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Abstract—This paper presents a cascaded methodology for
enhancing the path accuracy of industrial robots by using
advanced control schemes. It includes kinematic calibration as
well as dynamic modeling and identification. This is followed
by a centralized model-based compensation of robot dynamics.
The implemented feed-forward torque control shows the expected
improvements of control accuracy. However, external measure-
ments show the influence of joint elasticities as systematic path
errors. To further increase the accuracy an iterative learning
controller (ILC) based on external camera measurements is
designed. The implementation yields to significant improvements
of path accuracy. By means of a kind of automated ”’Teach-In”,
an overall effective concept for the automated calibration and
optimization of the accuracy of industrial robots in high-dynamic
path-applications is realized.

I. INTRODUCTION

Despite of stiff construction, industrial robots with serial
kinematics are excited to oscillate in high-dynamic applica-
tions, primarily because of gearbox elasticity and backlash.
This leads to minor path accuracy. To reduce this negative
effect, model-based control methods can be used. For this
purpose, these influences must be measured and quantitatively
analyzed on the arm-side.

The internal robot joint measurement (motor angle) can not
exactly represent the real path. One possibility for precise
measuring of high-dynamic trajectories are powerful 3D-
camera measurement systems, which allows high-frequency
scanning of the Tool-Center-Point (TCP) path. This results in a
detailed depiction of the actual path and reveals the oscillation
of the robots arm. Fig.[T] shows the high difference to motor-
side measurements.
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Fig. 1. Path accuracy using motor-side and arm-side measurements
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This paper presents a cascaded methodology for significant
improvement of the arm-side path accuracy of serial robots fast
path applications. The methodology consists of three steps:
1. kinematic calibration as well as dynamic modeling and

identification,

2. compensation of the non-linear coupled multi-body dynam-
ics using model-based feed-forward torque control and

3. reduction of remaining path errors using iterative learning
control (ILC) based on external measurements.

A calibration of the camera and the robot kinematics is
essential for the high-dynamic measurement of the TCP-
position in task space. This applies to model-based approaches,
whose parameters are experimentally identified.

Another prerequisite is the inverse dynamic model of the
serial robot. It can be derived by using classical mechanics
(e.g. [1). The correct values of the involved parameters are
not always available. Especially, those dealing with friction
and compliance characteristics are completely unknown. Thus,
experimental robot identification is the only efficient way to
obtain accurate models of robot dynamics.

The experimental design, which includes optimization of ex-
citation trajectories, is fundamental for effective identification
of the model parameters. In Swevers et al. [2] for each joint a
Fourier series approach is utilized as desired trajectory. This
approach has proven in our own [3|] and others investigations
[4]-[7] as very robust and reliable. It is also adopted in this
work.

The designed experiments and their influence on identi-
fication and model accuracy is tested for a KUKA KR 6-2
industrial robot. The maximum payload of 6 kg is applied to
the robot to perform the experiments under realistic conditions.
A developed test bench with the restriction-free possibility
to implement advanced control concepts is available for the
technical realization. The model-based feed-forward torque
control based on a coupled multi-body model of the inverse
dynamics [3] leads to a significant reduction in tracking errors
on the motor-side. Nevertheless, unmodeled effects (such as
joint elasticities) and disturbances lead to high path deviations
of the TCP.

Further accuracy improvement are achieved by an iteratively
learning control (ILC) algorithm based on external camera
measurements. This can iteratively compensate unknown sys-
tematic disturbances by corrections of the desired trajectory.
Thus, it leads to a considerable increase in accuracy. Because
of numerical stability and robustness, linear time-discrete mod-
els are often used to describe the system behavior [[7]-[11].
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Fig. 2. Schematic representation of the proposed cascaded methodology

The approach chosen here is based on the model presented in
Lange and Hirzinger [12]] and further developed in [13]], [14].
The capacity of the approach has been successfully presented
in [[15] for learning of motor-side position.

