
HAL Id: hal-00818104
https://hal.science/hal-00818104

Submitted on 11 May 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic Parameter Identification of Actuation
Redundant Parallel Robots: Application to the DualV

Sébastien Briot, Maxime Gautier, Sébastien Krut

To cite this version:
Sébastien Briot, Maxime Gautier, Sébastien Krut. Dynamic Parameter Identification of Actuation
Redundant Parallel Robots: Application to the DualV. AIM: Advanced Intelligent Mechatronics, Jul
2013, Wollongong, Australia. pp.637-643, �10.1109/AIM.2013.6584164�. �hal-00818104�

https://hal.science/hal-00818104
https://hal.archives-ouvertes.fr


Dynamic Parameter Identification of Actuation Redundant Parallel
Robots: Application to the DualV

Sébastien Briot1, Maxime Gautier2 and Śebastien Krut3

Abstract— Off-line robot dynamic identification methods are
based on the use of the Inverse Dynamic Identification Model
(IDIM), which calculates the joint forces/torques (estimated as
the product of the known control signal - the input reference of
the motor current loop - by the joint drive gains) that are linear
in relation to the dynamic parameters, and on the use of linear
least squares technique to calculate the parameters (IDIM-LS
technique). However, as actuation redundant parallel robots are
over-constrained, their IDIM has infinity of solutions for the
force/torque prediction, depending on the value of the desired
overconstraint that is a priori unknown in the identification
process. As a result, theIDIM cannot be used as it.

This paper proposes a modified formulation for theIDIM of
actuation redundant robots that can be used for identification
purpose. This formulation consists of projecting the input
torques/forces on the platform coordinates, thus leading to a
unique solution of the model that can thus be used in the identi-
fication process. The identification of the inertial parameters of
a planar parallel robot with actuation redundancy, the DualV,
is then carried out using this modified IDIM. Experimental
results show the validity of the method.

I. I NTRODUCTION

Parallel robots are increasingly being used since a few
decades. This is due to their main advantages compared
to their serial counterparts that are: (i) a higher intrinsic
rigidity, (ii) a larger payload-to-weight ratio and (iii) higher
velocity and acceleration capacities [1]. However, their main
drawback is probably the presence of singularities in the
workspace. In order to overcome this difficulty, actuation re-
dundancy can be used [2], [3]. Actuation redundancy means
that the robot has more actuators than degrees of freedom
(dof) to control and is thus over-constrained. Overconstraints
can be smartly used to improve the robot properties, such as
increasing the acceleration or payload capacities [4] or even
decreasing the backlash [5]. However, this involves the use
of more complicated controllers.

Several control approaches could be envisaged [6], [7], but
it appears that, for high-speed robots or when varying loads
have to be compensated (e.g. in pick-and-place operations or
machining), computed torque control is generally used [5],
[8]. This approach requires an accurate identification of the
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dynamic model of the robot with the load [9], which can be
obtained if two main conditions are satisfied:

1) a well-tuned derivative band-pass filtering of actuated
joints position is used to calculate the actuated joints
velocities and accelerations, and

2) the values of actuator drive gainsgτ are accurately
known to calculate the actuator force/torque as the
product of the known control signal computed by the
numerical controller of the robot (the current refer-
ences) by the drive gains

The usual identification procedure of the robot dynamic
parameters requires the computation of the inverse dynamic
identification model (IDIM ) of the studied robot that gives
the values of the input forces/torques as a function of the
robot configuration, velocity and acceleration [10]. However,
for actuation redundant parallel robots, the inverse dynamic
model is not unique and depends on the overconstraint
in the mechanism that cannot bea priori known in the
identification process. Thus,identification using the usual
IDIM for redundant parallel robots cannot be carried out.

In this paper, a modified formulation of theIDIM for
actuation redundant parallel robots is proposed that does
not require the knowledge of the overconstraint and the
identification of a 3dof planar parallel robot with actuation
redundancy named the DualV [11] is carried out. To the best
of our knowledge, the identification of the inertial parameters
of actuation redundant parallel robots was never achieved
before.

