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Abstract— Many works in collaborative robotics and human-
robot interaction focuses on identifying and predicting human
behaviour while considering the information about the robot
itself as given. This can be the case when sensors and the
robot are calibrated in relation to each other and often the
reconfiguration of the system is not possible, or extra manual
work is required. We present a deep learning based approach
to remove the constraint of having the need for the robot and
the vision sensor to be fixed and calibrated in relation to each
other. The system learns the visual cues of the robot body
and is able to localise it, as well as estimate the position of
robot joints in 3D space by just using a 2D color image. The
method uses a cascaded convolutional neural network, and we
present the structure of the network, describe our own collected
dataset, explain the network training and achieved results. A
fully trained system shows promising results in providing an
accurate mask of where the robot is located and a good estimate
of its joints positions in 3D. The accuracy is not good enough
for visual servoing applications yet, however, it can be sufficient
for general safety and some collaborative tasks not requiring
very high precision. The main benefit of our method is the
possibility of the vision sensor to move freely. This allows it
to be mounted on moving objects, for example, a body of the
person or a mobile robot working in the same environment as
the robots are operating in.

I. INTRODUCTION

Robotic manipulators are becoming cheaper resulting in
new application fields outside the traditional industrial en-
vironment. It is more common to see robots in hospitals,
warehouses and households. These environments result in
robots having to share the workspace with people and
even perform collaborative tasks. The concept of a shared
workspace has been an active research area for many years,
which is still highly relevant today [1] [2]. Furthermore,
with the appearance of Industry 4.0, the need toward the
environment and safety-aware robots is growing [3].

Collaborative robots, like Baxter and Sawyer, are ad-
vertised to be fully safe around people, however, it com-
monly means that they have sophisticated collision detection
systems [4]. Ideally, collisions should be avoided at all,
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especially in sensitive environments like hospitals. Collision
avoidance can be achieved by adding vision sensors.

Vision sensors observe the environment and indicate the
areas which are unobstructed and safe to operate in, and
are used to plan the robot movements accordingly. However,
there are issues with this approach. Sensors have to be fixed
on the robot itself or fixed in relation to the robot body.
A precise Hand-Eye calibration is then performed to allow
the sensors and the robot to operate in the same coordinate
system. However, then the setup takes up more space and
any unexpected disturbances or repositioning of the sensor
can mean that the calibration has to be repeated. Despite
automated calibration procedures, the process can still be
cumbersome and time consuming [5]. Another option would
be to fix the vision sensor on the robot body itself, commonly
on the end-effector of the robot. This can be an effective
method for collision avoidance for the end-effector of the
robot, however, the field-of-view is normally limited and a
full robot body collision check is rarely possible [6].

There has been a significant amount of work towards
robot autonomy and self-localisation. However, robot self-
awareness is normally limited to navigation, especially
for mobile robots, or self-collision avoidance for robot
arms or humanoid robots, where the robot model is
known [7] [8] [9] [10].

Visual-based robot manipulator tracking has been exten-
sively researched as well. End-effector being the main point
of focus with the aim of conducting robot control based
on visual servoing [11] [12]. Furthermore, it has proven to
be an effective method for adaptive redundant robot control
in Cartesian space [13]. Image-based tracking of 7-DoF
robot arm showed promising results with dynamic parameter
tuning as well [14]. Interesting work was presented, where
authors are using particle swarm optimisation approach for
fuzzy sliding mode control to track the end-effector of the
robot manipulator [15]. Despite achieving good accuracy,
most of these methods used prior knowledge or fixed setups
for the particular use case. Changing the setup would result
in the need to tune the algorithm for it to function accurately
given the new conditions. Furthermore, commonly it was just
the end-effector of the robot that was tracked instead of the
whole robot body.

When looking at the field of human-robot interaction, a
significant amount of work has been done on the design
of the systems and workspaces allowing to monitor the
human presence in close proximity to the robot and detect
any irregularities [16] [17] [18]. Another work is focusing
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Fig. 1. Samples from a collected robot dataset. Each row of images represents different robot type in the following order: UR3, UR5 and UR10. The
dataset was created using a varying background to provide more robustness.

on the best approaches to safeguard the workspace of the
robots [19].