To increase the arm-side path accuracy effectively, in this
work the learning is based on external measurements of the
TCP trajectory. For this purpose, the Cartesian path deviations
of the end-effector are transformed into the joint angles by
inverse kinematics. By means of a kind of automated “Teach-
In”, an overall effective concept for the automated calibration
and optimization of the accuracy of industrial robots in high-
dynamic path-applications is realized.

II. METHODOLOGY FOR INCREASING THE ACCURACY

This section describes the single steps of the presented
methodology to increase the path accuracy of serial robots
using external measurements. A schematic representation of
the overall concept is shown in Fig.[2}

A. Modeling and identification

1) Kinematics: The KUKA KR 6-2 is a serial robot with 6
rotational joints. For linear estimation of the dynamics, the use
of the modified DENAVIT-HARTENBERG (MDH) conven-
tion [16] is advantageous [17], [18]. Fig.|z| shows the defined
coordinate systems and Tab.[[] shows the MDH-parameters.

A kinematic calibrated robot system is the basis to inves-
tigate and optimize the path accuracy. The calibration of the
robot kinematics is carried out by using the 6D calibration
presented by Wiest [[19]. The kinematic errors are compensated
by a model-based approach where the MDH-parameters from
Tab.[l] are experimentally identified.

TABLE I
THE MDH-PARAMETERS of the KUKA KR 6-2
lo=0.675m, 17 =0.26m, [ =0.68m, I3 =0.035m, [, =0.67m, [g =0.115m

Jointi. | O;inrad | d; inm | a; inm | «; in rad
1 -q1 lo 0 0
2 q2 0 I -3
3 qg—g 0 lo 0
4 ~q4 la -I3 -5
5 qs 0 0 g
6 -qe+m lg 0 -5

2) Dynamics: As part of the modeling only rigid-body and
friction dynamics are taken into account.

X4,X5

Fig. 3. Kinematics of the KUKA KR 6-2 defined by the MDH-convention
— ™ —
(2=-3 and g5 = 3)

Rigid-body model: The rigid-body model is considered as
a set of n rigid bodies interconnected by revolute joints.
The rigid-body dynamics can be analytically calculated in
parameter-linear form by use of Jourdain’s principle [[7]], [[15]:

T:Z {J$ (M0 + (ny@isi + (i)‘bi(i)‘bisi)}‘F

i=1

translatory part

n (D
+> [chi (i Ti@i + @i Liwws) + éi(i)?”i)} )

i=1

rotatory part

with the inertia tensor (;)I;, first-order moment s;, transla-
tional and angular velocities (;v;, (;w; and accelerations
(i)Vis (pw; of link i in frame i (see Fig.EI). Jr, and Jg,
are the Jacobians and 7 represents the vector of drive torques.
Thus, the equations of motion (]D can be rewritten in
parameter-linear matrix notation [15]:
T=[ A A A, ][ pl ps - P}

A, (g,4,4) Py

with the matrix A; as a function of kinematic parameters
as well as the joint angles, velocities and accelerations. The
parameter vector p, of the i-th link consists of the param-
eters [Iz Iixy7 Iixz’ Iiyy s Iiyz s Ii“ 3 St s Siyy s Siggs mz} . Thus,
the overall parameter vector p, of the n joints has 10n
elements.

Friction: Although friction behaviour is complex, a simple
model is often used to describe the joint torques [2], [S], [7],

[115]):

xx )

Tei = Feisgn(qi) + Fyvidi s 3)
—_— =
Coulomb viscous

with the Coulomb and viscous friction coefficients F; and
F, ;. This modeled characteristics is valid for the steady-state
condition, which is reached after half an hour of continuous
operation (quasi-constant motor temperature; uniform lubri-
cant distribution in the gearbox). The parameter-linear matrix



notation is shown in @) where p; contains the 2n friction
coefficients of the n joints:

T = A¢ (4) Py - “4)

Base parameters: One prerequisite for linear parameter
estimation is a parameter vector of minimum dimension. Some
parameters of the rigid-body model cannot be identified be-
cause they have no effect on the dynamics. Some parameters’
influences linearly depend on some others’. The implemented
reduction procedure is based on the regrouping rules defined
in [15], [17], [18]]. The corresponding columns of the matrix
A, are removed, so that a regular matrix arises. The resulting
identifiable parameters are called base parameters.