This paper is divided as follows. Section II presents some
recalls on the computation of theIDIM of parallel robots
without actuation redundancy. These recalls are necessaryas
the computation of theIDIM of actuation redundant parallel
robots is partially based on some mathematical derivations
shown in this part and to understand why the usualIDIM
cannot be used in the identification procedure. Then, Sec-
tion III presents the new formulation of theIDIM for the
identification of parallel robots with actuation redundancy.
Section IV briefly recalls the identification procedure and
experimental results on the DualV are presented in Section
V. Finally, in Section VI, conclusions are drawn.

II. I NVERSEDYNAMIC IDENTIFICATION MODEL OF

PARALLEL ROBOTS WITH NO ACTUATION REDUNDANCY

A. Computation of the IDIM for Parallel Robots with no
Actuation Redundancy

A parallel robot is a complex multi-body system having
several closed loops (Fig. 1(a)). It is composed of a moving
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Fig. 1. A general parallel robot.

platform connected to a fixed base byn legs, each composed
of mi elements. It is considered here that there is one actuator
by leg, but the method can be easily extended to robots with
several actuators by legs.

The computation ofIDIM of parallel robots withno
actuation redundancyis decomposed into two steps [12]:

1) all closed loops are virtually opened to make the
platform virtually disassembled from the rest of the
structure (Fig. 1(b)); each leg joint is virtually con-
sidered actuated (even for unactuated actual joints) so
that the robot becomes a tree structure with a free
body: the platform; the dynamic model of the tree
structure and of the free platform is then computed
using a systematic procedure based on the Newton-
Euler principle, and

2) the loops are then closed using the loop-closure equa-
tions and the Lagrange multipliers, which involve the
computation of robot Jacobian matrices.

In what follows, the computation of theIDIM of the virtual
tree structure and of the platform is recalled, and then a
straightforward way to compute the Jacobian matrices for
closing the loops is detailed.

B. IDIM of Tree Open Loop Robots

It is known that the complete rigid dynamic model of any
open-loop tree structure can be linearly written in term of a
(nt × 1) vector with respect to the standard parametersχstt

[10] (nt denotes the total number of joints for the virtual
tree structure),

τidmt
(qt, q̇t, q̈t) = IDMstt (qt, q̇t, q̈t)χstt (1)

whereτidmt
is the(nt × 1) vector of the virtual input efforts

of the tree structure,IDMstt is the (nt × nstt) Jacobian
matrix of τidmt

, with respect to the(nstt × 1) vector χstt

of the standard parameters given byχT
stt

= [χ1T
st , χ

2T
st ,

. . . χntT
st ] andqt, q̇t, q̈t are the vectors of the joint positions,

velocities and accelerations, respectively.
For rigid robots, the vectorχj

st of link j is composed of
14 standard parameters described as:

• xxj , xyj , xzj , yyj , yzj , zzj are the 6 components of the
inertia matrix of link j at the origin of framej,

• mxj ,myj ,mzj are the 3 components of the first mo-
ment of link j,

• mj is its mass,
• iaj is the total inertia moment for rotor and gears,
• fvj , fsj are the viscous and Coulomb friction coeffi-

cients in the joint, respectively, andτoffj = τofffsj +
τoffτj is an offset parameter which regroups the current
amplifier offsetτoffτj and the asymmetrical Coulomb
friction coefficientτofffsj .

In the same vein, theIDIM of the platform can be obtained
as:

τp
(

x, t, ṫ
)

= IDMp

(

x, t, ṫ
)

χp (2)

whereτp is the (6× 1) vector of platform reaction wrench,
IDMp is the(6× 10) Jacobian matrix ofτp, with respect to
the (10× 1) vectorχp of the platform standard parameters
andx, t, ṫ are the platform position, twist and acceleration
screw, respectively.

Several methods can be used to systematically derive
these equations. Here, an algorithm based on the use of
the modified Denavit-Hartenberg robot geometric description
and the Newton-Euler principle is applied. This modeling is
known to give the dynamic model equations in the most
compact form [10].

