulting in it can only generate sub-optimal query plan. However,

this does not obscure the merits of Bao. Marcus et al. realized the common problem of learned

optimizers, i.e., the inability to adapt to changes in data and workload, and they designed a novel

representation for a query plan tree to solve this problem, Figure 15 shows how Bao vectorize a

query plan tree. Each node in the query plan is transformed into a vector containing two parts, i.e.,

a one hot encoding of the operator type and cardinality and cost model information. By using this

representation, Bao avoids the need to directly use tables and attributes in the database and does

not have to redesign the representation and retrain the model as other learned cost models do

when the table or attributes changes, thus improving the generalizability.

Figure 15: Bao’s representation for a query plan tree [23]

30

Similarly, Guoliang Li et al. [39] proposed an end-to-end tree-structured model for predicting the

cost as well as the cardinality of a query plan.

Their model (shown in Figure 16) is divided into three parts. Training Data Generator obtains

data by running the workload, the training data is a ternary including <actual execution time of

the query plan, actual cost of the query plan, actual cardinality of the query plan>. Feature

Extractor extracts and encodes features for each node of the execution plan. With the previous

step Feature Extractor, they obtain a tree-structured data where each node is a vector, followed by

a Tree-structured Model to learn a neural network model to predict cost and cardinality. Their

feature extraction approach considers both query-level and plan-level features, however, the

feature extraction and query representation is based on a static specific database, and when the

table changes, the query representation may need to be redesigned.

Figure 16: The architecture of learning-based cost estimator [39]

2.2.4 Application of Deep Reinforcement Learning based method in Join Order

Enumeration

Finding an optimal join order is one of the most studied problems in the database systems

literature [40]. However, exhaustively enumerating and evaluating all possible join orders is too

expensive, because N join relations may lead to N plans [40]. Therefore, query optimizers use

different strategies to limit their search space, however, pruning the search space can easily result

in the negation of the optimal query plan. With the development of machine learning techniques,

31

methods have emerged that use Deep Reinforcement Learning (DRP) to solve the join order

selection problem. First of all, traditional methods are not able to learn from historical experience,

while the exploration and exploitation strategy in reinforcement learning is able to both utilize

good selection methods from previous execution plans and explore new and potentially better

execution plans. Besides, reinforcement learning is almost impossible to exhaust all possible

actions and rewards in the join order selection problem, so neural networks are employed to

estimate them. The following is the representative work in this filed.

The first representative work is ReJOIN [41], which uses a proximal policy optimization

algorithm (Proximal Policy Optimization) to guide the join order selection. The key component is

the neural network used for join order selection. The structure of the neural network is shown in

Figure 17. The input to this neural network is divided into three parts. The first part is a tree

structure vector containing depth information and join information; the second part is the join

predicate information appearing in SQL statements; the third part is the table information and

column information corresponding to the selective predicates appearing in SQL statements. And

the output of the neural network is the probability distribution of each action, through which the

next join action is selected. For different SQL statements, there are different neural network

parameters as well as rewards, and ReJOIN will estimate the rewards afterward based on these

previous reward information, thus enabling the enumeration of the join order of the SQL in the

test set.

32

Figure 17: The structure of the neural network in ReJOIN [41]

However, this approach still relies on the optimizer's cost model, which depends on cardinality

estimates that are prone to large errors. In addition, the query encoding depends on the database.

When the schema of the database changes, it will require the model to be redesigned and

retrained, which is expensive.

Another representative work is RTOS [42], which addresses the deficiencies present in ReJOIN.

The structure of the RTOS is shown in Figure 18, and the state representation of RTOS is divided

into three parts: (1) query information in SQL statements represented by a neural network; (2)

table and column information represented by a neural network; and (3) join tree and join state

information represented by multiple Tree-LSTM combinations. Through this representation,

when a new column needs to be added to the table or a new table needs to be added to the

database, directly apply for a new parameter to represent it without retraining, which solves the

shortcomings of ReJOIN's inability to cope with changes in the database.

33

Figure 18: The architecture of RTOS [42]

However, RTOS uses a linear combination of cost and execution time of query to define loss

during training. In fact, cost is not an estimate of execution time (cf. Index C), and without

figuring out the relationship between cost and execution time, it is questionable to use this

combination to define loss.

2.2.5 Comparison of techniques applied to Query Optimization

In the following, we will give a brief overview of the literature mentioned above and compare

their advantages and disadvantages.

34

Category Producer Advantage Disadvantage
Statistical
method in
cardinality
estimation

LEO
(Markl et al.)

Novel approach to
correct the error in
the cardinality
estimation

 Fails to take predicate type
and column correlation into
account

Getoor et al. Reduce the
constraints on the
assumptions of
Uniformity and
Independence

 The database for model
testing is too simple and lacks
validation of performance on
databases containing multiple
multi-attribute tables.

 Once the schema of database
is changed, the model will
need to be rebuilt.

Wentao et al. The refined
parameters are
helpful to obtain to
more accurate cost
of the query plan

 Do not take into account the
potential impact of predicates.

 Cannot refine some special
operator’s cardinality
estimation, like Aggregation.

Learning based
method in
cardinality
estimation

Lakshmi et al. Pioneering
Introduction of
deep learning to the
cardinality
estimation problem

 Architecture of model is too
simple.

 Do not involve selectivity of
join predicates.

Liu et al. Can perform cold-
start training

 Does not directly deal with
cross-join cardinality
estimation.

 Does not deal with some
predicates such as LIKE, IN
and IS NOT.

Kipf et al. Can provide more
accurate cardinality
estimation

 Only applied on the queries
with a few joins and simple
predicates.

 Do not cope well with
database changes

Learning based
method
in learned cost
model

Neo
(Marcus et al.)

Neo, an end-to-end
model, do not need
to respectively cope
with the main
components of
traditional query
optimizers:
cardinality
estimation, cost
model, and plan
search algorithm.

 The unbalanced way of
concatenating the query-level
features and plan-level
features to represent a query
is questionable.

 Limited by the schema of the
database.

Bao
(Marcus et al.)

 By using hints,
effectively
prune the
search space.

 A novel

 Due to the limitation of hints,
Bao is likely to exclude the
optimal query plan, resulting
in it can only generate sub-
optimal query plan.