The overall system equation results from the combination of
the minimal parametrized rigid-body model with the friction
model:

T = AE(qv (ja q) Py - (5)

The resulting base parameter vector (dim(py,) = 29) can be
found in [3].

3) Experimental identification of robot dynamics: The
methodology is based on (3). It allows the use of compu-
tationally efficient linear estimation methods [2]], [4], [7],
[15]. The aim is to identify all parameters of the dynamic
model in an unbiased and robust way by using only one
appropriate measurement process. The estimation problem can
be formulated as follows:

7(t1) Asx (&(t1)) e(t1)
7(t2) Ax(&(t2)) e(tz)

2= et | | ©
T(tn) Asx(&(tn)) e(tn)

= v €

where the vector £(¢;) defines the kinematic measurements at
time ¢;, ¥ denotes the full-rank observation matrix computed
for the N measurement points and = is the vector obtained
from the N measured torque vectors 7(t;). € is the vector of
measurement noise.

Since errors mainly occur in the torque measurement 7T
the consideration of purely additive disturbances is proposed.
Thus, € is assumed as an additive zero-mean, Gaussian white
noise vector (£ (eeT) =¢2E). Furthermore, if ¥ is assumed as
deterministic and error-free, the Least-Square approach is the
unbiased estimator of minimal variance. Due to simplicity of
linear estimators, most of the published schemes in robotics
solve (6) using Least-Square methods [3]], [7]], [13].

Py, = arg {min,, ((u'zpE —5)" (wps — 5))}

(N
— (o7 @) 0" 5.

The necessary deterministic observations must be made in

a suitable measuring process. So, the information content of
¥ and the excitation of the system must be maximized. The
approach of Swevers et al. [2]], which arrange a Fourier series
for each joint as excitation trajectory, combined with an opti-
mization of the path parameters by minimizing the determinant

of ¥ (D-optimality) [20] leads to high excitation. Furthermore,
due to the possibility of analytical reconstruction of the path
parameters, almost noise-free deterministic measurements are
available. Thus, an unbiased parameter estimation of Py, is
to be expected. This has been successfully implemented and
proven experimentally on various robotic systems [4]—[7].

B. Model-based feed-forward torque control

With the identified parameters Py, and the analytic model
of the inverse dynamics (E]), feed-forward torques can be
calculated for each drive. Thus, a model-based feed-forward
torque control enables effective compensation of non-linear
coupled multi-body dynamics. This successfully reduces the
motor-side tracking errors [3]. It is integrated into the advanced
control scheme of the cascaded methodology to improve the
arm-side path accuracy in high-dynamic robot trajectories (see

Fig.]2).
C. Iterative Learning Control (ILC)

Due to simplified modeling and unconsidered effects,
model-based control concepts can not eliminate all path errors.
This leads to remaining path deviations. An iterative learning
control algorithm (ILC) can compensate systematic errors.
Thus, the accuracy of the complex nonlinear and coupled
systems will be significantly increased. Because of simple
applicability and high robustness against disturbances and
model errors, linear time-invariant model-based approaches
[7]-[11] are often used. Based on measured path deviations,
the path accuracy is increased iteratively:

@ cor = @ one + L. 4" ) ®)

with the corrected desired joint angles of the actual gf ., and
previous qfl;cl)r learning iteration and the learning function L
which consists of the nominal desired joint angles g4 and the
actual joint angles gP~! of the previous learning iteration. The
performance of the ILC strongly depends on the properties of
L.