C. IDIM of Parallel Robots with no Actuation Redundancy

The IDIM of the virtual tree structure and of the free
moving platform does not take into account the closed
loop characteristics of parallel robots: among all joint and
platform coordinatesqt andx, resp., only a subset denoted
asq is independent (the actual actuated joints positions). As
a result, vectorsqt andx can be computed as functions of
q using the loop-closure equations [1],

ft(q,qt) = 0, fp(q,x) = 0 (3)

Differentiating (3) with respect to time, all joint and
platform velocities and accelerations can be computed using
the following expressions:

Atq̇t +Btq̇ = 0 ⇒ q̇t = −A−1
t Btq̇ = Jtq̇, (4)

Apv +Bpq̇ = 0 ⇒ v = −A−1
p Bpq̇ = Jpq̇, (5)

Atq̈t + Ȧtq̇t +Btq̈+ Ḃtq̇ = 0

⇒ q̈t = −A−1
t (Ȧtq̇t +Btq̈+ Ḃtq̇),

(6)

Apv̇ + Ȧpv +Bpq̈+ Ḃpq̇ = 0

⇒ v̇ = −A−1
p (Ȧpv +Bpq̈+ Ḃpq̇)

(7)

where matricesAt, Ap (Bt, Bp, resp.) can be obtained
through the differentiation of the loop-closure equations(3)
with respect to all joint coordinatesqt and the platform
coordinates (actuated joints positions, resp.), i.e.

At =

[

∂ft
∂qt

]

, Bt =

[

∂ft
∂q

]

Ap =

[

∂fp
∂x

]

, Bp =

[

∂fp
∂q

] (8)

andv represent a subset of independent coordinates in the
platform twistt (dimv ≤ 6), i.e.

t = Dv (9)



In the case of robots with 6dof, D is the identity matrix.
It should be mentioned that in the case of parallel robots

without actuation redundancy, the matricesAp andBp are
square of dimension(n× n). Moreover, it is necessary to
emphasize the fact that the computation of matricesAt and
Bt is generally not straightforward. Therefore, it is preferable
to:

1) express the kinematic relation between the independent
coordinatesvtk of the twists for all leg extremities
Cmk,k and the velocities of all jointsq̇t, vtk =
Jkq̇t (the matrix Jk stackles all Jacobian matrices
corresponding to the displacements of the last joint for
each serial legs and is a square matrix of dimension
((n (mi − 1))× (n (mi − 1)))),

2) express the kinematic relation between the platform
velocitiesv and the velocitiesvtk of all leg extremities
Cmk,k (Fig. 1(a)), vtk = Jtkv (Jtk is a matrix of
dimension((n (mi − 1))× n) and this relation can be
obtained by considering the rigid body displacement of
any point of the robot platform),

3) combine these two relations with (5) in order to obtain

Jkq̇t = JtkJpq̇ ⇒ q̇t = Jtq̇, Jt = J−1

k JtkJp (10)

All the previous expressions are valuable as long as the robot
does not meet any singularity and as long as there are the
same number of actuators as the number of platformdof
to control. The singularity avoidance or crossing is not the
main topic of this paper, and the reader should refer to [13],
[14] for further developments. In the following of the section
II-C, it is considered that all these matrices are regular.

To take into account the loop-closure constraints into the
dynamic model of the parallel robot, the Lagrange multipliers
λ can be used [10] to compute the(n× 1) vector of the
actuated joint force/torqueτidm of the closed-loop structure.
τidm can be obtained in relation of the Lagrange multipliers
λ by

τidm = [0,−BT
p ]λ, (11)

whereλ is calculated from the relation:
[

JT
k 0

−JT
tk AT

p

]

λ = ATλ =

[

τidmt

τpr

]

(12)

with A a square matrix of dimension((n mi)× (n mi))
and

τpr = DT τp (13)

The relation (13), that uses the matrixD defined in (9), can
be easily proved using the principle of virtual powers.