35

representation
of query is
able to adapt
to changes in
data and
workload

 Do not take into account of
query-level features.

Guoliang Li et
al.

Considers both
query-level and
plan-level features

 Query representation is based
on a static specific database.
Once the schema of database
is changed, the model will
need to be rebuilt.

Deep
Reinforcement
Learning based
method in Join
Order
Enumeration

ReJOIN
(Marcus et al.)

Use exploration
and exploitation
strategy to learn
from previous
query plan and
explore potential
optimal query plan

 Relies on the optimizer's cost
model which is not always
reliable.

 Query encoding depends on
the database, When the
schema of the database
changes, the model needs to
be redesigned.

RTOS
(Guoliang Li
et al.)

Representation can
cope with database
changes

 The linear combination of
cost and execution time to
define loss function still needs
to be proved.

Table 2: Advantages and disadvantages of the model in the literature

From the Table 2, we can discover that for cardinality estimation, whether using traditional

methods (e.g., histogram or sampling-based methods) or learning based methods, they are still

essentially dependent on the traditional cost model, and to some degree, these methods are able to

reduce the deviation of cardinality estimation from the true value, thus improving the reliability

of the traditional cost model. However, due to some constraints, such as real data often not

satisfying the underlying assumptions (independence and uniformity), and the lack of validation

for queries covering multiple joins and complex predicates, such cardinality estimation-only

improvements cannot guarantee that the traditional cost model will not produce a bad query plan.

For learned cost model, they blur the boundaries between the main components of traditional

query optimizers: cardinality estimation, cost model, and plan search algorithm. However, due to

the representation of query, these models cannot fully and effectively utilize the features of query.

36

In addition, such learning-based models are often constrained by the schema of database, and how

to cope with changes in the data is also a problem we need to consider.

As for join order enumeration problem, comparing to traditional methods, methods based on deep

reinforcement learning can learn from historical experience explore new and potentially better

query plans with exploration and exploitation strategy. However, the encoding of query and the

parameters such as loss function or reward in the training process needs more exploration.

37

Chapter 3

Introduction of the Hybrid Cost Model

The proposed hybrid model, depicted in Figure 19, comprises two key components: a set of base

cost models and a query classifier. The base models are composed of one or more LCMs, along

with the CCM. The hybrid cost model aims to forecast the execution time of query plans,

leveraging a base cost model that is anticipated to provide better estimations compared to the

other base models. The Query Classifier determines this by taking as input the query-level

features and predicting the probability that a particular base model is superior to its alternatives.

The subsequent chapter elaborate on these components in greater detail.

Figure 19: The architecture of the hybrid cost model

3.1 The Learned Cost Models and its training-related modules

The hybrid cost model uses one or more learned cost model(s) along with the classic cost model.

Each learned cost model can be trained to predict plan execution time for a certain class of

queries. The classes of queries can be defined based on their level of complexity (e.g., number of

join and local predicates, aggregations, etc. define the classes) or based on their coverage of the

database schema (subsets of the schema define the classes), or application or workload

38

characteristics or a combination of these factors or other factors. Alternatively, a single model can

be trained on all classes of queries. The choice of model granularity comes down to balancing the

benefits of model specialization versus the risk of severe over-fitting to a certain class. Figure 20

shows the process to train a learned cost model, and the modules in the training process will be

introduced in the following sections in this chapter.

Figure 20: Training procedure for a learned cost model

3.1.1 Plan Generation and Hint Set

For plan generation, it aims at the diversification of query plan. For a given query, we expect to

generate all potential query plans so that the model can learn the properties of various query plans,

and so that the model can learn to choose a query plan that is closer to the optimal query plan.

There are a variety of techniques for plan diversification, for example, methods such as prompts

that enforce certain operators in a plan, random plan generation, or any other technique for plan

diversification that can be used for model training.

For this work, it uses hint sets, which are a technique for directionally guiding the query

optimizer to generate a query plan by enforcing hints for certain operators in the plan. And

Appendix A will offer the detail of the hint sets that model uses.

39

3.1.2 Plan Encoding

Labeling

After obtaining the query plan for the query, in the next step, each query is executed using each

generated plan and the execution time is collected as a label for the learned cost model.

Feature extraction and representation

The next step is to extract the features required to represent the plan tree, for each node of the

plan tree we have used the method proposed by Bao [10], and the features we extracted contain

two parts. The first part is the type of operator which contains scan operator (e.g., table scan,

index scan) and join operator (e.g., merge join, hash join, nested loop join, etc.). The second part

is the cardinality and cost of the node.

Figure 21: Vectorized query plan tree

By extracting the features of all the nodes and connecting these nodes in the shape of a plan tree,

this vectorized tree (shown in Figure 21) is used as a representation of the query plan.

3.1.3 The Learned Cost Models

We train a learned cost model to learn the associations between patterns in the plan trees and

runtime using the obtained plan encoding of all the candidate query plans and the execution time

of query plans. As shown in the figure 20, the learned cost model consists of TCNN and MLP.

40

TCNN and MLP

TCNN is a special Convolutional Neural Network. It is utilized to process tree-shaped data.

Figure 22 shows an example of TCNN, Figure 22 - a represents two query plan trees, Figure 22 -

b contains operator information for each node of the query plan trees, and Figure 22 - c is a Tree

Convolution Filter, the triangle-shaped filter will slide through the tree data. Specifically, the

three nodes of the filter are dot-producted with the parent node, left child and right child. Take the

node corresponding to table as an example, it performs dot product operation with the node

corresponding to filter, i.e., 0 * 1 + 0 * (-1) + 1 * 0 + 0 * 0 + 0 * 0 = 0. This explains why in

Figure 21 - d, the data of the node corresponding to table A becomes 0. Thus, for a given node, by

sliding the filter in the data, the layer in the network will learn its weights from the node itself, its

left child and right child. As such, the parent node will learn the information from its children.

After a number of layers, the information from all children is accumulated to the root parent node.

The TCNN module takes the vectorized plan tree as input and learns kernels that capture the

relationships between the parent nodes and the child nodes. It produces a new vectorized tree.

The nodes of this tree are then aggregated into a one-dimensional vector by dynamic pooling. The

vector produced by the TCNN module is fed to a Multilayer Perceptron (MLP) which in its final

layer predicts the execution time.

