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Continuous-Time Gray-Box Identification of Mechanical Systems Using

Subspace-Based Identification Methods

Björn Olofsson, Olof Sörnmo, Anders Robertsson, and Rolf Johansson

Abstract— We consider the problem of gray-box identification
of dynamic models for mechanical systems. In particular, the
problem is approached by means of continuous-time system
identification using subspace-based methods based on discrete-
time input–output data. A method is developed, with the prop-
erty that the structure of the model resulting from fundamental
physical first principles is obtained and the parameter matrices
have a clear physical interpretation. The proposed method is
subsequently successfully validated in both simulation and using
experimental data from a three-axis manipulator. In both cases
the identified models exhibit good fit to the input–output data.
The results indicate that the proposed method can be useful
in the context of model-based control design in, for example,
impedance force control for robots and manipulators, but also
for modal analysis of mechanical systems.

I. INTRODUCTION

System identification is a fundamental part of model-
based control design as well as simulation and prediction
of dynamic systems. The system identification problem is
to define a model structure and subsequently determine the
model from input–output data acquired from experiments
on the process to be investigated [1]. Typical factors to be
considered concern sufficiently exciting input signals (for a
measure of this property, see the notion of persistency of
excitation [2]), type of model, and model order. Traditionally,
three different model structures have been considered for
identification; time-series models, transfer function models
[3], and state-space models. Methods for identification of
transfer function and time-series models include, among
others, the least-squares method and the prediction-error
method [2]. State-space models can be identified based on
realization-based methods [4], [5] and extensions of these
called subspace-based identification methods [6], [7]. Also,
Bayesian Monte Carlo methods have found applications in
this area recently, see [8] for algorithms for identification
of nonlinear state-space models. Given the discrete-time
nature of input–output data acquisition, system identification
is often approached by means of discrete-time methods.
However, in certain situations, in particular when considering
model structures resulting from physical first principles, the
dynamic relations are more natural to describe in continuous
time. Considering that the transformation between a discrete-
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1The authors are with the Department of Automatic Control,
LTH, Lund University, SE–221 00 Lund, Sweden. E–mail:
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time model and a continuous-time model is not a one-to-
one mapping, identification of a discrete-time model and
subsequent transformation is not straightforward. Hence,
algorithms for identification of continuous-time state-space
models based on discrete-time experimental input–output
data have been proposed, see, e.g., [9], [10] for time-domain
methods and [11] for frequency-domain methods.

In the modeling procedure, the models to be determined
traditionally range from black-box models—i.e., system
models without pre-defined internal structure, where the
input-output relation is the important property—to white-
box models where the structure and parameters are com-
pletely determined based on first principles. A majority
of the proposed system identification algorithms considers
estimation of black-box models from experimental data. An
intermediate model category consists of gray-box models
[12], where the structure is predefined, often as a result of
the physical nature of the system to be modeled, but the
parameters are unknown. Here, we consider identification of
gray-box models for the compliance dynamics of mechanical
systems—i.e., the relation between the applied force and the
corresponding deflection. The motivation for the interest in
this kind of models is mainly model-based control design—
in particular impedance control in contact operations [13],
[14] and LQ/LQG optimal state-feedback control where
a physical interpretation of the states in the model is
essential—but also modal analysis of mechanical systems
[15]. More specifically, regarding methodology, a subspace-
based identification algorithm for determining a continuous-
time model from experimental data is proposed in this paper.
Previous research in this area includes [16], where a black-
box model approach in discrete time to the same problem was
proposed. Gray-box identification for compliance dynamics
and physical parameter estimation using convex optimization
were investigated using frequency-based methods in [17] and
identification of state-space models for compliance dynamics
was treated in [18] using subspace methods in the frequency-
domain. Methods for estimation of gray-box models for
industrial robots have been considered in [19], and in [20]
with a method based on a least-squares approach. Moreover,
structural reformulations in subspace identification, similar to
the one used in this paper, for general dynamic systems have
been investigated in [21], [22]. The main contribution of this
paper is the development and validation of a time-domain (in
contrast to previously suggested frequency-domain and least-
squares methods addressing the same problem) subspace-
based gray-box identification method for continuous-time
mechanical system models.
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Fig. 1. Schematic depiction of a spring-mass-damper model in two
dimensions, with the applied forces uX , uY as inputs and the corresponding
deflections yX , yY as outputs.