Solving (11) and using the right part of (4), (5) and (10),
it can be demonstrated that:

τidm = JT
t τidmt

+ JT
p D

T τp

= JT
t IDMsttχstt + JT

p D
T IDMpχp

=
[

JT
t IDMstt JT

p D
T IDMp

] [

χT
stt

χT
p

]T

= IDMst (q, q̇, q̈)χst

(14)

(14) represents the inverse dynamic model of the parallel
robot without actuation redundancy.

III. I NVERSEDYNAMIC IDENTIFICATION MODEL OF

PARALLEL ROBOTS WITH ACTUATION REDUNDANCY

A. Computation of the IDIM

Let us consider in this part an actuation redundant parallel
robot with n actuators andr independent controlleddof,
wherer < n. Differentiating (3) with respect to time, it can
now be proved that the matrixAp of (5) becomes rectangular
of dimension(n× r), while the matrixBp stays square of
dimension(n× n) [1].

As a result, the right parts of (5) and (7) must be changed
as:

Apv +Bpq̇ = 0 ⇒ q̇ = −B−1
p Apv = Jinv

p v, (15)

or also

v = Jinv +
p q̇, Jinv +

p =
(

Jinv T
p Jinv

p

)

−1
Jinv T
p (16)

and

Apv̇ + Ȧpv +Bpq̈+ Ḃpq̇ = 0

⇒ q̈ = −B−1
p (Ȧpv +Apv̇ + Ḃpq̇)

(17)

or also

v̇ = −A+
p (Ȧpv +Bpq̈+ Ḃpq̇), A

+
p =

(

AT
p Ap

)

−1
AT

p

(18)
Moreover, the matrixAT of (12) becomes now a rect-

angular matrix with((n×mi − 1) + r) rows and(n×mi)
columns, i.e. the system (11) has more unknowns than equa-
tions. Thus, there are infinity of solutions for the Lagrange
multipliers λ. One solution can be obtained, assuming that
the value of the overconstraintc in the robot is known [5]:

τidm = [0,−BT
p ]λ,

λ =
(

AT
)+

[

τidmt

τpr

]

+
(

I−
(

AT
)+

AT
)

c
(19)

where
(

AT
)+

is the Moore-Penrose pseudo-inverse ofAT :
(

AT
)+

= A
(

ATA
)

−1
(20)

However, in the identification process, the nominal values
of the inertial parameters are generally unknown and, as
a result, the value of the overcontraintc cannot be seta
priori . Thus, the dynamic model (19) cannot be used as it.
Nevertheless, as matricesBp andJk of (5) and (10) are still
square, (19) can be rewritten as:

[

τidm
τidmt

]

=

[

0 −BT
p

JT
k 0

]

λ,
[

−JT
tk AT

p

]

λ = τpr (21)

or also

τpr =
[

−JT
tk AT

p

]

[

0 J−T
k

−B−T
p 0

] [

τidm
τidmt

]

(22)

Developing (22), it comes that:

τpr =
[

−AT
p B

−T
p −JT

tkJ
−T
k

]

[

τidm
τidmt

]

=
[

Jinv T
p −JT

tkJ
−T
k

]

[

τidm
τidmt

] (23)



Introducing (1), (2) and (13) into (23) leads to:

Jinv T
p τidm = JT

tkJ
−T
k τidmt

+DT τp

= JT
tkJ

−T
k IDMsttχstt +DT IDMpχp

=
[

JT
tkJ

−T
k IDMstt DT IDMp

] [

χT
stt

χT
p

]T

= IDMred
st (q, q̇, q̈)χst

(24)

Thus, by projecting the input forces/torques on the platform
coordinates through the use of the matrixJinv T

p , the inverse
dynamic model becomes unique and can thus be used for
identification purpose.