When looking at the motion planning and behaviour
prediction topics, most of the focus has been on modelling
the human motions [20]. A heatmap of the workspace could
be constructed to allow the robot to predict where dynamic
obstacles are most likely to enter and have an additional
reflexive behaviour override for unexpected cases [21].

However, the majority of existing research has a robot
model and control architectures well defined and fine-tuned.
This means that the hardware setups are usually fixed and
all the sensors have to be attached at the defined locations
and calibrated specifically for the use case.

Our current research focuses on adding the flexibility on
the robot identification side and allowing more unrestricted
setups. For example, having a free-moving vision sensor as
a part of the robotic system aimed at the robot safety or
human-robot collaboration use case. We address this issue
by removing the need for fixed setups. Instead of having a
known transformation matrix between the coordinate frames
of the sensor and the robot base, we teach the system
to identify the robot body in a color image provided by
the vision sensor. Our method uses convolutional neural
networks (CNNs), which learn visual cues allowing it to
understand the environment [22]. The system identifies the
robot body in the color image of the vision sensor, and depth
information normally provided by 3D cameras is not needed
for the recognition task anymore. Furthermore, the system
estimates the robot body configuration and 3D coordinates
of each joint of the robot.

The vision sensor can be placed anywhere around the robot
or even used as a wearable device by the robot operator. This
approach can prove very useful in a cluttered environment
where one or many robots are located, such as a factory floor
or automated surgery room. Such environments can have a
limited space for fixed camera setups or line-of-sight can
be blocked by people or other machinery operating in close
proximity. Having multiple free-moving cameras is one of
the robust solutions ensuring the workspace is constantly
observed. An operator or a visitor can have a wearable

camera which observes the surroundings and indicates the
positions of all the robots in the vicinity. A warning system
or even an emergency stop option can be incorporated for
the situations when the robot gets too close to the person to
ensure a fully-safe operation.

Systems using our approach can also be useful in robot-
robot interaction cases, where a mobile robot is operating
in the same environment as robotic manipulators. It should
avoid getting too close to other robots and avoid possible
collisions. Even given a fully known environment, our system
can prove useful if navigation or localisation algorithm fails
to get an accurate position estimate, the vision sensor on
the mobile robot can indicate positions where other robots
are located. It can be useful for robot-to-robot interaction
tasks. For example, if a mobile robot is bringing tools or
objects that a robot arm needs to grasp, the mobile robot
could localise itself in relation to the robot manipulator.

This paper is organized as follows. We present the system
setup and dataset collection in Section II. Then, we explain
the proposed method and CNN architecture in Section III.
We provide experimental results in Section V, followed by
relevant conclusions and future work in Section VI.

(a) Color Image (b) Ground truth model of the robot
mask

Fig. 2. Example image of the dataset containing an UR3 robot.

II. SYSTEM SETUP AND DATASET COLLECTION
In our experiments, we use three types of robot arms

produced by Universal Robots: UR3, UR5 and UR10. All
three robots have a similar appearance, but different size
and payload capabilities. A Kinect V2 camera was used



as a 3D vision sensor providing both color image and
depth information, needed to create the dataset containing
ground truth data [23]. The final, fully-trained system only
needs the color image. The whole system was based on
a combination of the Robot Operating System (ROS) and
Theano framework [24].

Input Image Intermediate: Robot Mask Robot 3D Joint Coordinate 
Estimation

Fig. 3. Process described in regards to inputs and outputs of the system. A
simple color image of the robot body is provided as an input to the system.
The first CNN estimates the mask containing the robot body and this result
is overlayed with the color image and used as an input to the second CNN.
The second CNN provides an estimate of the joint coordinates of the robot
in 3D. Each robot joint is visualised with a circle of a different color.

Deep learning requires a large amount of diverse training
data to ensure efficient and robust learning. Given a limited
availability of datasets for such applications, it was decided
to create a dataset for this purpose. Access to the robots was
obtained in three institutions: TU Graz, Joanneum Research
and the University of Oslo.

In order to obtain a precise ground truth data, a Kinect
V2 camera was placed at a number of positions overlooking
the robot. At each position, a precise Hand-Eye calibration
was performed by placing a marker on the end-effector of
the robot and using both color and depth image for the
calibration process [25]. Having a precise coordinate system
transformation from the camera to the robot base allows us
to know precisely where the robot is located in the camera
image.

TABLE I. Dataset summary describing the number of samples collected
for each type of the robot. In total 9 recordings were made, 3 for each type
of the robot.