A. Problem Formulation

Introduce the notation M ∈ Rn×n, D ∈ Rn×n, and
K ∈ Rn×n for the mass, damping, and stiffness matrices
of the system to be modeled. From physical considerations,
it is required that M " 0, D # 0, and K # 0, i.e., the
matrices are positive definite or semidefinite. The differen-
tial equations for the compliance dynamics, resulting from
fundamental physical relationships, can be written as

Mÿ(t) +Dẏ(t) +Ky(t) = u(t), (1)

where u(t) ∈ Rn is the input and y(t) ∈ Rn is the output of
the system, see Fig. 1. Introducing the states

z(t) =

(
y(t)
ẏ(t)

)
∈ R

2n, (2)

the following state-space system can be established

ż(t) =

(
0 I

−M−1K −M−1D

)
z(t) +

(
0

M−1

)
u(t),

y(t) =
(
I 0

)
z(t).

(3)

Consequently, the matrices in the state-space model should
have the structure indicated in (3)—i.e., the following format:

ż(t) =

(
0 I

A21 A22

)

︸ ︷︷ ︸
A

z(t) +

(
0
B2

)

︸ ︷︷ ︸
B

u(t),

y(t) =
(
I 0

)
︸ ︷︷ ︸

C

z(t).

(4)

The problem can then be stated as computing the matrices
S : {A ∈ R2n×2n, B ∈ R2n×n, C ∈ Rn×2n} in the
model based on experimentally collected sampled input–
output data {uk}Nk=1 and {yk}Nk=1, where k denotes the
sampling instance and uniform sampling with period h is
assumed. In addition, the physical parameter matrices M ,
D, and K should be estimated from the identification data.

II. METHOD

In this section, the method for identification of a gray-box
compliance model is described and theoretically justified.

A. Model Transformation

The system (4) is rewritten1 using a complex variable
transformation ad modum [9]. The motivation for the trans-
formation is to avoid formulating the identification algo-
rithm with the differential operator, which is known to be
numerically challenging in the presence of noise. Applying
the Laplace transform on (4) and assuming that the initial
conditions are such that z(0) = 0, the transformed system
can be written as

sZ(s) = AZ(s) +BU(s),

Y (s) = CZ(s).
. (5)

Introducing a variable transformation with the stable and
causal relation

λ(s) =
1

sτ + 1
, τ > 0, (6)

where τ is the time constant, enables reformulation of the
model to the following format

Z(s) = (I + τA)λ(s)Z(s) + τBλ(s)U(s),

Y (s) = CZ(s).
(7)

Reformulation as an equation system in the time-domain
gives

ξ(t) = Aλz(t) +Bλu(t), z(t) = [λξ](t),

y(t) = Cz(t),
(8)

where [λξ](t) denotes the filtered signal ξ(t) and

Aλ = I + τA, Bλ = τB, (9)

which for the current model (4) is

Aλ =

(
I τI

τA21 I + τA22

)
, Bλ =

(
0

τB2

)
. (10)

It is straightforward to derive the following relations between
the output, the transformed states, and the input using
recursion

[λi−1y](t) = C[λi−1z](t), (11)

[λky](t) = CAi−1−k
λ [λi−1z](t)+

i−1∑

j=k+1

CAj−k−1

λ Bλ[λ
ju](t), 0 ≤ k ≤ i− 2, (12)

where [λqy](t) means that y(t) has been filtered with q serial-
connected λ-filters and similarly for the input u and the state
z. These relations enable the formulation of an extended
linear model [9] according to

Y = ΓzZ + ΓuU , Z =
(
[λi−1z](t)

)
, (13)

with

Y =





[λi−1y](t)
[λi−2y](t)

...
y(t)




, U =





[λi−1u](t)
[λi−2u](t)

...
u(t)




. (14)

1Even though the model (1) is linear in the parameters, the derivatives
of the output, ẏ(t) and ÿ(t), are not available for measurement and thus a
least-squares solution is not directly applicable.
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Moreover, the extended observability matrix Γz is defined as

Γz =





C
CAλ

...