(a) (b) (c) (d)

Figure 22: An example of TCNN [29]

41

3.2 The Query Classifier and its training-related modules

The hybrid cost model also includes a classifier that decides which cost model should be used for

planning a given query. This module takes the representation of query-level features as input,

which complements the information from plan-level features. Then it predicts which model the

query should be planned with. Similarly, its training-related modules will also be introduced in

the following sections of this chapter.

3.2.1 Query Encoding

The query encodings are generated using a proprietary method built by the IBM Db2 ML

Optimizer team. It uses the structural information of the query’s join graph and encodes

information about the tables, local predicates, join predicates, aggregations, etc. Therefore, this

representation is agnostic to the plan (join orders and plan operators) that will be used to execute

the query.

3.2.2 Label Generator

A Label Generator (shown in Figure 8) generates the labels required for the Query Classifier. It

collects the predicted execution time from the corresponding LCM(s) and the estimated cost from

the CCM. For each query, it computes the Pearson correlation between the estimated value from

each base model and the actual runtime. The model with the highest correlation with runtime

would be the most suitable for that query. As such, each query is labeled with the base model

with maximum Pearson correlation among all models.

42

3.2.3 Query Classifier

Then, the query representations are produced using the join graph structure. Finally, the query

representations and the labels are used to train the Query Classifier that learns to predict the most

suitable cost model. The final layer of the Query Classifier uses a SoftMax activation function,

which produces the likelihood of superiority of each base model. Therefore, the output values can

alternatively be used as weights for combining the predictions from individual models.

43

Chapter 4

Experimental Setup

4.1 Database and Working Environment

The prototype is built based on IBM Db2 v11.5. The experiments are conducted using the TPC-

DS dataset [43]. This dataset aims to represent real-world decision support scenarios and is

designed to test the scalability, efficiency, and reliability of decision support systems. The

database schema allows for various query patterns such as chain, star, snowflake, and other multi-

dimensional query patterns. It contains 7 fact tables, and 17 dimension tables, where each table

contains an average of 18 columns. All the experiments involved in the thesis are conducted on

IBM servers.

4.2 Query Generation

For most machine learning projects, having a large and processed dataset is essential, but

acquiring this data is often a huge challenge. Not only does it mean collecting data from the real

world, but it also has to be manually cleaned and labeled. To be able to conduct our experiments

effectively, we choose to use synthetic queries, and there are three reasons:

First of all, compared with real data, synthetic data is easy to be generated. We can generate

thousands of queries so that machine learning models can better learn the features of the data.

However, for real data, it is difficult to have access to a large number of queries to conduct our

experiments due to various constraints, such as user privacy. Second, the queries obtained in

reality are often simple queries, and it is difficult to cover multiple tables with one query. For

44

synthetic queries, we can generate more complex queries with multiple tables joins according to

the requirements, so that the learned model can better distinguish the features between different

queries. Finally, the queries obtained in reality tend to query some popular tables, and it is

difficult to cover all the tables in the database. For example, for a movie database, users are

mostly interested in the lead actor and director, but not the cost of costumes and props in the

movie. Synthetic queries do not have this data "bias" and generate queries that cover a wider

range of tables in the database. As mentioned above, for any query, we run all its query plans

with the constraint of hint and collect the execution time. To exclude chance, each plan is

executed three times, and the average value is used as the final execution time.

For the experiment, we generate 800 valid queries (where the query result is not null) with 1 to 10

equality inner-joins. Besides, for local predicates, in order to running into too many zero-tuple

scenarios, we ensure that the number of local predicates in each query is proportional to the

number of joins. For example, Figure 23 shows part of the code for generating queries, where

nJoins is the number of joins in a query and nLoaclPreds is the number of local predicates in a

query. As shown in the code in the figure, for a query with ten joins, it will also have ten local

predicates. As for local predicate operators, we use equality and inequality operators including

(i.e. ==, <, >, <=, >=).

Figure 23: Part of the code to generate queries

45

4.3 Plan Generation

We use a technique similar to Bao [23] for generating plans. We adopt the hist sets that are more

likely to produce valid plans in Db2. This included 12 hint sets out of a total of 46 hint sets

suggested by Bao. The code in Figure 24 shows one of 12 hint sets, with enable Merge Join,

Nested Loop Join, Hash Join and Table Scan and disable Index Scan, which directs the optimizer

to generate query plan that reads data only through table scan. As such, a given query is compiled

using 12 different hint sets to generate 12 query plans. Therefore, the total number of samples

used for training and testing an LCM is 9,600 query-plan combinations.

Figure 24: Code for one of hint sets for generating query plans

46

4.4 Collection of execution time of query plan

As mentioned above, for any query, we run all its query plans with the constraint of hint and

collect the execution time. To exclude chance, each plan is executed three times and the average

value is used as the final execution time.

4.5 Data Division

After collecting all the query plans as well as the execution time, we randomly divide the dataset,

using 80% of the query for training and 20% of the query for testing. Specifically, we use 7680

query plans (640 queries) for training and 1920 query plans (160 queries) for testing.

4.6 Implementation Details

4.6.1 Preprocessing

The execution time used as labels for training the LCMs exhibits a large skewness. In addition, it

can range from milliseconds to several minutes. Therefore, we apply log transformation and min-

max scaling respectively. The log transformation reduces the skewness while the min-max

scaling brings the scale of the values to a range between zero and one.

4.6.2 The Learned Cost Model

In our prototype, we implemented a single LCM that is trained using the entire training data. The

implementation of the LCM consists of two parts, the Tree Convolutional Neural Network

47

(TCNN) and two fully connected layers. The structure of the LCM is shown in the code in Figure

25. In our experiments, TCNN has 3 layers, and the numbers of channels in each layer are 10, 256,

and 128 respectively. Each TCNN layer uses the Rectified Linear Unit (ReLU) for the activation

function. The output of the final layer is aggregated to a one-dimensional vector using dynamic

pooling. Two fully connected layers are used to take the plan representation produced by the

TCNN and predict the execution time of the query plan. The hidden layers consist of 64 cells and

32 cells respectively. Considering that the predicted execution time is a non-negative value, we

use Sigmoid for the activation function of the output layer.

