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Abstract—Ultrasonic motors used in high-precision mecha-
tronics are characterized by strong frictional effects, which are
among the main problems in precision motion control. The
traditional methods apply model-based nonlinear feedforward
to compensate the friction, thus requiring closed-loop stability
and safety constraint considerations. Implementation of these
methods requires computation power. This paper introduces a
systematic approach using piecewise affine models to emulate
the friction effect of the motor motion. The well-known model
predictive control method is employed to deal with piecewise
affine models. The increased complexity of the model offers a
higher tracking precision on a simpler gain scheduling scheme.

I. INTRODUCTION

The ultrasonic motor (USM) is a type of piezoelectric
actuator which uses some form of piezoelectric material
and is implemented on the basis of piezoelectric effect.
The USM offers advantages of high resolution and speed
to ensure the precision and repeatability, so it is widely
used in precision engineering, robots and medical/surgical
instruments where high accuracy is required. Different from
the typical piezoelectric actuator (PA) driven directly by the
deformation of the piezoelectric material when a voltage
applies, the USM provides motions by the friction between
the piezoelectric material on the stator and the rotor. Thus,
the USM offers another advantage of theoretically unlimited
travel distance in comparison with the typical PA.

In the friction-based motion of USM, frictional forces
are the main disturbance that degrades the closed loop
performance. Because the friction presents a nonlinear switch
which is dependent on the motion direction, using a single
linear model to design a linear controller results in inaccuracy
especially at low-speed control [1]. Additionally, a practical
controller should respect the physical limitations of the motor
input and safety constraints on the system variables (e.g.,
position range, speed).

Most of the existing control designs to deal with the
friction are based on decoupling the friction model from the
linear motion system and mitigating it through a nonlinear
model-based input beside a linear regulator such as PID.
Along this perspective, much research efforts have been
focusing on building accurate friction models [2]–[4]. The
compensation, usually of bang-bang type in practice, resolves
the friction problem and leaves PID with other unmeasured
disturbances including the friction model mismatch. The

approaches are simple to implement and if properly tuned,
they provide fast transient response, good static accuracy and
robustness to the motor parameter variations [5]. However,
the nonlinear compensation is contingent on asymptotic
stability, which relies on the specified friction model. The
frictional effects can also depend on rotor position and
system degeneration, so a fixed friction model may require
computing time to be evaluated. Finally, such control
strategies do not systematically deal with constraints on the
control input and variables, so manual safety designs must
be implemented. .

A recent rising approach to deal with friction in electrical
drive is based on piecewise affine (PWA) modeling of the
nonlinear frictional effects. In [6], [7], the authors modeled
motion with static friction and applied it on model predictive
control (MPC) to design time-optimal control strategies. The
tracking performance is promising although the method still
depends on the choice of friction models and no robustness
is considered. Secondly, mixed-integer linear programming
results in too many regions in the look-up tables [6], thus
solution complexity is increased.

This paper builds a robust optimal controller for ultrasonic
motors. The commonly used friction models are approx-
imated over linear segments directly by experiment data,
thus nonlinear model identification in existing solutions is
avoided. This model also describes Stribeck effect instead
of simple static friction in [7]. Specially, an integral MPC
design imposes the robustness on model-plant mismatch near
zero-speed to further mitigate the friction. Using quadratic
programming simplifies the number of regions to look up for
the system state. Finally, real-time control is implemented by
a gain-scheduling table so the implementation complexity is
comparable to the traditional feedforward PID.

In Section II, the ultrasonic drive and its discrete time
hybrid model are described. We show how the piecewise
affine model can fit in the description of the friction. Integral
MPC with robustness design is presented in Section III.
Simulation studies are described in Section IV before final
implementation on the experiment setup is reported in Section
V.

Notations

y, v denote position and velocity of the motor. F, f are the
general friction and its components. A,B,C,D are matrices
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of a state space dynamics. Indices i, j are the linear dy-
namics and subspace index, respectively. All sets mentioned
in this context are polyhedral sets.

II. ULTRASONIC MOTOR

A. System Description

Friction bar 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 
𝑠𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤 

𝐶𝐶𝐶𝐶𝐶𝐶 

Fig. 1. Linear ultrasonic motor structure and motion description.