CAi−1
λ




, (15)

and the matrix Γu is defined according to

Γu =





0 0 . . . 0

CBλ 0 . . .
...

...
...

. . . 0
CAi−2

λ Bλ CAi−3
λ Bλ . . . 0




. (16)

Remark 1: The noise component of the dynamic model
has been omitted in the transformation presented here due
to space limitations. For details regarding the transformation
of the noise component and representation of the model on
innovations form, see [9].

B. Subspace Identification

The identification of the matrices {Aλ, Bλ, C} is based
on the N4SID subspace algorithm [7], [23]. However, to
accommodate the predefined structure of the system to
be identified, certain modifications are made. The filtered
discrete-time input–output data are collected in the matrices
(similar to the Hankel matrices in the discrete-time case)

UN =





[λi−1u]1 [λi−1u]2 . . . [λi−1u]N
[λi−2u]1 [λi−2u]2 . . . [λi−2u]N

...
...

. . .
...

[λu]1 [λu]2 . . . [λu]N
u1 u2 . . . uN




, (17)

where the sampled and filtered input at time tk is denoted
[λqu]k and an analogous construction YN is made for the
filtered outputs [λqy]k. Estimates of the system matrices Âλ

and Ĉ are then computed using Step 1–5 of Algorithm 4.8
in [23], which provides the matrices up to a similarity
transform. In order to fix the state space such that the desired
form of the model in (4) is obtained, a state transformation
z → Tz, T ∈ R2n×2n, is made. Partition the state matrix
estimates according to

Âλ =

(
Â11

λ Â12
λ

Â21
λ Â22

λ

)
, Ĉ =

(
Ĉ1 Ĉ2

)
, (18)

and then form the matrix T as follows

T =

(
T11 T12

T21 T22

)
, (19)

where

T11 = Ĉ1, T12 = Ĉ2, (20)

T21 =
1

τ
(Ĉ1Â

11
λ + Ĉ2Â

21
λ − Ĉ1), (21)

T22 =
1

τ
(Ĉ1Â

12
λ + Ĉ2Â

22
λ − Ĉ2). (22)

Based on the determined transformation matrix T , the es-
timated matrices Âλ and Ĉ are recomputed according to
Âλ → T ÂλT

−1 and Ĉ → ĈT−1. The transformed matrix
Âλ then has the desired structure according to (10) and
Ĉ =

(
I 0

)
. The extended observability matrix Γz and the

estimates of the state sequence are subsequently recomputed
based on the transformed estimates of the system matrices
Aλ and C. Using the recomputed matrix Γz and recomputed
state estimates, the matrix Bλ is determined by solving the
least-squares problem in Step 6 of Algorithm 4.8 in [23],
with the additional constraint that the matrix should have
the structure specified in (10). The upper sub-block B1

λ of
the matrix should be zero. Moreover, given that the matrix
M is positive definite—and consequently the inverse M−1

as well—it is clear that the lower sub-block B2
λ should

be positive definite, i.e., B2
λ " 0. These constraints are

straightforward to enforce, since the determination of the
estimate of the matrix Bλ is performed by solving a least-
squares problem. The convexity is preserved when adding the
linear constraint that the upper block of the matrix should
be zero and the constraint that the lower block should be
positive definite. As the final step, estimates of the original
continuous-time system matrices Â and B̂ are determined
from Âλ and B̂λ using the bijective relations in (9). The
final matrices then have the structure according to (4).

Remark 2: The proposed method is not limited to the
N4SID subspace algorithm. Other suggested algorithms, such
as the MOESP algorithm [6] or CVA algorithm [24], can be
modified for this gray-box identification purpose as well. The
fundamental property is that the algorithm is organized such
that the system matrices are estimated in two main steps; the
first computing the matrices Aλ and C to allow for fixing
the state space on the desired form, and then subsequently
determine the matrix Bλ based on the recomputed extended
observability matrix and estimated state sequence.