Figure 25: Code for the structure of LCM

48

4.6.3 The Query Classifier

For the query classifier, we use Multi-layer Perceptron (MLP) Classifier (shown in Figure 26),

with two hidden layers each with 200 neurons. SoftMax is used as the activation function so that

the predicted values for each class correspond to the likelihood of the model’s superiority. In a

general case with multiple LCMs, multi-class Cross-entropy can be used as the loss function. In

this prototype, we used a binary Cross-entropy as the model had to choose between two options

only.

Figure 26: Code to define MLP Classifier

4.6.4 Training

Finally, for the training phase (shown in figure 27) of the learned cost model and query classifier,

we use the Adam optimizer [44] to update the parameters with the default learning rate of 0.001.

In addition, we use early stopping [45] to avoid overfitting and Optuna [46] to tune the

hyperparameter of the neural networks.

49

Figure 27: Part of code for training phase

50

Chapter 5

Experimental Evaluation

In this chapter, we show the improvement of the hybrid model over a single model, either the

LCM or the CCM. While we trained a single LCM that is used along with the CCM, this can be

generalized to using multiple LCMs as described in the previous chapters which remains as a

future work. Besides, we have explored the relationship between cost and execution time, the

comparison of query plans generated by LCM and CCM, and labeling methods for Label

Generator. we evaluated their results and offered the conclusion.

5.1 Evaluation for the Hybrid Cost Model

5.1.1 Evaluation Process

As shown in Figure 19, given a query in the testing set, the query representation is given as input

to the query classifier which in turn outputs the suitable cost model. Then based on the choice of

query classifier, the suitable cost model is used to obtain the query plan as the output of the

hybrid model.

While getting the output of the hybrid model, the outputs of the base models are needed too for

evaluation purposes. As such, the same queries in the testing set are used as the input to each of

the base cost models. The execution time of the plans selected by each cost model is recorded as

its performance and used to compute the Sub-optimality of the plan selected by each model

compared to an alternative.

51

5.1.2 Hybrid Model vs the Base Models

We use the function provided in Equation 1 to compare the performance of the hybrid model with

the CCM and the LCM, respectively. As shown in Figure 28, we find that both the hybrid model

and the LCM provide a significant improvement compared to the CCM. While the hybrid model

has a marginal improvement compared to LCM, comparing Figure 28-a and Figure 28-b shows

that the elimination of regressions has been more significant than the degradation of

improvements. Note from these two figures that while the blue bars (improvements) are mostly

preserved when switching from the LCM to the Hybrid model, the red bars (regressions) are

visibly reduced.

Figure 28: Comparing plan performance results for the Hybrid Model vs. the Base Models

In order to show the difference in the overall performance, drawing upon Equation 1, we

introduce the overall suboptimality of an approach compared with a baseline as:

SubOpt M1,M2 =− log10 i (ETM1(qi))�

i (ETM2(qi))�
(3)

where M1 represents the approach under evaluation, M2 represents the baseline approach, and

ETX(qi) represent the execution time of the query qi using approach X. Values greater than zero

represent an overall improvement, while values less than zero represent overall regression. In

52

addition, we capture the percentage of test samples where an approach improves, degrades, or

matches the performance of the baseline. Moreover, we capture the percentage of improvement in

the overall performance on the test workload as:

% runtime change M1,M2 = i (ETM2(qi))� − i (ETM1(qi))�

i (ETM2(qi))�
× 100 (4)

Values greater than zero represent the percentage of improvement compared to the baseline,

while values less than zero represent regressions.

Table 3 outlines these values from each of the three comparisons. Note that compared to the LCM,

the Hybrid approach reduces the regressions by 10% while it causes only an additional 2.5% new

regressions. In addition, the Hybrid approach improves both the total runtime as well as the

overall SubOpt values. Therefore, the findings from Figure 11 are supported by the numerical

comparison displayed in Table 1, indicating that the performance of the Hybrid model surpasses

that of both the LCM and the CCM.

LCM
vs.
CCM

Hybrid
vs.
CCM

Hybrid
vs.
LCM

SubOpt 0.2959
1

0.3021
5

0.0062
4

% queries
improved

33.75
%

31.25% 10%

% queries
unchanged

48.75
%

61.25% 87.5%

% queries
regressed

17.5% 7.5% 2.5%

% runtime
improved

+49.41
%

+50.13
%

+1.43%

Table 3: Comparison Results

53

5.2 Exploration for the Relationship between Cost and Execution time

5.2.1 Background and Purpose

The traditional cost model is widely used in models based on deep reinforcement learning

because of its cheap calculation. Most of these models are based on the optimizer of DBMS and

use cost as reward [29,47,48]. Also, cost will be combined with execution time to redefine loss in

newly published papers [48]. However, the traditional cost model is not a reliable model. The

optimizer will not always generate optimal query plan due to inaccurate cardinality in the cost

model, which results in poor query performance. In addition, cost is not an estimate of execution

time, so without knowing the relation between cost and execution time, using the combination of

them to define loss is debatable. Therefore, we plan to try to explore 2 questions with the help of

experiments:

1. Is there a relationship between cost and execution time, or is there a quantitative relationship?

2. Which features may have an impact on cost and execution time, and how important are these

features for cost and execution time?

5.2.2 Discussion based on Result

We first compared the cost and execution time between different queries and explored the factors

that may affect the cost and execution time. We generated 1000 simple queries (the number of

join table is less than 5) and used DB2 optimizer to generate plans. Then the plans were executed,

and we record the cost and execution time respectively. Finally, we calculated the Pearson’s

coefficient of cost and execution time, and the coefficient is 0.037. In contrast, we generated

54

more complex queries (the number of join table is greater than 5) as input, and the result is 0.020.

The results show that there is no strong linear correlation between them.

Simple queries Complex queries
Pearson’s coefficient
between cost and execution
time

0.03 0.02

Table 4: The co-relation between cost and execution time

Although cost and execution time do not have a strong linear relationship, we still tried to explore

which features may affect cost and execution time. Since it was the initial stage of the experiment,

we collected some obvious features of queries, such as cardinality, number of joining tables,

number of predicates (join predicates and local predicates) and attempted to study the influence of

these factors. The results show that there is a linear relationship between the number of joining

tables and the number of predicates (cycle join was not be considered), so we only needed to

explore the relation among cardinality, the number of joining tables, cost and execution time, and

the results was shown in the table below. (The value in the Table 5 is Pearson coefficient)

Cardinality The number of tables (the
number of predicates)

Cost 0.45 0.35
Execution time 0.06 0.25

Table 5: The impact of query-level feature for cost and execution time

The results show that for queries involving more tables, cardinality has a greater impact on cost

and a relatively smaller influence on execution time, while the number of join table or the number

of predicates will have a greater impact on execution time comparing to cardinality.