The model (24) can be simplified through the use of the
identifiable parameters. The identifiable parameters are the
base parameters which are the minimum number of dynamic
parameters from which the dynamic model can be calculated
[10]. The minimal dynamic model can be written using the
nb base dynamic parametersχ as follows:

Jinv T
p τidm = IDM (q, q̇, q̈)χ (25)

whereIDM is a subset of independent columns inIDMred
st

which defines the identifiable parameters.
Finally, because of perturbations due to noise measurement

and modeling errors, the actual force/torqueτ differs from
τidm by an errore, such that:

Jinv T
p τ = Jinv T

p τidm + e = IDMχ+ e (26)

whereτ is calculated with the drive chain relation:

τ = vτgτ = diag(vjτ )
[

g1τ . . . gnτ
]T

(27)

vτ is the (n× n) matrix of the actual motor current refer-
ences of the current amplifiers (vjτ corresponds to actuator
j) andgτ is the (n× 1) vector of the joint drive gains (gjτ
corresponds to actuatorj) that is given by a priori manu-
facturer’s data or using some special procedures [15], [16].
Equation (26) represents the Inverse Dynamic Identification
Model (IDIM ).

B. IDIM Including the Payload

The payload is considered as an additional link (denoted
as link l) fixed to the robot platform [9]. The model (25)
becomes:

Jinv T
p τ =

[

IDM IDMl

]

[

χ
χl

]

+ e = IDMtotχtot + e

(28)
where:

• χl is the (10× 1) vector of the inertial parameters of
the payload;

• IDMl is the (r × 10) Jacobian matrix ofJinv T
p τidm,

with respect to the vectorχl.

IV. U SUAL IDENTIFICATION PROCEDURE

This part presents some necessary recalls on the identifi-
cation procedure.

A. Recalls on Least Squares Identification of the Dynamic
Parameters (IDIM-LS)

The off-line identification of the base dynamic parameters
χ is considered, given measured or estimated off-line data for
τ and (q, q̇, q̈), collected while the robot is tracking some
planned trajectories. The model (26) is sampled at frequency
fm in order to get an over-determined linear system ofrfm
equations andnb unknowns:

Yfm(τ) = Wfm(q̂, ˆ̇q, ˆ̈q)χ+ ρfm (29)

where (q̂, ˆ̇q, ˆ̈q) is an estimation of(q, q̇, q̈), respectively,
obtained by sampling and band-pass filtering the measure of
q [17], ρfm is the (rfm × 1) vector of errors,Yfm is the
(rfm × 1) vector of the inputs (computed using the relation
Jinv T
p τ from (26) and (27))1, sampled at frequencyfm and

Wfm(q̂, ˆ̇q, ˆ̈q) is the (rfm × nb) observation matrix.
The force/torqueτ is perturbed by high frequency unmod-

elled friction and flexibility force/torque of the joint drive
chain which is rejected by the closed loop control. These
force/torque ripples are eliminated with a parallel decimation
procedure which low pass filters in parallelYfm and each
column ofWfm and resamples them at a lower rate, keeping
one sample overnd. This parallel decimation can be carried
out with the MATLAB decimatefunction, where the low pass
filter cutoff frequency,ωfp = 2π0.8fm/ (2nd), is chosen in
order to keepYfm andWfm in the same frequency range
of the model dynamics. After the data acquisition procedure
and the parallel decimation of (29), we obtain the over-
determined linear system

Y(τ) = W(q̂, ˆ̇q, ˆ̈q)χ+ ρ (30)

whereρ is the (rc × 1) vector of errors,Y is the (rc × 1)
vector of the input torques/force andW(q̂, ˆ̇q, ˆ̈q) is the
(rc × nb) observation matrix.

It is to be noted that no error is introduced by the parallel
filtering process in the linear relation (30) compared with
(29). In [17], practical rules for tuning this filter are given.

Using the base parameters and tracking ’exciting’ ref-
erence trajectories, i.e.optimized trajectoriesthat can be
computed by nonlinear minimization of a criterion function
of the condition number of theW matrix [18], a well-
conditioned matrixW can be obtained. TheLS solution χ̂
of (30) is given by:

χ̂ = W+Y, whereW+ = (WTW)−1WT (31)

It is computed using theQR factorization ofW.
Standard deviationsσχ̂i

can be estimated assuming that
W is a deterministic matrix andρ is a zero mean additive
independent noise [17], with a covariance matrixCρρ such
that

Cρρ = E
(

ρρT
)

= σ2
ρIr (32)

1The use of the relationJinv T
p τ for sampling the vectorY instead

of the values of the input forces/torquesτ is the main difference with the
usual identification procedure for serial and parallel robots without actuation
redundancy.