Remark 3: Analogously to the model transformation pro-
cedure in Sec. II-A, the noise model identification part has
been omitted due to space limitations. However, identifica-
tion of this part is possible based on an innovations form
description of the continuous-time model, see [9] for details.

C. Physical Parameter Estimation

In order to retrieve the physical parameter matrices, the
mass matrix M is first estimated from the matrix B in
the identified state-space model. It follows directly that the
estimate is given by M̂ = B̂−1

2 , which is positive definite
because of the constraint enforced in the system identification
procedure in Sec. II-B. With the mass matrix M estimated,
the stiffness matrix K and damping matrix D are computed
from the corresponding estimated sub-blocks Â21 and Â22

in the system matrix according to

minimize
K

||K + M̂Â21||F

subject to K # 0
, (23)

and
minimize

D
||D + M̂Â22||F

subject to D # 0
, (24)
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Fig. 2. Simulated input–output identification data for the system with
parameters in (25).

where || · ||F denotes the Frobenius norm. Positive semidefi-
nite requirements are imposed on K and D when solving the
corresponding optimization problems. It is straightforward to
verify that the problems (23)–(24) are convex [25], and that
a global minimum thus exists for each problem.

III. SIMULATION RESULTS

In order to verify the proposed approach to gray-box
identification, simulated input–output data were determined
from the multi-input multi-output (MIMO) system (3) with
n = 2 and the physical parameters chosen as follows

M =

(
5 −1
−1 1

)
, D =

(
5 −0.01

−0.01 1

)
,

K =

(
100 −5
−5 100

)
.

(25)

Two data sequences were simulated; one for identification
and one for cross-validation. Each sequence contained a
total of N = 20000 samples of input–output data with step
inputs and a sampling period of h = 0.005 s, see Fig. 2
for visualization of the identification data. In addition, noise
ek was added to the measurements y from the distribution
ek ∈ N (0,σ2I) with σ = 3·10−4. The system can be consid-
ered as a two-dimensional spring-mass-damper system, with
actuation along two directions X and Y , see Fig. 1.

A. System Identification

The system matrices A, B, and C in a state-space model of
order four were estimated based on the method proposed in
Sec. II, with the time constant in the variable transformation
(6) chosen as τ = 0.15 based on an iterative procedure. The
convex optimization problems inherent in the identification
procedure were solved using CVX [26], [27] in MATLAB.
Moreover, the maximum order of the filtering was selected
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Fig. 3. Comparison of validation output data for the system with parameters
in (25) and the output from the estimated system model.

as i = 10. The estimated system matrices are

Â =





0 0 1.00 0
0 0 0 1.00

−24.4683 −24.6485 −1.3939 −0.3884
−19.1801 −128.1179 −1.3851 −1.9230



 ,

B̂ =





0 0
0 0

0.2582 0.2590
0.2590 1.2926



 , Ĉ =

(
1.00 0 0 0
0 1.00 0 0

)
.

The validation data inputs were used as input to the
estimated system with matrices Â, B̂, and Ĉ. A comparison
of the validation data from the real system and the corre-
sponding output ŷ from the estimated system is shown in
Fig. 3. As a measure of the fit of the estimated model to
the validation data, the normalized root-mean square error
(NRMSE) values (a value in the interval 0–100%, with
increasing values indicating higher model fit) given by

NRMSE = 100×

(
1−

||WN − ŴN ||2
||WN −WN ||2

)
%, (26)

where WN is the validation output data, ŴN is the output
from the estimated system and WN is the mean of the vali-
dation output data, were computed for the respective axis X
and Y . The values are 97.6% and 96.9%, respectively, which
must be considered as good fit of the model to the validation
data. To further compare the frequency characteristics of the
real and the estimated models, the Bode diagrams are shown
in Fig. 4. Also here it is clear that the estimated system
captures the essential dynamics of the original system, where
in particular the natural eigenfrequencies and the zeros of the
system are identified with high accuracy.