55

Since cardinality has a great impact on cost, if we adjust the data for cardinality, the correlation

between cost and execution time may change. And when I try to remove some queries with large

cardinality and then recalculate the correlation between cost and execution time. we find the

correlation coefficient has increased significantly. The results are shown in the Table 6.

Queries (cardinality < 20000) Queries (cardinality < 100)
Pearson’s coefficient
between cost and execution
time

0.05 0.068

Table 6: The impact of cardinality for Pearson’s coefficient between cost and execution time

The previous experiment mainly focused on different queries, trying to explore the impact of the

features of query itself, but the optimizer will parse an incoming query and convert it into a query

plan, so the impact of query plan is also important. As for a query plan, it can be represented as a

plan tree, which consists of a set of operators. So in the next experiment, we tried to make a

horizontal comparison, that is, to study the possible query plans for a single query and then steer

the optimizer to generate promising plans by constraining the operator set. After that, we recorded

the cost and execution time for each query so that we could explore the impact of operators on

cost and execution time. For the experiment, we reused the hint sets of BAO (the operators for

join {merge join, harsh join, nested looped join}, the operators for scan {index, sequential}) [23].

And for each query, we generated six plans (one plan was generated by DB2 optimizer without

any constraints, and the remaining plans were steered by BAO's hint sets). The experiment will be

carried out for simple and complex queries respectively. The experimental results show that for

simple queries, though we hoped to focus on join and did not clear the cache after executing each

query, the type of scan operators still plays the most significant role in the impact of cost and

execution time. In contrast, the effect of the type of join operators appears to be negligible, but for

more complex queries, the type of join operators, especially hash join, begins to affect the cost

56

and execution time, and the execution time of some plans with BAO’s hint set [23] is less than

that of plans generated by the optimizer.

5.2.3 Conclusion

The experimental results show that there is no strong linear correlation between cost and

execution time before, so cost is not a prediction or a substitute for execution time. Among the

query-level features that affect cost and execution time, cardinality and number of join or

predicate in the query both have a critical impact on cost, while for execution time, number of

join or predicate plays a more important role in the execution time. For plan-level features, when

the query involves fewer tables (the number of joins is less than 5), the impact of scan type of

operators on cost and execution time is still the most important, and for more complex queries

(the number of joins is greater than 5), the impact of join type of operators become more

important.

5.3 Exploration for the Comparison of Query Plans generated by LCM and

CCM

5.3.1 Experiment setup and Result

We generated a set of 320 queries for exploring the CCM and LCM, we used the hint set in

Appendix B to diversify our query plans, for each query, we could generate 12 plans, and then

used a single LCM with the CCM to predict the predicted execution time of each plan. Then we

run all query plans and collect the execution time, predicted execution time and cost of each

query plan, and mark three special query plans of each query according to the definition in Table

57

7.

Special plans Definition
CCM_plan the plan of a query with minimum cost.

LCM_plan the plan of a query with minimum predicted
execution time.

Best_plan the plan of a query with minimum true
execution time.

Table 7: Definition of three special plans

We compare the characteristics of the query plan of CCM and LCM with Equation 5.

Comparison(P1, P2) = EX(P1)/EX(P2) (5)

For example, given query 1, the execution time of CCM_plan is 0.533, and the execution time of

Best_plan is 0.524, so Comparison (CCM_plan, Best_plan) equals to 1.015(0.533/0.524). Then

we collect Comparisons of all the queries and obtained its distribution (shown in Figure 29), with

the x-axis being the Comparisons and the y-axis being the number of queries in the corresponding

Comparison interval.

(a)CCM_plan vs Best_plan (b)LCM_plan vs Best_plan (c)LCM_plan vs CCM_plan

Figure 29: The distribution of Comparison

58

5.3.3 Conclusion

From the similar distributions in Figure 29 - a and Figure29 - b, we can find that most of the data

are distributed in [1, 1.05], indicating that in most cases (close to 95%), both CCM and LCM can

produce query plans close to the Optimal query plan. And comparing with Compare (CCM_plan,

Best_plan), more data of Compare (LCM_plan, Best_plan) are closer to 1, which means LCM

can choose a better query plan in many cases.

From Figure 28 - c, we find for 47.5% queries, LCM can choose a better query plan than CCM,

and for 34.0625% queries, the query plans of CCM are better. This further corroborates the

conclusion that not any singe cost model is suitable for all the scenarios, thus a hybrid cost model

can be a better solution.

5.4 Exploration for the Labeling methods for Label Generator

5.4.1 Comparison of three labeling methods

For the Label Generator in Figure 18, whose task is to generate the labels needed for the query

classifier, three different methods are explored to achieve this task. (Because of the early

exploratory stage of the experiment, we reuse the data from Exploration for the Comparison of

Query Plans generated by LCM and CCM in order to improve the efficiency of the experiment.)

59

Methods 1: Labeling with “better”

Figure 30: Pseudocode for labeling with “better”

As shown in Figure 30 this approach is relatively straightforward, i.e., directly comparing the

execution time of LCM_plan and CCM_plan of query, and then labeling with “better” (less

execution time) cost model.

Methods 2: Labeling with Q-error

Figure 31: Pseudocode for labeling with Q-error

As the Figure 31 shows that this method compares the Q-error of the execution time of query plan

of cost model and best query plan, and then uses the cost model with smaller Q-error to label a

query.

60

Methods 3: Labeling with Pearson’s coefficient

Figure 32: Pseudocode for labeling with Pearson’s coefficient

As shown in Figure 32, this approach is done by respectively comparing Pearson’s correlation of

the actual execution time with the predicted execution time and cost of query plan. The cost

model with the higher correlation with the actual execution time will be more suitable for that

query. Therefore, each query is marked as the cost model that has the maximum Pearson’s

coefficient with the actual execution time.