Recording Robot Type Number of Samples
Rec 1 UR3 211
Rec 2 UR3 252
Rec 3 UR3 463
Rec 4 UR5 252
Rec 5 UR5 756
Rec 6 UR5 1512
Rec 7 UR10 112
Rec 8 UR10 278
Rec 9 UR10 514

We used the MoveIt! package [26] to obtain ground truth
data by using a robot self-filtering algorithm. At each time
instance, the robot joints encoder information is combined
with a simplified robot model, which is taken from the
Unified Robot Description Format (URDF) file [27], to
generate a precise estimation of the current robot pose in
3D space and a robot body mask as a 2D image. It can be
used to find the robot in both, color and depth image.

Robot movements were pre-programmed in joints coor-
dinate system to move in as many different configurations

as possible without hitting an obstacle or self-collision oc-
curring. Each of the robot joints is moved through the full
range of motion in combination with other joints as well.
The step size of the joint movements is varied between the
datasets resulting in a different number of samples in each.
This method ensured that the robot body will be observed
from many angles by the vision sensor. After each movement
was performed, a trigger signal was sent to record camera
images, joint coordinates, Cartesian coordinates of each joint
and ground-truth model of the robot position. The number of
samples per dataset varied from 112 to 1512. In total nine
datasets were collected, three for each type of the robot,
summarized in Table I. Example images from the collected
dataset can be seen in Figure 1. Datasets with the UR5 robot
were the most extensive given the access to the robot at the
lab of the main author. An example of color and ground truth
images can be seen in Figure 2.

All the collected datasets were used for the training
process, resulting in 926 samples for UR3, 2520 samples for
UR5 and 904 samples for UR10. The datasets were split into
training and test set by randomly assigning 80% and 20% of
the images accordingly. All of the images have the resolution
of 512 × 424 pixels and are rectified using an internal
camera calibration to remove the lens distortion. Higher
resolution, 960× 540 pixels color images were recorded as
well, however, in practice, we scaled and cropped images to
have the same resolution for all the types: color, depth and
ground truth mask to avoid any scaling issues.

III. METHOD

Our method is based on a two-level cascaded CNN,
where one CNN is used for the classification task in fore-
ground/background detection of the robot body in the image,
and the second CNN is used for landmark detection of
the robot joint positions in 3D coordinates. The process in
regards to the input and output images is shown in Figure 3.

The principle of CNN is to have an image as an input,
which is passed to the network. Normally, CNN contains a
number of hidden layers, which lead to the output, which
is also given during the training process, defined as ground
truth. In the hidden layers, the network is capable of learning
a number of filters, which help to achieve the desired result,
thus minimising the error between the output of the network
and provided ground truth result. The learning process is
done by initialising random weights, getting the output,
comparing it to the desired result and then adjusting the
weights in the hidden layers during the back-propagation
process in order to achieve better accuracy.

For the robot body classification, our CNN consists of
four convolutional layers with 32 filters each and varying
dilation was used as well as the last convolutional layer con-
taining just one filter. The details about the architecture are
illustrated in Figure 4(a). The loss function was specifically
designed to take into consideration the rather small area of
the foreground object in the input image. In most of the cases,
the area of the robot body in the input image was 6− 17%
of the whole image. Without this adjustment, in some cases,
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(a) CNN architecture for the robot mask classification. The network consists of 5 convolutional layers with varying dilation. Input is a color image and
output is a mask image defining the body of the robot.
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(b) CNN architecture for the robot joint coordinate estimation. The network consists of 3 convolutional layers, 2 pooling layers and a fully connected layer
in the end. Input is an overlayed color image with a robot foreground mask and output is 3D coordinates of the robot joints in the coordinate system of
the vision sensor.

Fig. 4. Cascaded CNN architecture for the robot position estimation using non-fixed camera.

the network classifying all the pixels as background could
still achieve the accuracy of over 90%, which is conceptually
wrong. Calculation of the foreground weight wfg is shown
in Equation 1. It is based on the inverse probability of the
foreground and background classes, where Y ∈ {fg, bg}.

wfg =
1

P(Y = fg)
(1)

Similarly, the background weight wbg is calculated using
Equation 2.

wbg =
1

P(Y = bg)
(2)

The loss function is calculated by first getting loss per
pixel and then using it to calculate loss of the whole image.
A normalisation factor N , which is a number of pixels in the
image, allows us to keep the learning rate fixed, independent
of the image size.