In this paper, the USM manufactured by Physik Instru-
mente (PI) GmbH & Co. KG. (model number M-663) is
used. Its internal structure (without the encoder) and working
principle are shown in Fig. 1. Its motion is based on a
alumina tip attached to the piezo-ceramic plate (the stator),
segmented on one side by two electrodes. Depending on the
desired direction of motion, the left or right electrode of
the piezo-ceramic plate is excited with a standing wave to
produce high-frequency vibration. Because of the asymmetric
characteristic of the standing wave, the tip moves along an
inclined linear path with respect to the friction bar surface
and drives the rotor forward or backward. Each oscillatory
cycle of the tip can transfer a 0.3 µm linear movement to
the friction bar. With the high-frequency oscillation, it will
result in a smooth and continuous rotor motion. Besides, the
drive C-185, manufactured by the same company, is used to
convert analog input signals into the required high-frequency
drive signals.

For control purpose, in the next section, the relationship
between the input and the rotor motion is described by a
normal friction-motion model, subject to certain operating
constraints: travel range (±9.5 mm), velocity (400 mm/s) and
input voltage (±10 V ).

B. Piecewise Affine Model of Motion

Consider a classical linear motion model which takes the
form [

ẏ
v̇

]
=

[
0 1
a b

] [
y
v

]
+

[
0
c

]
(u− F (v)) (1)

where y, v is the rotor position and velocity; F (v), the
friction as shown in Fig. 2, consists of the constant Coulomb
friction fc, viscous friction fv = kv and Stribek effect fs
showing how the friction continuously decreases as the motor
accelerates.

From there, the motion system of ultrasonic motor can be
represented in four regions A-D, as in Fig. 2. Because the
viscosity is linear in v, models in regions A and D can be

F 

velocity 0 

A B C D 

vp vn 

fv 

fc 

fs 

Fig. 2. Motion friction described by linear segments over four regions from
A to D.

Fig. 3. Identify static friction values using sine wave input.

represented by (1). In regions B and C, the same structure can
be employed to approximate the system, but with different
linear dynamics; the complexity in the pre-sliding regime will
be addressed by the robust design in Section III.

First, the relationship from input to rotor position are
identified. This is done by modeling the function between
effective inputs (input minus static friction) and the position
output. Also, by assuming symmetry in the friction model,
two input signals are required: one to model the motion in
regions B and C and another to model the motion in regions
A and D. The correlation at very low speed and normal
speed are measured. The asymmetric static friction values
at which the motor starts moving, determined by injecting a
sine wave function with low frequency and amplitude 3 V ,
are fcp = 2.5 V, fcn = −2.9 V as seen from Fig. 3.

Since the average static friction is 2.5V and −2.9V
respectively for positive and negative directions, test inputs
with double frequency square waves and magnitude u =
±5V and u = ±3V are used to model the input-position
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Fig. 4. Model validation at two input ranges around u1 = 5 (left) and u2 = 3 (right)

correlation. By removing the friction force from the test
inputs, the two models {Ai, Bi}, i = 1, 2) are obtained
and validated in Fig. 4. The defining planes between the
regions are taken at the velocity vn, vp obtained by applying
u = ±3 V so the regions B and C safely encompass the
nonlinear friction model. By removing the friction force
from the test inputs, the two models {Ai, Bi}, i = 1, 2 are
obtained and validated in Fig. 4.

Denote the state x =
[
y v

]T
. The piecewise affine model,

after being transformed to discrete time, can be formally
defined in the four convex subspaces

xk+1 =


A1xk +B1(uk − fcp) if v ≥ vp (Ω1)

A1xk +B1(uk − fcn) if v ≤ vn (Ω2)

A2xk +B2(uk − fcp) if 0 ≤ v ≤ vp (Ω3)(2)
A2xk +B2(uk − fcn) if vn ≤ v ≤ 0 (Ω4)

III. INTEGRAL MPC CONTROL

In this section, the integral model predictive design is
presented, consisting of state augmentation, MPC tracking
formulation and MPC design.

Since this paper emphasizes on the position tracking, a

new augmented system (x̄k, ūk, ȳk) isxk+1

rk+1

θk+1

 =

Ai Bi 0
0 1 0
Ci −1 1

xkrk
θk

+

Bi

1
0

uk
ȳk =

[
Ci 0 0

]
x̄k (3)

Due to the motion system characteristics that the model
description already contains an integrator, it is not necessary
to use ∆u-tracking formula here. Instead, integrating state θk
is introduced for zero-offset warranty.