5.4.2 Result and Evaluation

Then we use each of the three methods to generate the required labels for the query classifier and

train the query classifier, and then we use accuracy, precision, recall and F1-score to evaluate the

query classifier, the following is the result:

Labeling methods accuracy precision recall F1-score
Labeling with “better” 0.600 0.639 0.650 0.598
Labeling with Q-error 0.600 0.639 0.650 0.598
Labeling with
Pearson’s coefficient

0.667 0.643 0.667 0.641

Table 8: Comparison of different labeling methods

61

As shown in Table 8, method 1 and method 2 have the same experimental results, and the result

of method 3 is better than the other two methods, so we generate labels with the method based on

Pearson's coefficient.

62

Chapter 6

Conclusion and Future work

6.1 Conclusion

Query optimization has been an important research direction in the field of databases, and many

traditional and emerging deep learning methods have been applied to this field with remarkable

results. We examined in a comprehensive manner the existing research literature that uses

machine and deep learning to tackle various parts of the query optimization process and we

discussed their strengths and weaknesses. Ultimately, we focused on the classical cost model

(CCM), on which the Optimizer of every DBMS relies in order to estimate the cost of alternative

query plans, and devised a novel version of it, the Learned Cost Model (LCM), which learns the

query plan costs using machine learning models. Our study showed that although the LCM had a

better average performance than CCM, the LCM cannot completely replace the CCM, especially

when testing queries do not closely resemble the examples present in the model's training data.

Consequently, we proposed a technique that consistently selects a suitable query plan, utilizing

both the CCM and the LCMs, which we call the hybrid cost model. The later capitalizes on the

advantages of both LCMs and the CCM. Upon receiving a query, the hybrid cost model selects

the most appropriate cost model(s) for planning. It learns to rely on a base model when it is

expected to deliver better performance than the alternatives.

The hybrid cost model mainly consists of the LCMs, the CCM and the Query Classifier. The

LCMs is a set of base learned cost models. The hybrid cost model aims to forecast the execution

time of query plans, leveraging a base cost model that is anticipated to provide better estimations

compared to the other base models. The Query Classifier determines this by taking as input the

63

query-level features and predicting the probability that a particular base model is superior to its

alternatives.

In the process of developing the hybrid cost model, we encountered problems such as labeling

and diversifying the training data. In order to overcome these challenges, we did a series of

exploratory experiments, such as exploring the effects of different labeling methods on the model

performance and combining the evaluation results to determine the correlation between the

estimates and runtime as the better labeling methods. For data diversity, we referred to the

solutions in the literature [23], such as the use of hint set to guide the optimizer directed to

generate query plan. We expand the hint set on the basis of the solutions in the literature, and the

expanded hint set takes into account the possibility of the combination of all operators under DB2

and solves the shortcomings of the literature [23] that the optimal query plan may be excluded

because of the use of hint set.

Finally, we conducted a series of experiments to optimize the hybrid cost model and compare the

results of the hybrid cost model with those of the single model in different dimensions. The

experimental results show that the hybrid approach improves both the total runtime as well as the

overall SubOpt values, and the conclusions from the experiments are validated by different

dimensions, such as numerical comparison and the distribution of SubOpt, indicating that the

performance of the hybrid cost model surpasses that of both the LCM and the CCM.

6.2 Future work

In the future, we plan to continue the research described in this thesis by following four directions.

First, we will explore thoroughly the possibility to use multiple LCMs working together. Our goal

is to develop different LCMs, so that each one is specialized, i.e., trained, on a specific category

of queries and/or query plans. Our utmost goal is to combine the results of multiple LCMs, e.g.,

64

based on the correlation between the incoming query and each LCM, multiply the correlation

with the result of the corresponding LCM, and then sum up all the results to be the final output.

Second, we will explore the model's generalization to out-of-distribution data. In this thesis we

have already verified that the model has promising performance on in-distribution data. However,

in order to apply the hybrid model into a production environment, the model still needs to be

generalized to data that is not following the distribution of the data on which it was trained. One

possible improvement is to use unsupervised learning, such as clustering, but since our current

representation of query are too long for clustering to be effective, we can consider using a

combination of Auto-Encoder and Graph Neural Network to obtain compressed features.

Third, we will explore the model for different databases and different DBMS. The hybrid model

is currently developed based on the IBM DB2 DBMS environment using TPC-DS as the

experimental database. In order to validate the model's performance in different DBMS

environments and databases, we intend to port the model to PostgreSQL and use more databases,

such as IMDB [52], to evaluate the model.

Finally, we will explore the self-learning ability of the model. Since the hybrid model is trained in

off-line state, we would like to try to learn new queries in on-line state in the next experiments.

This involves optimizing some of the training mechanisms, such as when the model needs to be

trained again and whether the re-training is based on the original model. We will explore these

mechanisms in the following experiments.

65

Bibliography

[1] Amin K, Verena K, et al. Robust Query Optimization using Probabilistic Machine Learning.
Submitted for publication, 2024.

[2] Encyclopedia of database systems[M]. New York, NY, USA:: Springer, 2009: 506-511.

[3] Leis V, Gubichev A, Mirchev A, et al. How good are query optimizers, really?[J].
Proceedings of the VLDB Endowment, 2015, 9(3): 204-215.

[4] Leis V, Radke B, Gubichev A, et al. Cardinality Estimation Done Right: Index-Based Join
Sampling[C] Cidr. 2017: 8-11.

[5] Wang X, Qu C, Wu W, et al. Are we ready for learned cardinality estimation?[J]. Proceedings
of the VLDB Endowment, 2021, 14(9): 1640-1654.

[6] K-ModesClustering.https://medium.com/@shailja.nitp2013/k-modesclustering-ef6d9ef06449
[Online; accessed 14.03.2023].

[7] sparkbyexamples.com/machine-learning/clustering-in-machine-learning/ [Online; accessed
14.03.2023].

[8] Zacarias-Morales N, Pancardo P, Hernández-Nolasco J A, et al. Attention-inspired artificial
neural networks for speech processing: A systematic review[J]. Symmetry, 2021, 13(2):
214.

[9] Bojnordi E, Mousavirad S J, Pedram M, et al. Improving the Generalisation Ability of Neural
Networks Using a Lévy Flight Distribution Algorithm for Classification Problems[J].
New Generation Computing, 2023, 41(2): 225-242.

[10] Liu Y, Cao B, Li H. Improving ant colony optimization algorithm with epsilon greedy and
Levy flight[J]. Complex & Intelligent Systems, 2021, 7: 1711-1722.