B. Physical Parameters

To the purpose of estimating the physical parameters of
the system, the mass matrix M was determined using the
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Fig. 4. Comparison of Bode diagrams of the real system with parameters
in (25) and the estimated MIMO model.

procedure proposed in Sec. II-C. Based on M̂ , the estimates
K̂ and D̂ of the stiffness matrix and the damping matrix,
respectively, were computed by solving the optimization
problems (23) and (24). For evaluation of the estimation
accuracy, the obtained matrices are compared to the corre-
sponding parameters for the real system in (25). The relative
differences, measured with the Frobenius norm, are given by

||M − M̂ ||F
||M ||F

= 0.0303,
||D − D̂||F

||D||F
= 0.125,

||K − K̂||F
||K||F

= 0.00108.

This indicates that also the mass matrix M and stiffness
matrix K have been estimated with high accuracy and the
damping matrix D with good accuracy.

IV. EXPERIMENTAL RESULTS

The proposed identification method was further evaluated
on data from an experimental setup. The considered system
is a piezo-actuated 3D compensation mechanism (micro
manipulator) for robotic machining scenarios [28], with
actuation along a Cartesian coordinate system, see Fig. 5.
The mechanical design comprises solid-state joints including
flexure elements, which makes the system exhibiting signif-
icant resonances at particular eigenfrequencies. Moreover,
two of the axes, X and Z exhibit a noticeable coupling
because of the mechanical design of the mechanism. This
coupling was investigated using the approach to gray-box
identification proposed in Sec. II. Consequently, a MIMO
system with the actuation forces u as inputs and the corre-
sponding displacements yX and yZ along the X and Z axes,
respectively, was identified. Since the actuating forces were
not available for explicit measurement, it was assumed that
the extensions of the piezo-actuators are proportional to the
forces. Two sequences of experimental data were collected
with a sampling period of h = 0.0001 s; one of the sets was

Z

Y X

Fig. 5. Micro manipulator (developed at Fraunhofer IPA, Germany [28])
used for evaluation of the proposed identification method.
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Fig. 6. Experimental input–output data for the micro manipulator. The
dynamic coupling between the X- and Z-axes is clearly visible.

used as identification data and the other set was used for
cross-validation purposes. The sample rate was motivated by
the observed natural eigenfrequencies, obtained by spectral
analysis, in the order of 100 Hz and the fact that the data
were to be processed with low-pass filters in the identification
procedure. The inputs to the mechanical system were a
sequence of steps with randomly chosen time distance. The
Cartesian extension of the end-effector was measured using
capacitive sensors and the collected experimental input–
output data were detrended prior to system identification.
The resulting identification data are displayed in Fig. 6.

A. System Identification

A MIMO model of the micro manipulator of fourth
order was estimated with the method in Sec. II, using
the identification data shown in Fig. 6. The time constant
τ = 0.00314 was used in the operator transformation (6)
for accommodating the frequency properties of the system
at hand. The time constant was found by employing a
linear search over a predefined interval and evaluating the
corresponding model fit for the identification data series for
each of the filter time constants. Moreover, the maximum
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Fig. 7. Comparison of experimental validation output data for the micro
manipulator and the output from the estimated system model.

filter order was selected as i = 8. For cross-validation of
the estimated micro manipulator model, the validation data
series (containing a sequence of step inputs different from
the identification data series) was used. The experimental
validation output data and the corresponding output ŷ from
the estimated model for the same input signals are displayed
in Fig. 7 for a segment of the data series used. The NRMSE
values for the computed model are 88.8% and 73.6% for
the X and Z-axis, respectively, which indicates that the
essential dynamics of the system are captured. The dynamics
not captured by the model can be explained by higher-order
harmonics, arising because of the nonlinear dynamics of the
piezo-actuators used in the micro manipulator design.

The frequency characteristics of the estimated model are
represented in the Bode diagram in Fig. 8. The natural eigen-
frequencies observed at 96.6 Hz and 83.0 Hz for the X- and
Z-axis, respectively, correspond well to the eigenfrequencies
extracted using spectral analysis of the experimental data. It
is interesting to observe that it is the resonance along the
Z-axis that results in the cross coupling between the axes—
i.e., actuation along the Z-axis results in oscillations along
the X-axis as well with the eigenfrequency of the former.