All single-axis control loops are assumed to be linear and
decoupled. Due to simple identiﬁcatiorﬂ and system inversion,
time-discrete impulse response models are used. The relation-
ship between the desired joint value ¢q(k) and its actual value
q(k) can be described as follows:

a(k) =Y gD aa(k—=1+1) +e(k) = qa(k)"g +e(k) . (9)
1=1
For stable systems, the time-discrete impulse response g
is sufficiently accurately described by a limited number of
elements m,. With the desired joint angles g4(k) and an
additive unknown error e(k) the determination of § is realized
analogously to using Least-Square identification:

-1
. T T
9= (!pfhl!p‘Id> LR (10)

IThe observation matrix ¥(q,) contains only desired values and is
therefore always error-free and deterministic. Thus, a basic requirement of
the linear estimation is ensured [21].



with ¥ as the observation matrix filled with the vectors of
the desired values g4 for mg time steps from (9) and gq is the
vector of the actual joint positions.

Experiments reveal that, in the case of high-frequency
excitation by dynamic trajectories, the convergenceﬂ of the
iterative learning is not always guaranteed. Thus, oscillations
are often excited. Therefore smoothing of the desired trajectory
is proposed. Lange and Hirzinger [14] apply a special inver-
sion method Inverse-Covariance Kalman-Filter. Other authors
bypass inversion by directly filtering the corrections by means
of a Butterworth filter [9]], or completely exclude filtering
by the so-called Contraction Mapping [7], [8]]. According to
[15]], an Extended Least-Square (ELS) approach allows similar
results with lower complexity and easier parameterization.

The ELS smooths the desired trajectory by regularizing
of the poorly conditioned estimation problem. The following
linear system of equations results for joint 4:

wy 0 -0 chor@) Gag) ~ 9
0
Weviy e W chor(N ) daev) ~4w)
T AgPd? eq

(11
with the step response elements w(k)= 0 9(j) which can
be determined from (I0). Analogously to @ v, is the obser-
vation matrix, el is the vector of joint errors and AgPH! s the
sought parameter vector. So, instead of absolute corrections the
changes of the corrections between two successive time-steps
are estimated.

The regularization of the estimates results from a heuristic
extension of the ordinary Least-Square cost function according
to [20], [21]:

J(p) = %eTe + ngp — min, ,

with the extended cost function .J, the error vector € and the
parameter vector p. The following solution of (TT) results:

12)

13)

COI‘

-1
AGP = (hE+w$spw) wler.

The regularization parameter h allows to penalize the
correction changes Agq,,, and leads to a smoothing of the
corrected desired path. Advantageous is a lower excitation of
oscillation as well as a significantly more robust convergence
behavior of the learning process [15].

Consideration of Cartesian path error: According to the
schematic representation in Fig.[2} the increase of the arm-
side path accuracy is based on external measurements of the
Cartesian path deviations of the end-effector e,. However, for
the iterative path correction by (T3] the learning take place on
the basis of joint error measurements €q.(k) = da(k) — qfk). For
this purpose, in this work the inverse kinematics according to

2The requirement for the learning algorithm is its convergence with respect
i ; i P _
to a true desired trajectory ph_{roloq d.cor =44,T -

AN Develop.-PC|| Target-PC
N

Matlab / Simulink
L-Force Engineer

Real-Time
operating System

Ethemet

Movelnspect HF Lenze 9400

Fig. 4. Test bench for the implementation of the developed control concepts

Paul and Zhang [22] is used to transform the external Carte-
sian measurements of the end-effector * to the individual
robot axes q*.

III. EXPERIMENTAL METHODOLOGY TESTING

The capacity of the presented methodology for practical
applications is experimentally investigated on a test bench.
The improvement of the dynamic path accuracy is evaluated
by using the camera measurements of TCP position.