[11] Sammut C, Webb G I. Encyclopedia of machine learning and data mining[M]. Springer
Publishing Company, Incorporated, 2017:8.

[12] Learn the essentials of Reinforcement Learning.
https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292 [Online;
accessed 22.06.2023].

[13] The Basics of Recurrent Neural Networks. https://pub.towardsai.net/whirlwind-tour-of-rnns-
a11effb7808f [Online; accessed 14.03.2023].

[14] Pavlatos C, Makris E, Fotis G, et al. Utilization of Artificial Neural Networks for Precise
Electrical Load Prediction[J]. Technologies, 2023, 11(3): 70.

https://medium.com/@shailja.nitp2013/k-modesclustering-ef6d9ef06449
https://towardsdatascience.com/reinforcement-learning-101-e24b50e1d292
https://pub.towardsai.net/whirlwind-tour-of-rnns-a11effb7808f
https://pub.towardsai.net/whirlwind-tour-of-rnns-a11effb7808f

66

[15] Ganchev T D, Parsopoulos K E, Vrahatis M N, et al. Partially connected locally recurrent
probabilistic neural networks[M]. INTECH Open Access Publisher, 2008: 377-400.

[16] What is Long Short Term Memory (LSTM). https://www.knowledgehut.com/blog/web-
development/long-short-term-memory [Online; accessed 15.04.2023].

[17] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, 1997, 9(8):
1735-1780.

[18] Cho K, Van Merriënboer B, Gulcehre C, et al. Learning phrase representations using RNN
encoder-decoder for statistical machine translation[J]. Computer Science, 2014: 1724-
1734.

[19] Papineni K, Roukos S, Ward T, et al. Bleu: a method for automatic evaluation of machine
translation[C]. Proceedings of the 40th annual meeting of the Association for
Computational Linguistics. 2002: 311-318.

[20] Transformers: An Overview of the Most Novel AI Architecture.
https://towardsdatascience.com/transformers-an-overview-of-the-most-novel-ai-
architecture-cdd7961eef84 [Online; accessed 24.06.2023].

[21] Vaswani A, Shazeer N, Parmar N, et al. Attention is all you need[J]. Advances in neural
information processing systems, 2017, 30: 6000 - 6010.

[22] Shao Y, Cheng Y, Nelson S J, et al. Hybrid Value-Aware Transformer Architecture for Joint
Learning from Longitudinal and Non-Longitudinal Clinical Data[J]. Journal of
personalized medicine, 2023, 13(7): 1070-1070.

[23] Marcus R, Negi P, Mao H, et al. Bao: Making learned query optimization practical[C].
Proceedings of the 2021 International Conference on Management of Data. 2021: 1275-
1288.

[24] Amin K. Experimental methodologies for applying artificial intelligence techniques in the
field of query optimization. Report for Comprehensive Exam, UOttawa, 2022.

[25] Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive uncertainty
estimation using deep ensembles[J]. Advances in neural information processing systems,
2017, 30: 6405 - 6416.

[26] Kipf A, Kipf T, Radke B, et al. Learned cardinalities: Estimating correlated joins with deep
learning[J]. Biennal Conference on Innovative Data Systems Research (CIDR 2019).
2019: 9-16.

[27] Liu H, Xu M, Yu Z, et al. Cardinality estimation using neural networks[C]. Proceedings of
the 25th Annual International Conference on Computer Science and Software
Engineering. 2015: 53-59.

[28] Wu C, Jindal A, Amizadeh S, et al. Towards a learning optimizer for shared clouds[J].
Proceedings of the VLDB Endowment, 2018, 12(3): 210-222.

https://www.knowledgehut.com/blog/web-development/long-short-term-memory
https://www.knowledgehut.com/blog/web-development/long-short-term-memory
https://towardsdatascience.com/transformers-an-overview-of-the-most-novel-ai-architecture-cdd7961eef84
https://towardsdatascience.com/transformers-an-overview-of-the-most-novel-ai-architecture-cdd7961eef84

67

[29] Marcus R, Negi P, Mao H, et al. Neo: A learned query optimizer[J]. Proceedings of the Vldb
Endowment, 2019, 12(11): 1705–1718.

[30] Yu X, Chai C, Li G, et al. Cost-based or Learning-based? A Hybrid Query Optimizer for
Query Plan Selection[J]. Proceedings of the VLDB Endowment, 2022, 15(13): 3924-
3936.

[31] Sun L, Ji T, Li C, et al. DeepO: A Learned Query Optimizer[C]//Proceedings of the 2022
International Conference on Management of Data. 2022: 2421-2424.

[32] Markl V. Making Learned Query Optimization Practical: A Technical Perspective[J]. ACM
SIGMOD Record, 2022, 51(1): 5-5.

[33] Akdere M, Çetintemel U, Riondato M, et al. Learning-based query performance modeling
and prediction[C]. 2012 IEEE 28th International Conference on Data Engineering. IEEE,
2012: 390-401.

[34] Marcus R. Learned Query Superoptimization[J]. Joint Workshops at 49th International
Conference on Very Large Data Bases (VLDBW’23), 2023, 3462.

[35] Markl V, Lohman G M, Raman V. LEO: An autonomic query optimizer for DB2[J]. IBM
Systems Journal, 2003, 42(1): 98-106.

[36] Getoor L, Taskar B, Koller D. Selectivity estimation using probabilistic models[C].
Proceedings of the 2001 ACM SIGMOD international conference on Management of
data. 2001: 461-472.

[37] Wu W, Chi Y, Zhu S, et al. Predicting query execution time: Are optimizer cost models
really unusable?[C]. 2013 IEEE 29th International Conference on Data Engineering
(ICDE). IEEE, 2013: 1081-1092.

[38] Liu H, Xu M, Yu Z, et al. Cardinality estimation using neural networks[C]. Proceedings of
the 25th Annual International Conference on Computer Science and Software
Engineering. 2015: 53-59.

[39] Sun J, Li G. An end-to-end learning-based cost estimator[J]. Proceedings of the VLDB
Endowment, 2019, 13(3):307-319.

[40] Ono K, Lohman G M. Measuring the Complexity of Join Enumeration in Query
Optimization[C]. VLDB. 1990, 97: 314-325.