Loss function for one pixel ln is defined in Equation 3,
where iest is P(Y = fg), (1 − iest) is P(Y = bg) and igt
is the ground truth value from the mask image.

ln(Inest, I
n
gt) =− wfgiest log (igt)

− wbg(1− iest) log (1− igt)
(3)

The result is then used to calculate normalised loss for the
whole image Lmask using Equation 4.

Lmask(Iest, Igt) =
1

N
∑
n

ln(iest, igt) (4)

We formulate the joint coordinate estimation as a re-
gression task using the second CNN. The network consists
of three dilated convolutional layers with 32, 64 and 128
filters respectively, two max-pooling layers in between and
a fully connected layer in the end. Details of the network
architecture can be seen in Figure 4(b).

Loss function Lcoords is based on Euclidean distance
calculations between estimated and ground truth values as
defined in Equation 5, where Nj is the number of joints,
Ji defines ground truth position of each joint and Ei is the
estimated position of each joint by CNN.

Lcoords =
1

Nj

Nj∑
i=1

‖Ji − Ei‖2 (5)

In this work we decided not to use any prior robot model
information to keep the system more adaptable to other robot
models in the future, meaning that a raw CNN output is used
to evaluate the accuracy of the results without any additional
post-processing.

IV. CNN TRAINING
There are two main possibilities on how to train the

cascaded CNN. The first option is to train the whole network



(a) Results: evaluation of the CNN trained for the
robot body classification, mask accuracy over a
number of iterations for all three robots using val-
idation sets. It can be seen that UR5 outperformed
UR3 and UR10.

(b) Results: evaluation of the CNN trained for 3D
coordinate estimation of the robot joint positions
using input based on ground truth mask data.

(c) Results: evaluation of the CNN trained for 3D
coordinate estimation of the robot joint positions
using the full system.

Fig. 5. Evaluation of our method based on accuracy over a number of training iterations.

end-to-end and observe the middle layer of the mask. How-
ever, this might not result in the output that is expected and
is unlikely to reach the desired mask accuracy. In this work,
we train each of the CNNs separately optimising for the best
result at each stage. This approach provides the flexibility
of using just a part of the system, for example, if only a
mask for the robot body is needed. When running the full
cascade, the output of the first CNN is used to mask a color
input image and use it as an input for the second CNN. The
training has been done on each type of the robot separately,
however, by observing intermediate-level feature maps, we
have noticed very similar features for all of the robot models.

The training of the classification CNN took slightly more
than 2 days on a regular nVidia GeForce 1080 GTX graphics
card for all the datasets. The data was selected in a random
order to avoid any biases and split in mini-batches of 128
images each for input to avoid overloading memory of the
GPU. The learning rate was gradually decreasing, starting
at 0.001 and reducing to 0.000001 throughout the learning
process. It took 5000 epochs for the network to converge.
The input size was half of the original image size: 256×212
pixels. The pixel intensity values were converted to float and
normalised to lay between 0 and 1. Additionally, pixel values
of the ground truth image are clipped to avoid division by
zero in cases when the estimated mask fits the ground truth
perfectly.

Training of the coordinate estimation CNN was signif-
icantly faster, taking under 7 hours, also converging after
5000 epochs. The learning rate was adjusted during the
training, starting at 0.03 down to 0.0001, and momentum
was increased over epochs from 0.9 to 0.999.

V. RESULTS

For evaluation, we use test sets and analyze outputs of the
trained systems against the ground truth data and calculate
the accuracy of the system. For the robot body classification,
the accuracy is defined by comparing how many pixels in the
CNN output mask image match the ground truth mask. For
the robot joint coordinates estimation, the error is defined

Fig. 6. An example result of the UR3 robot body mask classification
including input, ground truth, raw and thresholded CNN output images.
It can be seen that the mask fit corresponds well with the ground truth.
The only drawback is that the fit is not as sharp as the ground truth image.
However, no unwanted artefacts or false positives are present.

by the Euclidean distance between the estimated coordinates
and ground truth in all three dimensions, averaged over all
joints of the robot.

First, the results are presented for each of the CNNs
separately and then of the whole system altogether. Results
are analysed separately for the three types of robots.