E is the expectation operator andIr, the rc × rc identity
matrix. An unbiased estimation of the standard deviationσρ

is:
σ2
ρ = ‖Y −Wχ̂‖

2
/ (rc − nb) (33)

The covariance matrix of the estimation error is given by:

Cχ̂χ̂ = E
[

(χ− χ̂) (χ− χ̂)
T
]

= σ2
ρ

(

WTW
)

−1
(34)

σ2
χ̂i

= Cχ̂χ̂(i, i) is thei-th diagonal coefficient ofCχ̂χ̂ (34).
The ordinaryLS can be improved by taking into account

different standard deviations on actuated jointj equations
errors [17]. Data inY andW of (30) are weighted with the
inverse of the standard deviation of the error calculated from
ordinaryLS solution of the equations of jointj [17]

Yj = Wjχ+ ρj (35)

This weighting operation normalizes the errors in (30) and
gives the weightedLS estimation of the parameters (IDIM-
WLS).

B. Payload Identification

In order to identify both the robot and the payload dynamic
parameters, using the model (28), it is necessary that the
robot carried out two types of trajectories [19]:

1) trajectories without the payload, and
2) trajectories with the payload fixed to the end-effector.

The sampling and filtering of the modelIDIM (28) can be
then written as:

Y =

[

Wa 0

Wb Wl

] [

χ
χl

]

+ ρ (36)

where

• Wa is the observation matrix of the robot in the
unloaded case,

• Wb is the observation matrix of the robot in the loaded
case,

• Wl is the observation matrix of the robot corresponding
to the payload inertial parameters.

Thus, these two types of trajectories avoid the regrouping
of the payload parameters with those of the platform and
allow their independent identification. Next section presents
experimental results on a prototype of actuation redundant
parallel robot.

V. CASE STUDY

A. Description of the DualV

The DualV (Fig. 2) is a prototype of planar parallel robot
with actuation redundancy developed at the LIRMM [11].
This robot has 3 controlleddof (two translations in the
plane(xOy) and one rotation around thez axis) but 4 legs,
with one actuator by leg. Thus, its degree of redundancy is
equal to 1. Each leg is composed of one proximal and one
distal link. The proximal link is attached to the base by one
actuated revolute joint and to the distal link by one passive
revolute joint. The distal link is also attached to the moving
platform by one passive revolute joint.

(a) The prototype
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Fig. 2. The DualV.

The geometric parameters of the virtual open-loop tree
structure are described in Table I using the modified De-
navit and Hartenberg notation (MDH) [10] (in this table,
γ1 = 15.52deg, γ2 = 164.48deg, γ3 = −164.48deg and
γ4 = −15.52deg). The platform and payload are considered
as supplementary bodies, the payload being fixed on the
platform. They are respectively numbered as bodies 4 and
5.

The MDH notation being well known, the parameters
of Table I will not be defined here. For more information
concerning theMDH parameters, the reader should refer to
[10].

TABLE I

MDH PARAMETERS FOR THE FRAMES CORRESPONDING TOi-TH ROBOT

LEG (i = 1, ..., 4).

ji aji µji σji γji dji θji rji
1i 0 1 0 γi d1 = 0.41m q1i − γi 0

2i 1i 0 0 0 d2 = 0.28m q2i 0

3i 2i 0 0 0 d3 = 0.28m q3i 0

The DualV is actuated by four ETEL RTMB0140-100
direct drive actuators, which can deliver maximal torques of
127Nm. The robot is able to achieve accelerations of 25g in
its workspace. The current amplifier can provide directly the
measure of the input torque produced by the actuator. The
controller of the DualV was developed within the framework
of an industrial PhD thesis which is still confidential for now
[20], therefore we are not able to give further explanations
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Fig. 3. Projections of the input torques on the platform, estimated from
input torques using (26) (red lines) and rebuilt using identified parameters
(blue lines) with the payload of5.37 kg.

on this point.