[41] Marcus R, Papaemmanouil O. Deep reinforcement learning for join order enumeration[C].
Proceedings of the First International Workshop on Exploiting Artificial Intelligence
Techniques for Data Management. 2018: 1-4.

[42] Yu X, Li G, Chai C, et al. Reinforcement learning with tree-lstm for join order
selection[C]//2020 IEEE 36th International Conference on Data Engineering (ICDE).
IEEE, 2020: 1297-1308.

68

[43] Nambiar R O, Poess M. The Making of TPC-DS[C]. VLDB. 2006, 6: 1049-1058.

[44] Kingma D P, Ba J. Adam: A method for stochastic optimization[J]. International Conference
on Learning Representations, 2015.

[45] Caruana R, Lawrence S, Giles C. Overfitting in neural nets: Backpropagation, conjugate
gradient, and early stopping[J]. Advances in neural information processing systems, 2000,
13: 402-408.

[46] Akiba T, Sano S, Yanase T, et al. Optuna: A next-generation hyperparameter optimization
framework[C]. Proceedings of the 25th ACM SIGKDD international conference on
knowledge discovery & data mining. 2019: 2623-2631.

[47] Krishnan S, Yang Z, Goldberg K, et al. Learning to optimize join queries with deep
reinforcement learning[J]. arXiv preprint arXiv:1808.03196, 2018.

[48] Yu X, Li G, Chai C, et al. Reinforcement learning with tree-lstm for join order selection[C].
2020 IEEE 36th International Conference on Data Engineering (ICDE). IEEE, 2020:
1297-1308.

[49] Ning Wang, Seyed Mohammad Amin Kamali, Verena Kantere, Calisto Zuzarte, Vincent
Corvinelli, Brandon Frendo, Stephen Donoghue. A Hybrid Cost Model for Evaluating
Query Execution Plans. In IEEE AIKE, Paper, 2023-09-22.

[50] Seyed Mohammad Amin Kamali, Ning Wang, Verena Kantere, Calisto Zuzarte, Brandon
Frendo, Stephen Donoghue.Workload-driven query planning and optimization using
machine learning. In In IBM CASCONxEVOKE Exhibition, Poster, 2021-11-23.

[51] Seyed Mohammad Amin Kamali, Vincent Corvinelli, Calisto Zuzarte, Brandon Frendo,
Verena Kantere, Ning Wang. Hybrid cost model for query execution plan evaluation,
Submitted Patent, 2023-11-15.

[52] Burch M, Baulig G, Boley T, et al. IMDb Explorer: visual exploration of a movie
database[C]//Proceedings of the 11th International Symposium on Visual Information
Communication and Interaction. 2018: 88-91.

69

Appendix A

Assumptions of Independence and Uniformity

Traditional methods for Cardinality estimation generally follows two assumptions [26].

Independence: The first common assumption is the attribute-value independence assumption, in

the assumption, distributions of individual attributes are independent of each other, and the joint

distribution is the product of the single-attribute distributions.

Uniformity: The second common assumption is the join uniformity assumption, which assumes

that one tuple from one relation is equally likely to be joined to any tuple from a second relation.

70

Appendix B

Hint Sets used for Plan Generation

Upon using each of the following hint sets, the operators included in the set are enabled and other

operators are disabled:

Hint 1: {merge join, nested loop join, hash join, index scan, table scan}

Hint 2: {merge join, nested loop join, hash join, table scan}

Hint 3: {merge join, nested loop join, hash join, index scan}

Hint 4: {nested loop join, hash join, table scan}

Hint 5: {nested loop join, hash join, index scan}

Hint 6: {nested loop join, hash join, index scan, table scan}

Hint 7: {merge join, nested loop join, table scan}

Hint 8: {merge join, nested loop join, index scan}

Hint 9: {merge join, nested loop join, index scan, table scan}

Hint 10: {nested loop join, table scan}

Hint 11: {nested loop join, index scan}

Hint 12: {nested loop join, index scan, table scan}

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	Chapter 1Introduction
	1.1 Introduction of Query Optimization
	1.1.1 Query Optimization and Query Plan
	1.1.2 Query Optimizer and Cost Model
	1.1.3 Existing Challenges in Cost Model
	1.2 Motivation and Problem Statement
	1.3 Contribution
	1.4 Thesis Organization

	Chapter 2 Background and Literature Review
	2.1 Background
	2.1.1 Cardinality Estimation
	2.1.2 Join Order Enumeration
	2.1.3 Query Rewriting
	2.2 Literature Review
	2.2.1 Application of Statistical Relational Learni
	2.2.2 Application of Deep Learning based method in
	2.2.3 Application of Machine Learning based method
	2.2.4 Application of Deep Reinforcement Learning b
	2.2.5 Comparison of techniques applied to Query Op

	Chapter 3Introduction of the Hybrid Cost Model
	3.1 The Learned Cost Models and its training-relat
	3.1.1 Plan Generation and Hint Set
	3.1.2 Plan Encoding
	3.1.3 The Learned Cost Models
	3.2 The Query Classifier and its training-related
	3.2.1 Query Encoding
	3.2.2 Label Generator
	3.2.3 Query Classifier

	Chapter 4Experimental Setup
	4.1 Database and Working Environment
	4.2 Query Generation
	4.3 Plan Generation
	4.4 Collection of execution time of query plan
	4.5 Data Division
	4.6 Implementation Details
	4.6.1 Preprocessing
	4.6.2 The Learned Cost Model
	4.6.3 The Query Classifier
	4.6.4 Training

	Chapter 5Experimental Evaluation
	5.1 Evaluation for the Hybrid Cost Model
	5.1.1 Evaluation Process
	5.1.2 Hybrid Model vs the Base Models
	5.2 Exploration for the Relationship between Cost
	5.2.1 Background and Purpose
	5.2.2 Discussion based on Result
	5.2.3 Conclusion
	5.3 Exploration for the Comparison of Query Plans
	5.3.1 Experiment setup and Result
	5.3.3 Conclusion
	5.4 Exploration for the Labeling methods for Label
	5.4.1 Comparison of three labeling methods
	5.4.2 Result and Evaluation

	Chapter 6Conclusion and Future work
	6.1 Conclusion
	6.2 Future work
	Assumptions of Independence and Uniformity
	Hint Sets used for Plan Generation