A. Evaluation of the Robot Classification Task

First, we present the results of the robot classification
task for each type of the robot. Accuracy is defined by
the number of correctly classified pixels in the mask im-
age. Classification of UR5 reached the accuracy of 98, 1%
and outperformed UR3 and UR10 with 93, 1% and 92, 8%
respectively. The accuracy results over the training iterations
can be seen in Figure 5(a). An example mask estimation is
shown in Figure 6.



Fig. 7. Estimated robot joint position coordinates marked on the images taken from the dataset. Due to difficulty in visualising 3D coordinates on printed
figures, the estimated joint coordinates were mapped back into 2D images. Each row represents UR3, UR5 and UR10 robots respectively.

B. Evaluation of the Robot Joint Coordinate Estimation

In order to analyse the coordinate estimation, first, we
use the overlay images based ground truth mask data for
the input. As expected, CNN trained on UR5 data provided
the most accurate estimation with the average position error
of 2, 0cm, while UR3 had the error of 2, 5cm and UR10 -
3, 2cm. The coordinate estimation results over the training
iterations can be seen in Figure 5(b).

C. Evaluation of the Full System

For the full system evaluation, the process is the com-
bination of the previous two methods joined together: the
resulting output image of the robot mask classification is
used to overlay the color image and passed as an input for the
robot joint coordinate estimation. It is imperfect compared
to the ground truth data, so worse results were expected
compared to the previous test. For the full system, the final
coordinate estimation error increased to 2, 4cm for UR5,
2, 6cm for UR3 and 3, 9cm for UR10. Results can be directly
compared with the previous Section V-B.

The final results are summarised in Table II and the
estimated coordinates by the full system marked over the
dataset images can be seen in Figure 7. Because it is difficult
to show 3D estimations on 2D figures, the visualisation of
estimation is done by mapping the estimated 3D coordinates
back onto input images.

VI. CONCLUSIONS AND FUTURE WORK
In this work, we have addressed robots for collabora-

tion and human-robot interaction tasks. We have found

TABLE II. Experiment Results Summary

UR3 UR5 UR10
Mask Accuracy, % 93, 1% 98, 1% 92, 8%
Coordinates Error (separate) 2, 5cm 2, 02cm 3, 21cm
Coordinates Error (full system) 2, 57cm 2, 42cm 3, 89cm

an alternative solution for Hand-Eye calibration and added
the flexibility of placing the camera at arbitrary position
observing the robot workspace, while still being able to
identify the robot in the image and estimate its position.

Our system uses a cascaded convolutional neural network
to achieve the goal. For training and testing purposes, we
have collected a number of datasets using a line of robots
produced by Universal Robots: UR3, UR5 and UR10. This
allowed us to precisely train the CNN and achieve the
accuracy in robot body classification of up to 98% on the
test set and 3D joint coordinate estimation with an error
of less than 3cm. Furthermore, we have shown that the
accuracy directly correlates with the training duration and a
number of collected samples. This result is still not accurate
enough for applications like visual servoing, but it can be
good enough for some collaboration tasks as well as safety
alerts in cases where a person does not have to work in a
very close proximity to the robot.

Some example applications would be a small body-
mounted camera for doctors working in robotised operating
rooms or visitors on the factory floor. It would also be useful
in robot-robot interaction cases, when a mobile robot is
operating in the same areas as the robot arms, either in order



to avoid each other, or support the operations by bringing
objects, which would be handled by robot manipulators. The
system would be trained to identify all the robots existing in
the specific environment, and the person would be warned
by a visual or audible alert in cases where he gets within
the reachable distance of the robot. Furthermore, if the robot
gets too close to the person, an emergency stop could be
initiated.

For the human-robot collaboration tasks, hand tracking of
a person can be achieved using devices like Leap Motion
or skeleton tracking to get an estimate of the relative hand
positions to the robot. This makes it possible to achieve the
tasks like tool handover between the person and the robot,
completing joint tasks or even hand-gesture control, while
avoiding any unwanted physical contact between the two.

Further work includes expanding our method to new types
of robots by using transfer learning from pre-trained CNN.
This could allow achieving good accuracy with a limited
number of training samples. Furthermore, we will add state-
of-the-art skeleton tracking and human motion prediction to
perform collaborative human-robot tasks and evaluate the
performance compared to the cases of having fixed camera-
robot setups.
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