A. Testing environment

The test bench for the investigation of the arm-side accuracy
includes a connection of the servo synchronous motors of a
KUKA KR 6-2 industrial robot to the established Lenze 9400
inverters according to Fig.[d] The developed control system is
characterized by the following:

« extensive and user-friendly development- and real-time-
environment (MathWorks Simulink-Real-Time),

« short control cycle time (1 ms),

« computed torque control interface,

« restriction-free application of arbitrary trajectories and

« data-fusion of motor and arm angle measurements.

To examine the arm-side path accuracy Aicons Cartesian 3D
measurement system Movelnspect HFE| is integrated into the
test bench. This measures the position at high frequencies up to
500 Hz with an accuracy of up to 0.1 mm. The main advantage
of the external arm-side measurement is, that all systematic
errors (elasticity, backlash, friction, etc.) are collected by
measuring the robot end-effector position.

A camera calibration is required for the application of the
method. Therefore, the position of the TCP is measured in
relation to a fixed reference frame (see FigE[). Based on this, a
coordinate frame with an orthogonal basis is generate in refer-
ence coordinates ®T’r(z*). For calibration, the transformation
of the external end-effector measurements x* with respect to
the base frame of the robot *Tx(x*) must be known. For this
purpose, two constant transformations are required (see Fig.[d):

Ty (z*) = Tk "Tr(z*) "I, (14)

3http://aicon3d.com/products/moveinspect-technology/moveinspect-
hf/technical-details.htm]

EtherCAT
| Cycle Time> 1 ms
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Fig. 5. Comparison between the measured and the calculated torque of joint 1;
left: identification trajectory, right: validation trajectory

with the transformation of the reference frame with respect to
the base frame of the robot 9Tk as well as the transformation
of the end-effector with respect to the measured TCP "T%.

Thus, by means of non-linear optimization, the following
target function with respect to the parameters 7 is minimized
by comparing the external data x* with the internal robot
sensor data gq:

A=arg {ming||"Tr (9) "Tr(2*) "T(9) T (q)|}
15)
The precisely calibrated 3D measuring system is used in
the following to increase the path accuracy of high-dynamic
trajectories.

B. Identification and validation

The identification procedure discussed in Sec.[[[-A3] is ap-
plied to the robot KUKA KR 6-2. The model parameters of
robot dynamics are identified using LS estimation (7) consid-
ering the minimally parameterized model structure according
to (B) and the trajectory design using the Fourier approach
(see [2]) and its optimization.

The investigation of the estimation quality is carried out
by statistical analysis of relative standard deviations of the
estimation error. Due to the optimized excitation, especially
all parameters with a high influence on the dynamics (high
magnitude) are identified with a small expected estimation
error < 5%. The analysis of the standard deviation of the
parameter estimates shows similar results. Most parameters
with a high influence on the robot’s dynamics always remain
centered in their confidence interval (for details, see [3]]).

For validation, the joint torques are predicted using the
identified model according to (B). The results for joint 1 are
exemplary depicted in Fig.[j| for two trajectories which are
different in their dynamic characteristics.

Qualitatively, one can see a good agreement of calculated
and measured torque. Especially the comparison for the iden-
tification trajectory shows only slight deviations. These occur
due to complex friction effects which excite joint elasticity,
when the velocity crosses zero. For the validation trajectories,
deviations become particularly evident by torque oscillations
caused again by excitation of joint elasticity.

C. Dynamic compensation using feed-forward torque control

The first control approach for improving the arm-side
accuracy is model-based feed-forward torque control. The

Fig. 6. Linear motion in Cartesian space (Conditions: maximum speed and
payload; Configuration ®: maximum outreach while maintaining visibility)

implementation in [3|] significantly reduced the motor-side
tracking error. In this work the impact on TCP accuracy is
examined. The following conceptual control implementations
are compared:

o CF: Developed test bench in mode Cascaded feedback
PID-type controller,

« MFTC: Developed test bench in mode Cascaded feed-
back PID-type controller with model-based feedforward
torque control.