B. Identification Results

In this part, experimentations are performed and the
dynamic model identification is carried out on the DualV
using the modeling approach presented in Section III and the
identification procedure proposed in Section IV. To estimate
the quality of the identification procedure, a payload mass
of 5.37kg which has been accurately weighed is mounted of
the platform and will be identified in the same time as the
robot parameters.

Even paying attention to the choice of the exciting tra-
jectories, some small parameters remain poorly identifiable
because they have no significant contribution in the joint
torques. These parameters have no significant estimations
and can be canceled in order to simplify the dynamic model.
Thus parameters such that the relative standard deviation
%σχ̂ri

is too high are canceled to keep a set of essential
parameters of a simplified dynamic model with a good
accuracy [19]. The essential parameters are calculated using
an iterative procedure starting from the base parameters
estimation. At each step the base parameter which has the

TABLE II

ESSENTIAL PARAMETERS OF THEDUALV.

Param. A priori Id. Val. %σχ̂ri

zz11R 4.92e− 2 4.45e− 2 1.58
zz12R 4.92e− 2 4.81e− 2 1.39
zz13R 4.92e− 2 4.81e− 2 1.41
zz14R 4.92e− 2 5.07e− 2 1.38

zz4 2.16e− 2 2.06e− 2 1.37
m4 2.00e+ 0 1.92e+ 0 1.08
zz5 N/A 1.61e− 2 1.71

mx5 N/A −1.27e− 1 0.76
m5 5.37e+ 0 5.42e+ 0 0.30

largest relative standard deviation is canceled. A newIDIM-
WLSparameter estimation of the simplified model is carried
out with new relative error standard deviations%σχ̂ri

. The
procedure ends whenmax (%σχ̂ri

) /min (%σχ̂ri
) < rσ,

where rσ is a ratio ideally chosen between 10 and 30
depending on the level of perturbation inY andW. In the
following of the paper, this ratio is fixed to 10.

Table II presents the identification results. Subscript ’R’
stands for the parameters that have been regrouped using the
procedure presented in Section III. It can be observed that
the robot parameters have been correctly estimated and that
the identified values are very close from thea priori values.
Moreover, the payload of5.37kg has been very accurately
identified.

The projections of the input torques on the platform are
shown in Fig. 3 for a trajectory different from the one
used for the identification process (i.e. the results are cross-
validated). It can be observed that they are well rebuilt.
Finally, the value the measured input torques, the estimated
input torques and the value of the overconstraintc computed
using expressions (19) and (20) are shown at Figs. 4 and 5.
It can be seen that the estimated torques are very close to
the measured ones and that the average overconstraintc in
the robot legs is about 10N.

VI. CONCLUSION

This paper has presented a method for the identification of
the inertial parameters of parallel robots with actuation re-
dundancy. Contrary to serial robots or parallel robots without
actuation redundancy for which the dynamic identification
methods are based on the use of theIDIM which calculates
the joint forces/torques that are linear in relation to the
dynamic parameters, for actuation redundant parallel robot
that are over-constrained, theIDIM has infinity of solutions
for the force/torque prediction, depending of the value of the
desired overconstraint that isa priori unknown. As a result,
the IDIM cannot be used as it.

This paper proposed a modified formulation for theIDIM
of actuation redundant robots that can be used for identifi-
cation purpose. This formulation consists of projecting the
input torques/forces on the platform coordinates, thus leading
to a unique solution of the model that can thus be used in the
identification process. The identification of the inertial pa-
rameters of a planar parallel robot with actuation redundancy,
the DualV, was then performed using this modifiedIDIM .
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Fig. 4. Measured (red lines) and estimated (blue lines) inputtorques rebuilt
using identified parameters with the payload of5.37 kg.

Experimental results show that the inertial parameters of
the robot were correctly identified. Moreover, for validation
purpose, a known payload mass has been added on the robot
to be sure that the identification process was correct. This
mass has been very accurately identified. Finally, it has been
shown that the torque prediction with the newly identified
parameters was correct.
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