B. Physical Parameters

The mass matrix M was estimated from the matrix B̂ in
the state-space model for the micro manipulator. Moreover,
using the system matrix Â in the model and the mass-matrix
estimate M̂ , the stiffness matrix K and the damping matrix
D were estimated as described in Sec. II-C. The estimates
of the physical parameters are given by

M̂ = 1.0 · 10−5

(
0.0487 0.0001
0.0001 0.3669

)
,

D̂ = 1.0 · 10−3

(
0.0407 0.0302
0.0302 0.1484

)
,

(27)

K̂ =

(
0.1793 0.0147
0.0147 1.0049

)
. (28)
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Fig. 8. Bode diagram of the estimated MIMO-model for the micro
manipulator.

In the modal analysis procedure, the generalized eigenval-
ues ω resulting in non-trivial solutions v (i.e., generalized
eigenvectors) to the equation Kv = ω2Mv are of interest
since they correspond to the eigenmodes of the system. In
particular, the eigenfrequencies are given by ω. Solving the
generalized eigenvalue problem for the estimated mass and
stiffness matrices gave the eigenfrequencies ω1 = 96.7 Hz
and ω2 = 83.1 Hz, which is well in agreement with the
eigenfrequencies observed in the Bode diagram in Fig. 8.

V. DISCUSSION

We have considered gray-box identification of linear mod-
els for mechanical systems. The characterization of the
dynamic force–deflection relationships does not only provide
information about the mechanical system as such, but is also
essential for model-based control design. Important examples
here are contact operations for robot manipulators in man-
ufacturing scenarios such as machining, which successfully
have been executed using impedance force control [13].

Using subspace-based methods for identification in this
context is natural, since the systems to be modeled are of
MIMO character, and in addition subspace methods have
been found to be advantageous when modeling systems with
closely spaced natural eigenfrequencies (and thus resulting
resonances) [29]. Since this is often the case with mechanical
systems—cf. the micro manipulator system investigated in
Sec. IV—this is an essential property of the method.

In order to allow for continuous-time identification in the
time-domain (in contrast to previous suggested methods in
the frequency-domain), a variable transformation was made
in (6). This transformation includes the choice of the filter
time constant τ . During the development of the method
proposed in this research, the choice of this constant has been
found essential in order to obtain models with satisfactory
fit to the data and even stability. Intuitively, it is natural that
the frequency content of the experimental identification data
and the sampling rate of the same have implications on the
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choice. In the experimental results presented in Sec. IV,
a linear search was used for finding the time constant
maximizing the fit to the identification data in a pre-defined
interval. Another option is to use multiple time constants in
a logarithmically spaced interval for initial examination of
the identification data. A drawback with this option is that
the computational complexity increases.

Another question is if it is sufficient to use linear models,
since it is known that, e.g., robot manipulators exhibit nonlin-
ear stiffness when applying strong external process forces at
the end-effector. In addition, configuration-dependent com-
pliance properties are expected. First, it is plausible that
linear models are appropriate as initial approximations when
designing position controllers. Second, within a certain lim-
ited range of input signals in a limited Cartesian workspace,
the linear approximation is indeed valid. For modeling of
configuration-dependent robot compliance dynamics, linear
parameter-varying models can also be considered. Moreover,
a method for identification of the nonlinear static stiffness-
relationship using an inexpensive measurement setup has
been proposed [30].

In the problem formulation in this paper, it was assumed
that all position states were available for measurements. This
is a limitation when considering identification of systems
with non-actuated modes whose corresponding outputs are
not easily measurable. It is an interesting aspect of future
research to investigate how the method can be adopted to
accommodate unmeasurable position states when determin-
ing the dynamic model from the input–output data.

VI. CONCLUSIONS

This paper has proposed a method for identification of
continuous-time gray-box models in the time-domain by
using experimental input–output data. The method relies on
subspace-based identification for computing the matrices of
a state-space model and estimating the physical parameters.
Moreover, the method was successfully evaluated both in
simulation and in experiments, where the obtained models
exhibited good fit to the data and the model-parameter
matrices were feasible from a physical point-of-view.
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