An MPC optimal control scheme uses the system (3)
to predict the output error ahead in time and uses current
feedback errors to compensate any disturbance. The general
form of MPC is stated as follows

V o
N (x̄0, Ũ) = min.

Ū
x̄TNPj x̄N

+

N−1∑
k=0

(x̄Tk C̄
T
j QC̄j x̄k + ūTkRūk) (4)

subj. to x̄k ∈ X, ūk ∈ U k = 0, ..., N − 1; x̄N ∈ Xif ,

ūN = Kj x̄k + dj k ≥ N
where different prediction models in (3) are used if x̄k ∈
Ωj (j = 1, 2, 3, 4). X,U are the state and input constraint set.



After N control steps, the scheme expects the state to reside
inside the terminal regions Xjf , which is also an control
invariant set defined by a linear state feedback ū = Kj x̄+dj
(with auxiliary input dj).

Stability analysis for hybrid (PWA) systems using MPC
has been analyzed carefully in [8] where the design of
terminal cost Pj and terminal set Xjf is proposed. In this
paper, however, we more focus on the robust design aspect.
Because regions A, D and B, C shares the same linear
dynamics, the MPC design only needs to consider two cases
for {A1, B1} and {A2, B2}. The purpose is to keep the
system state to stay within a terminal constraint invariant set
inside the dynamic {A2, B2} (near the switching surface of
the friction) by a robust gain K2. Such a gain can be designed
specifically for the dynamic P2 with bounded disturbance
assumption. The rest of this section describes a unique MPC
component design.

Terminal gain: Consider again the augmented dynamics
from (3). Let di = fcp (or fcn), take the feedback input
ūfb = Kix̄ as K1 = KLQR(Q,R) and K2 such that the
following system

x̄k+1 = Ā2x̄k + B̄2(ūfbk + wk)

ȳk = C̄2x̄k (5)

is robust against the friction model mismatch w (|w| ≤ w∗).
This design can use one of many existing techniques in the
literature to deal with input disturbance. For this application,
a non-recursive method for H∞ [9] is applied to solve the
related discrete-time Riccati equation (DARE). The obtained
gain K2 guarantees

‖Twy‖∞ ≤ γ (6)

where Twy is the transfer function from wk to yk and γ is
the infimum of the H∞ design.

Terminal cost: To guarantee the monotonous decrease of
the cost function V o

N inside the terminal set, the terminal cost
Pi should satisfy

(Ai +BiKi)
TPi(Ai +BiKi)− Pi ≤ −Q−KT

i RKi (7)

This condition can be solved efficiently using linear matrix
inequalities (LMI). Note that P1 can be calculated easily by
taking equality in (7) and solve a discrete ARE.

Terminal set: The common terminal set Xf = Xif (i =
1, 2) is the maximal positively invariant set inside regions
B and C and computed based on the gain K2 and the
system constraints. For an arbitrary set Z, define the operator
Φ(Z) = {x̄| (A2 + B2K2)x̄ ∈ Z}. Let X0 be the largest
possible compact polyhedron such that

X0 ⊂ {x̄| (x, u) ∈ X× U} ∩ (Ω2 ∪ Ω3).

Xk = Φ(Xk−1) ∩Xk−1, i = 1, 2, ... (8)

As proved in [8], this iterative procedure can be completed
in finite step and Xf = limk→∞ Xk.

The overall MPC controller design is calculated using
multiparametric toolbox (MPT) [10].
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Fig. 5. Performance of a normal MPC controller tuned by [11] on the outer
model {A1, B1}.

IV. SIMULATION STUDY AND EXPERIMENT

A. Simulation Studies

In this section, the preceding theoretical development is
applied to a simulation example. For this study, we assume
that the ultrasonic motor has a similar linear model as the
models identified from experiment data in Section II, but
a different friction form. This choice gives a relative good
performance for large changes of set point (Fig. 5). In fact,
the response is fast since u(k) = umax = 10 V only powers
up the actuator to a velocity v(k) = 180 mm/s, smaller than
vmax = 400 mm/s.