The investigations are performed using linear motions in
Cartesian space generated by the KUKA KR C4 under “worst-
case” conditions including maximum speed as well as max-
imum payload. The use of a camera reduce the workspace,
so it must be ensured that the path of the robot satisfies the
boundary conditions of visibility. The investigated trajectorie
is shown in Fig[6] The orientation of the TCP remains constant
along the path.

The accuracy in the “worst-case” corner D at the maximum
possible outreach is presented in Fig[7] It can be seen that the
overshoot is reduced during positioning by feed-forward con-
trol (MFTC). Since the inverse dynamic model considers only
rigid-body and friction dynamics, systematic errors remain.
Thus, path deviations can be seen on the arm-side. These are
mainly caused by joints’ elasticities.

D. Improving the path accuracy using ILC

The cascaded feedback PID-type controller reacts to de-
viations, but has the disadvantage of the delayed following
behavior. The feed-forward controller eliminates this delay
to a large extent. However, it does not take into influences
besides friction and rigid-body dynamics. Other systematic
error influences are compensated by ILC in the third step.
The ILC improves the controlled system behavior because it
can effectively compensate iteratively repetitive disturbances.

The realization of ILC (T3) is performed with a regulariza-
tion parameter h=1000. The results show a fast convergence
rate of path corrections and path accuracy. A low stationary
Cartesian error is achieved after only 3 iterations for the
investigated trajectory. The results of the control concepts is
compared before and after the use of the ILC again for the
defined “worst-case” corner @ in Fig.

The improved arm-side accuracy as a result of the MFTC
approach is further enhanced by the ILC. The path errors
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Fig. 7. Comparison of the Cartesian arm-side accuracy of the used concepts;
left: time behavior in z-coordinate, right: behavior in z-x-plane

resulting from joints compliance and especially the over-
shoot during positioning are significantly reduced. Meaningful
quantitative results for the investigated trajectory (1.) and
two further demanding trajectories show Tab.[lll The large
improvements and the robust behavior of the ILC has to
be emphasized. However, some oscillations remain due to
restricted sampling rate of corrections as well as simple
modeling of the control loops. In the future, more sophisticated
ILC approaches will be investigated.

TABLE I
PATH ERROR FOR THE USED CONCEPTS AND 3 DIFFERENT TRAJECTORIES

erMs (Emax) in mm
No. MFTC MFTC,ILC
X y z X y z
1. 0.6(2.4) 0.9(2.5) 0.5(1.7) 0.2(0.9) | 0.4(1.5) 0.3(1.1)
2. 0.6(2.3) 0.8(1.8) 1.2(3.3) 0.2(0.9) | 0.3(1.1) 0.3(1.0)
3. 0.8/(2.9) | 0.8(3.3) 1.6(3.6) 0.3(1.7) | 0.4(2.0) 0.4(1.7)

IV. CONCLUSION

This paper presents a hierarchical concept for increasing
the path accuracy of industrial robots for fast path applica-
tions. The necessary steps are discussed and evaluated by
experiments under “worst-case” excitation of oscillations by
maximum speed and payload.

Based on kinematic calibration as well as dynamic modeling
and identification, a sufficiently accurate model of the inverse
robot dynamics, suitable for real-time applications, is imple-
mented. This is robustly parameterized using a statistical ap-
proach for experimental parameter identification. Furthermore
an iterative learning controller (ILC) based on external camera
measurements is designed. This can iteratively compensate
unknown systematic disturbances, such joint elasticities, by
corrections of the desired trajectory.

The use of the identified model in a torque control already
shows a reduction of path errors. The subsequent use of ILC
yields a significant improvement in arm-side path accuracy.
The synergy between the different methods and their respective
advantages is central for successful implementation.

For further improvements, remaining arm-side oscillations
have to be considered in the ILC algorithm. Therefore, it is
planned to utilize the configuration dependent eigenfrequen-
cies of the axes’ control loops within ILC models.
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