In another study, the robust effective of the prosed control
strategy is tested. To simulate a friction uncertainty, we
assume that the ultrasonic motor has a similar linear model
as the models identified from experiment data in Section II,
but a different friction form. The identified parameters are
fcp = 2.0V, fcn = −2.6V and

A1 =

[
0.9968 6.289× 10−4

−5.544 0.3623

]
, B1 =

[
4.616× 10−3

3.493

]
A2 =

[
0.9990 6.312× 10−4

−1.658 0.3662

]
, B2 =

[
2.033× 10−3

1.636

]
(9)

while the assumed parameters are fcp = 2.4V, fcn = −2.9V ,
A1, B1 unchanged and

A2 =

[
0.9990 6.312× 10−4

−1.658 0.4000

]
, B2 =

[
2.033× 10−3

1.636

]
(10)
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Fig. 6. Simulated output errors with friction model mismatch for (a) LQR
MPC design and (b) proposed robust MPC.

An increase in A2(2, 2) represents a steeper negative slope
of fs (Fig. 2).

Two MPC schemes are compared: LQR MPC and the
proposed controller with the additional robust design. Both
MPCs are designed with control horizon N = 5 and
weighting matrices Q = diag{104, 0.5, 104}, R = 0.001.
The choice of Q,R is tuned by the guideline in [11]. Fig. 6
shows the tracking errors, velocities and inputs after a step
change in the reference. It can be seen that when friction
mismatch presents, the output error shows an oscillation
around the setpoint. Through the H∞ design, the oscillation
magnitude is substantially reduced from 0.03 mm to 0.014

mm. Hence, the effect of mitigating the friction model error
is demonstrated by the proposed method.

B. Experiment

Fig. 7. Ultrasonic drive control system.

In this section, real time experiments are also carried out
on an ultrasonic drive system (see Fig. 7). The setup uses the
PI M-663 with velocity limit 400 mm/s and travel range 19
mm. The dSPACE control development and rapid prototyping
system, in particular, the DS1104 board, is used, which
integrates the whole development cycle seamlessly into a
single environment. MATLAB/Simulink can be directly used
in dPSACE. The sampling period for this test is chosen as 1
ms.

The commonly used relay-PID tuning is chosen to compare
with the propose method. In this experiment, the system
model at u = 3V is used for relay tuning to obtain PID
gain

K =
[
34.96 0.09674 1545.5

]
(11)

While it may not offer the best PID tuning in all situation,
relay-PID exhibits a large integrating factor to overcome the
friction, thus achieving a fast rising time and zero-offset.
These characteristics can be used to evaluate the performance
of the MPC method.

Parametric programming is used to solve the MPC problem
for PWA models. The obtained controller is implemented
under a lookup table form with 23 regions where only matrix
multiplication and comparison are performed.

uk = Kix̄k + di if x̄k ∈ CRi i = 1, 2, ..., 23 (12)

This feasible form is no more complicated than the traditional
PID plus nonlinear compensations. Additionally, in order
to remove the error oscillation observed in the simulation
studies, a dead band with small ε > 0 is imposed for the
input.

uk =

{
0 if |v| ≤ ε
uMPC if |v| > ε (13)
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Fig. 8. Experiment results when comparing relay-PID (before) and the
proposed method (after).

The deadband could be implemented as a pre-condition prior
to evaluating (12).

Tracking response of a square wave trajectory (f = 1
Hz, A = 1 mm) is shown in Fig. 8. In Fig. 8(a) the
tracking output shows that relay-PID creates an overshoot
created about 0.5 mm, which is undesirable. The proposed
method can achieve a rising time as fast as the large-integrator
PID, and produce no overshoot. Hence, improved steady-state
tracking is shown. Fig. 8(b) shows a smooth decreasing of
velocity towards zero, implying that the friction uncertainty
around the stationary point.

V. CONCLUSION

A robust MPC method has been developed for com-
pensation of friction arising in linear ultrasonic motors.

The objective of the control scheme is to achieve good
static tracking performance in the presence of the uncertain
friction modeling. This is obtained by incorporating linear
friction inside the hybrid plant model and designing a robust
terminal gain for MPC. Simulation and experimental results
have shown that the proposed compensation technique can
overcome the limitations of the relay-PID tuning while
attaining a simple real-time implementation.
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